עוד עולה מהמחקר כי לצעירים יש ריכוז נוגדנים גבוה יותר ולאורך זמן לעומת מחוסנים מבוגרים

מחקר
עוד עולה מהמחקר כי לצעירים יש ריכוז נוגדנים גבוה יותר ולאורך זמן לעומת מחוסנים מבוגרים
במחקר משותף של אוניברסיטת תל אביב והמרכז הרפואי שמיר (אסף הרופא) החוקרים בדקו את רמת הנוגדנים במעל ל-26 אלף דגימות של מחלימים, מחוסנים ולא מחוסנים מקוביד-19. התוצאות הסרולוגיות מראות שרמת הנוגדנים משתנה בהתאם לקבוצת גיל, מגדר, סימפטומים וזמן אחרי חיסון.
לרוב בקרב צעירים ריכוז גבוה של נוגדנים הוא תוצאה של תגובה חיסונית חזקה ואצל מבוגרים זה דווקא סימן לתגובת-יתר של מערכת החיסון ומשויכת למקרי מחלה קשים יותר.
את המחקר ערכו הצוותים של פרופ' נועם שומרון, ראש מעבדת מחקר בגנומיקה חישובית בפקולטה לרפואה ע"ש סאקלר באוניברסיטת תל אביב, וד"ר עדינה בר חיים, מהמרכז הרפואי שמיר. אספה את הנתונים ד"ר רמזיה אבו חאמד מבית החולים אסף הרופא, ואת האנליזה ביצע גיא שפירא – דוקטורנט במעבדה של פרופ' שומרון.
הממצאים העיקריים מראים שהתגובה החיסונית של מחוסנים בשתי מנות חיסון, חזקה בהרבה מהתגובה של המחלימים. כלומר, ריכוז הנוגדנים בדם גבוה משמעותית אצל המחוסנים לעומת ריכוז הנוגדנים בדם אצל המחלימים, כמעט פי 4.
יש הבדל בין נשים לגברים מחוסנים, בריכוז הנוגדנים בדם ביחס לגיל ומגדר. אצל נשים, ריכוז הנוגדנים מתחיל לעלות מגיל 51 ומעלה, והוא גבוה יותר יחסית לריכוז הנוגדנים אצל גברים בגילאים אלו. יתכן ותופעה זו קשורה לירידה בהורמון האסטרוגן, הנצפית באזור גיל זה ומשפיעה על מערכת החיסון. אצל גברים, רואים עליה בריכוז הנוגדנים בגיל מוקדם יותר לעומת הנשים, החל מגיל 35. יתכן וזה קשור לשינויים ברמות ההורמון הגברי – טסטוסטרון והשפעתו על מערכת החיסון.
באופן כללי, לצעירים יש ריכוז נוגדנים גבוה יותר ולאורך זמן לעומת מחוסנים מבוגרים. יש ירידה של עשרות אחוזים לאורך הזמן בין הגילאים הצעירים לגילאים המאוד מבוגרים.
לסיכום, צריך מחקרים נוספים על מנת להבין לעומק את תגובת מערכת החיסון לקוביד-19, להחלמה ולחיסונים. החוקרים מקווים כי יוכלו בעתיד לספק מדד לגבי חוזק החיסון בהתאמה לגיל, מגדר וסימפטומים.
מחקר
כוכב שסיים את חייו בגלקסיה רחוקה והתפוצץ בעוצמה רבה פתר תעלומה אסטרונומית מהמאה ה-11
מחקר חדש בהשתתפות חוקר מאוניברסיטת תל אביב גילה סופרנובה מסוג חדש - סופרנובת לכידת אלקטרונים (Electron Capture Supernova). סופרנובות מסוג זה נחזו באופן תיאורטי לפני כ-40 שנה, אך עד כה לא נצפה מקרה משכנע של אחת כזו ביקום. התגלית גם שופכת אור על תעלומת סופרנובה משנת 1054, שנצפתה על ידי אסטרונומים מהתקופה ושרידיה מופיעים כיום כערפילית העקרב.
מהי סופרנובה? זהו פיצוץ של כוכב, שמתרחש בעקבות הפרת האיזון שקיים בכוכבים במהלך חייהם בין שני כוחות מנוגדים. כוח המשיכה מנסה לכווץ כל כוכב. השמש שלנו, למשל, מחזיקה מעמד נגד כיווץ כזה בזכות קיומה של בעירה גרעינית בליבה שלה, אשר מייצרת לחץ שמתנגד לכוח המשיכה. כל עוד יש בעירה גרעינית, כוח המשיכה לא יצליח לגרום לכוכב לקרוס. אולם, בסופו של דבר, הבעירה הגרעינית מסתיימת, ממש כמו שהדלק ברכב אוזל, והכוכב קורס. עבור כוכבים כמו השמש, הליבה שקרסה נקראת ננס לבן, שהיא ליבה דחוסה שנותרת כאשר כוכב הכבד עד פי 8 מהשמש מסיים את חייו. החומר הוא כה דחוס, עד שכוחות קוונטיים בין האלקטרונים מונעים קריסה נוספת שלו.
סופרנובות לכידת אלקטרונים נוצרות מהפיצוצים של כוכבים הכבדים פי 8-9 מהשמש. עבור כוכבים כאלה, הכוחות הקוונטיים לא מספיקים לעצור את הדחיסה, והליבה ממשיכה לקרוס עד היווצרותם של כוכב נויטרונים או חור שחור, בתהליך שמלווה בליווי פיצוץ ענק.
במהלך העשורים האחרונים, אסטרופיזיקאים גיבשו תחזיות לאופן שבו אמור להראות פיצוץ שנוצר כתוצאה מלכידת אלקטרונים בליבת כוכב שקורס. הכוכב אמור לאבד חומר בעל הרכב כימי מסוים בשנים שלפני קריסתו, והפיצוץ עצמו אמור להיות חלש יחסית, לייצר מעט נשורת גרעינית, ולפזר יסודות עתירי נויטרונים.
במחקר חדש בהשתתפותו של ד"ר יאיר הרכבי מהפקולטה למדעים מדויקים ע"ש סאקלר, מוצגת הסופרנובה SN2018zd, שהתגלתה בשנת 2018 על ידי האסטרונום החובב קואיצ׳י איטאגאקי מיפן. לסופרנובה הזו, הממוקמת בגלקסיה NGC 2146, יש בדיוק את כל התכונות המצופות מסופרנובת לכידת אלקטרונים, אשר לא נצפו עד כה באף סופרנובה אחרת. כמו כן, מאחר שסופרנובה זו קרובה אלינו יחסית - רק כ-31 מיליון שנות אור מאיתנו - הצליחו החוקרים לזהות את הכוכב כפי שנראה לפני הפיצוץ, בתמונות ארכיון שצולמו ע״י טלסקופ החלל האבל. המחקר התפרסם בכתב העת היוקרתי Nature Astronomy.
בעוד סופרנובות אחרות שהתגלו בעבר הציגו רק חלק מהתכונות המצופות מסופרנובת לכידת אלקטרונים, SN2018zd מציגה את כל שש התכונות המתאימות:
"בהתחלה תהינו מהי הסופרנובה המוזרה הזו", אומר דאיצ׳י היראמטסו מאוניברסיטת סנטה ברברה בקליפורניה, שהוביל את המחקר. ״לאט לאט הבנו שאפשר להסביר את כל התכונות של הסופרנובות באמצעות תרחיש לכידת האלקטרונים״.
התגלית שופכת אור גם על אחת הסופרנובות המפורסמות ביותר מהעבר. בשנת 1054, התפוצץ כוכב בגלקסיה שלנו, גלקסיית שביל החלב. לפי רישומים סיניים מאותה התקופה, הפיצוץ היה כה בהיר עד כי נראה במשך היום, ובלילה הטיל צל. השאריות של אותה סופרנובה, הקרויות כיום "ערפילית העקרב", נחקרו לעומק ונמצאו כבעלות הרכב לא שגרתי. ההשערה הייתה כי אותה סופרנובה נבעה מלכידת אלקטרונים, אך מכיוון שהיא התרחשה לפני קרוב ל-1000 שנה, לא ניתן היה להוכיח זאת. כעת, עם הגילוי של SN2018zd, מתחזקת ההשערה שגם הסופרנובה של שנת 1054 אכן הייתה מסוג לכידת אלקטרונים.
"זה מדהים שבאמצעות כלים מודרניים אנחנו שופכים אור גם על אירועים היסטוריים ביקום", אומר ד"ר הרכבי. "כיום, עם טלסקופים רובוטיים שסורקים את השמים ביעילות חסרת תקדים, אנחנו יכולים לגלות עוד ועוד תופעות נדירות אך קריטיות להבנת חוקי הטבע, מבלי שנצטרך לחכות עוד 1000 שנה בין אירוע אחד לשני".
ד"ר הרכבי הוא חבר בפרויקט הסופרנובה העולמי ועושה שימוש ברשת הטלסקופים לאס קומברס, כדי לחקור תופעות משתנות ונדירות כמו סופרנובות, מיזוגי כוכבי נויטרונים, וקריעה של כוכבים על ידי חורים שחורים.
ד"ר יאיר הרכבי (צילום: ישראל הדרי)
מחקר
טכנולוגיה ראשונה מסוגה משחזרת את תחושת המגע בעצבים שנפגעו בעקבות קטיעה או פציעה
בשנים האחרונות תחום הנוירו-תותבים מבטיח לשפר את חייהם של אלה שאיבדו את התחושה על ידי השתלת חיישנים במקום העצבים הפגועים. אלא שלטכנולוגיה הקיימת מספר חסרונות משמעותיים, כמו ייצור ושימוש מורכבים וכן צורך במקור כוח חיצוני כמו סוללה. כעת, חוקרים מאוניברסיטת תל אביב השתמשו בטכנולוגיה חדישה בשם ננו-גנרטור טריבו-אלקטרי (Nanogenerator triboelectric או TENG), כדי להנדס ולבדוק על חיות מודל חיישן זעיר שמחזיר את התחושה באמצעות זרם חשמלי, שמגיע ישירות מעצב בריא וללא צורך בהשתלה מורכבת או בהטענה.
הטכנולוגיה שנוסתה על חיות מודל בהצלחה רבה כוללת חיישן זעיר שמושתל בעצב של האיבר הפגוע, למשל באצבע, והוא מחובר ישירות לעצב תקין, ובכל פעם שהאיבר נוגע בחפץ אחר, החיישן מופעל ומעביר זרם חשמלי לעצב הבריא, פעולה אשר משחזרת את תחושת המגע. החוקרים מדגישים כי מדובר בטכנולוגיה "בריאה" שמותאמת לגוף האדם וניתן להשתיל אותה בכל מקום בגוף.
הטכנולוגיה פותחה בהובלת צוות מומחים מאוניברסיטת תל אביב: ד"ר בן מעוז, יפתח שלומי, שי דיולד וד"ר יעל ליכטמן-ברדוגו מהמחלקה להנדסה ביו-רפואית, ובשיתוף קשת תדמור מבית הספר סגול למדעי המוח וד"ר עמיר ערמי מהפקולטה לרפואה ע"ש סאקלר ומהיחידה למיקרוכירורגיה במחלקה לכירורגיה של היד, המרכז הרפואי שיבא. המחקר התפרסם בכתב העת היוקרתי ACS NANO.
החוקרים מספרים כי הפרויקט הייחודי התחיל בפגישה בין שני חברים מאוניברסיטת תל אביב: ד"ר עמיר ערמי מהפקולטה לרפואה ומיחידת המיקרו-כירורגיה בשיבא וד"ר בן מעוז מהמחלקה להנדסה ביו-רפואית ובית ספר סגול למדעי המוח. "דיברנו על האתגרים בעבודות שלנו", מספר ד"ר מעוז, "וד"ר ערמי שיתף אותי בקושי שהוא חווה בטיפול באנשים שמאבדים את יכולת החישה באיבר זה או אחר כתוצאה מפציעה. צריך להבין שמדובר בקשת רחבה מאוד של פציעות, החל מפציעות קלות – לדוגמה, מישהו חותך סלט ונחתך מהסכין – ועד לפציעות קשות מאוד. גם אם ניתן לאחות את הפצע ולתפור את העצב הפגוע, במקרים רבים התחושה נותרת פגועה. החלטנו להתמודד יחד עם האתגר הזה ולמצוא פתרון שיחזיר לפגועים את יכולת החישה".
במסגרת הפיתוח הטכנולוגי החוקרים יצרו חיישן שניתן להשתיל אותו על עצב פגום מתחת לקצה של האצבע, והוא מחזיר למושתל חלק מיכולת החישה באצבע. הפיתוח הייחודי אינו מצריך שימוש במקור מתח חיצוני כגון חשמל או סוללות. החוקרים מסבירים כי החיישן פועל למעשה על כוח החיכוך: בכל פעם שהמכשיר מרגיש חיכוך, הוא נטען לבד.
מדובר בשני לוחות זעירים בגודל של פחות מחצי ס"מ על חצי ס"מ. כשהלוחות האלה באים במגע אחד עם השני, הם משחררים מטען חשמלי שמועבר לעצב הבריא. באופן הזה, כשהאצבע הפגועה נוגעת במשהו, הנגיעה משחררת מתח בהתאם ללחץ שהופעל על המכשיר – מתח חלש למגע חלש ומתח חזק למגע חזק – ממש כמו חישה רגילה.
לטענת החוקרים ניתן להשתיל את המכשיר בכל מקום בגוף שבו יש צורך בשחזור תחושה למגע, והוא עוקף למעשה את אברי החישה הפגועים. כמו כן, החומר שממנו עשוי המכשיר הוא ידידותי לגוף האדם, הוא לא דורש תחזוקה, ההשתלה פשוטה והמכשיר עצמו אינו נראה מבחוץ.
לדבריו של ד"ר מעוז, לאחר שבדקו את החיישן החדש במעבדה (יותר מחצי מיליון הקשות אצבע עם המכשיר), החוקרים השתילו אותו בכפות רגליהם של חיות מודל. החיות הלכו כרגיל, מבלי לחוות כל פגיעה בעצבים המוטוריים, ובבדיקות הוכח כי החיישן איפשר להן להגיב לגירויים סנסוריים. "בדקנו את הפיתוח שלנו על חיות מודל, והתוצאות היו מעודדות מאוד", מסכם ד"ר מעוז. "בשלב הבא נרצה לבחון את המשתל על מודלים גדולים יותר, ובהמשך – להשתיל את החיישנים שלנו גם באצבעותיהם של בני אדם שאיבדו את יכולת החישה. היכולת הזו עשויה לשפר באופן משמעותי את התפקוד ואת איכות החיים, וחשוב מכך: להגן עלינו מפני סכנה. אנשים שלא יכולים להרגיש מגע גם לא יכולים להרגיש שהאצבע שלהם נמחצת, נשרפת או קופאת".
מחקר
לראשונה בעולם: טכנולוגיה להובלת תרופות לתאים הנגועים בסרטן מבלי לפגוע בתאים הבריאים
טכנולוגיה פורצת דרך של אוניברסיטת תל אביב עשויה לחולל תפנית באופן הטיפול בסרטן מסוגים שונים ובשורה ארוכה של מחלות ומצבים רפואיים: צוות חוקרים בהובלת פרופ' דן פאר, מחלוצי פיתוח נשאי התרופות מבוססות-הרנ"א בעולם, הצליח לייצר שיטת הובלה חדשה לתרופות מבוססות-רנ"א לתת-אוכלוסיית תאים של מערכת החיסון שמשתתפת בתהליך הדלקתי, ולהתביית על התא הנגוע במחלה מבלי לחולל נזק לשאר התאים. פרופ' פאר הוא סגן הנשיא למחקר ופיתוח, ראש המרכז לרפואה תירגומית וחוקר בכיר בבית הספר למחקר ביו-רפואי וחקר הסרטן ע"ש שמוניס בפקולטה למדעי החיים ע"ש ג'ורג' ס' וייז ובמרכז לננו-מדע וננוטכנולוגיה.
"הפיתוח שלנו משנה למעשה את עולם הנוגדנים" מסביר פרופ' פאר. "כיום אנחנו מציפים את הגוף בנוגדנים שהם אמנם סלקטיביים, אך פוגעים בכל התאים שמבטאים את הקולטן, מבלי תלות בצורתם הנוכחית. אנחנו הוצאנו מהמשחק תאים בריאים שיכולים לעזור לנו, כלומר תאים שאינם דלקתיים, ובהזרקה פשוטה לדם להשתיק, לבטא או לערוך גן מסוים אך ורק בתאים הדלקתיים באותו רגע נתון".
במסגרת המחקר, פרופ' פאר וצוותו הצליחו להדגים את הפיתוח פורץ הדרך בחיות מודל של מחלות מעי דלקתיות כמו מחלת קרוהן וקוליטיס ולשפר את כל המדדים הדלקתיים, זאת מבלי לבצע כל מניפולציה על כ-85% מתאי המערכת החיסונית. "על כל מעטפת של תא בגוף, כלומר על הממברנה התאית או קרום התא, יושבים קולטנים שבוררים אילו חומרים ייכנסו לתא", מסביר פרופ' פאר. "אם אנחנו רוצים להחדיר תרופה, אנחנו צריכים להתאים אותה לקולטנים המסוימים על תאי המטרה, אחרת היא תסתובב במחזור הדם ולא תעשה שום דבר. אלא שחלק מהקולטנים האלה דינמיים: הם משנים את צורתם על גבי הקרום בהתאם לסיגנלים חיצוניים או פנימיים. לראשונה בעולם, הצלחנו לייצר מערכת הובלה של תרופות שיודעת להיקשר אך ורק לקולטנים במצב מסוים, ולפסוח על שאר התאים הזהים, כלומר להוביל תרופה אך ורק לתאים שרלוונטיים כרגע למחלה".
את המחקר הוביל פרופ' פאר יחד עם ד"ר נילס דמס, פוסט דוקטורנט מהולנד, ובשיתוף ד"ר סריניבס רמישטי, ד"ר מאיר גולדשמיט וד"ר נופר ויגה, ממעבדתו של פרופ' דן פאר. עוד השתתפו במחקר פרופ' גייסון דרלינג ופרופ' אלן פקרד מאוניברסיטת הרווארד שבארה"ב. המחקר מומן על ידי האיחוד האירופי, במסגרת תוכנית המצטיינים האירופית (ERC), והוא פורסם בכתב העת Nature Nanotechnology.
פרופ' פאר וצוותו פיתחו בעבר מערכות הובלה המבוססת על ננו-חלקיקים שומניים, מערכת מתקדמת מסוגה שכבר זכתה לאישוש קליני להובלת תרופות מבוססות-רנ"א לתאים. כעת, הם מנסים להפוך את מערכת ההובלה לסלקטיבית עוד יותר. "לפיתוח שלנו יש השלכות להמון תחומים בסרטני דם ובסוגים שונים של סרטנים מוצקים, במחלות דלקתיות שונות ובמחלות ויראליות כמו הקורונה למשל. היום אנחנו יודעים לעטוף רנ"א בחלקיקים מבוססי-שומן, כך שייקשר לקולטנים הספציפיים על תאי המטרה", מספר פרופ' פאר. "אלא שתאי המטרה משתנים כל הזמן. הם עוברים ממצב 'קושר' למצב 'לא קושר' לפי הנסיבות. אם אנחנו נחתכים למשל, לא כל תאי מערכת החיסון שלנו עוברים למצב 'קושר', כי לא צריך את כולם כדי לטפל בחתך קטן. לכן פיתחנו חלבון מאוחה, שיודע להיקשר אך ורק למצב האקטיבי של הקולטנים בתאי מערכת החיסון. את החלבון שפיתחנו בדקנו בחיות מודל של מחלות מעי דלקתיות, גם אקוטית וגם כרונית".
"הצלחנו לסדר את מערכת ההובלה כך ששינינו את הרנ"א רק ל-14.9% מהתאים שהיו מעורבים במצב הדלקתי של המחלה, וזאת מבלי לגעת לרעה בשאר התאים הלא-מעורבים, שהם למעשה תאים בריאים לגמרי", אומר פרופ' פאר ומסכם "על ידי היקשרות ספציפית לתת-אוכלוסיית התאים, הצלחנו לשפר את כל המדדים של הדלקת, ממשקל החיה ועד לציטוקינים הפרו-דלקתיים (חלבונים קטנים שמהווים את הבסיס לתקשורת בין תאי מערכת החיסון ובין תאים השייכים לרקמות הגוף). השווינו את התוצאות שלנו לתוצאות של נוגדנים שנמצאים היום בשוק לחולי קרוהן-קוליטיס, ומצאנו שהתוצאות שלנו היו זהות או טובות יותר, מבלי לגרום לרוב תופעות הלוואי הנלוות להחדרת נוגדנים לכלל אוכלוסיית התאים. במילים אחרות, הצלחנו להסיע את התרופה ב"מונית ספיישל" כירוגית ישירות לתאים החולים".
פרופ' דן פאר