מחקרים

RESEARCH

מה מעניין אותך?

כל הנושאים
אמנויות
מוח
הנדסה וטכנולוגיה
חברה
מדעים מדויקים
ניהול ומשפט
סביבה
רוח
רפואה ומדעי החיים

לובי מחקרים

carousle news research: 
בחר את סוג הלובי: 
מחקרים

מחקר

07.07.2021
פיצוץ אדיר בחלל פתר תעלומה בת אלף שנה

כוכב שסיים את חייו בגלקסיה רחוקה והתפוצץ בעוצמה רבה פתר תעלומה אסטרונומית מהמאה ה-11

 

  • מדעים מדויקים

מחקר חדש בהשתתפות חוקר מאוניברסיטת תל אביב גילה סופרנובה מסוג חדש - סופרנובת לכידת אלקטרונים (Electron Capture Supernova). סופרנובות מסוג זה נחזו באופן תיאורטי לפני כ-40 שנה, אך עד כה לא נצפה מקרה משכנע של אחת כזו ביקום. התגלית גם שופכת אור על תעלומת סופרנובה משנת 1054, שנצפתה על ידי אסטרונומים מהתקופה ושרידיה מופיעים כיום כערפילית העקרב.

 

פיצוצים  במרחק 31 מיליון שנות אור

מהי סופרנובה? זהו פיצוץ של כוכב, שמתרחש בעקבות הפרת האיזון שקיים בכוכבים במהלך חייהם בין שני כוחות מנוגדים. כוח המשיכה מנסה לכווץ כל כוכב. השמש שלנו, למשל, מחזיקה מעמד נגד כיווץ כזה בזכות קיומה של בעירה גרעינית בליבה שלה, אשר מייצרת לחץ שמתנגד לכוח המשיכה. כל עוד יש בעירה גרעינית, כוח המשיכה לא יצליח לגרום לכוכב לקרוס. אולם, בסופו של דבר, הבעירה הגרעינית מסתיימת, ממש כמו שהדלק ברכב אוזל, והכוכב קורס. עבור כוכבים כמו השמש, הליבה שקרסה נקראת ננס לבן, שהיא ליבה דחוסה שנותרת כאשר כוכב הכבד עד פי 8 מהשמש מסיים את חייו. החומר הוא כה דחוס, עד שכוחות קוונטיים בין האלקטרונים מונעים קריסה נוספת שלו.

 

סופרנובות לכידת אלקטרונים נוצרות מהפיצוצים של כוכבים הכבדים פי 8-9 מהשמש. עבור כוכבים כאלה, הכוחות הקוונטיים לא מספיקים לעצור את הדחיסה, והליבה ממשיכה לקרוס עד היווצרותם של כוכב נויטרונים או חור שחור, בתהליך שמלווה בליווי פיצוץ ענק.

 

במהלך העשורים האחרונים, אסטרופיזיקאים גיבשו תחזיות לאופן שבו אמור להראות פיצוץ שנוצר כתוצאה מלכידת אלקטרונים בליבת כוכב שקורס. הכוכב אמור לאבד חומר בעל הרכב כימי מסוים בשנים שלפני קריסתו, והפיצוץ עצמו אמור להיות חלש יחסית, לייצר מעט נשורת גרעינית, ולפזר יסודות עתירי נויטרונים.

 

במחקר חדש בהשתתפותו של ד"ר יאיר הרכבי מהפקולטה למדעים מדויקים ע"ש סאקלר, מוצגת הסופרנובה SN2018zd, שהתגלתה בשנת 2018 על ידי האסטרונום החובב קואיצ׳י איטאגאקי מיפן. לסופרנובה הזו, הממוקמת בגלקסיה NGC 2146, יש בדיוק את כל התכונות המצופות מסופרנובת לכידת אלקטרונים, אשר לא נצפו עד כה באף סופרנובה אחרת. כמו כן, מאחר שסופרנובה זו קרובה אלינו יחסית - רק כ-31 מיליון שנות אור מאיתנו - הצליחו החוקרים לזהות את הכוכב כפי שנראה לפני הפיצוץ, בתמונות ארכיון שצולמו ע״י טלסקופ החלל האבל. המחקר התפרסם בכתב העת היוקרתי Nature Astronomy.

 

כך תזהו סופרנובת לכידת אלקטרונים

בעוד סופרנובות אחרות שהתגלו בעבר הציגו רק חלק מהתכונות המצופות מסופרנובת לכידת אלקטרונים, SN2018zd מציגה את כל שש התכונות המתאימות:

  • כוכב בתחום המסות המתאים בטרם הפיצוץ
  • איבוד חומר לפני הפיצוץ
  • הרכב כימי מיוחד
  • פיצוץ חלש יחסית
  • פיזור של נשורת גרעינית מועטה
  • פיזור של יסודות עתירי נויטרונים

 

"בהתחלה תהינו מהי הסופרנובה המוזרה הזו", אומר דאיצ׳י היראמטסו מאוניברסיטת סנטה ברברה בקליפורניה, שהוביל את המחקר. ״לאט לאט הבנו שאפשר להסביר את כל התכונות של הסופרנובות באמצעות תרחיש לכידת האלקטרונים״.

 

שופכים אור על סופרנובת "ערפילית העקרב"

התגלית שופכת אור גם על אחת הסופרנובות המפורסמות ביותר מהעבר. בשנת 1054, התפוצץ כוכב בגלקסיה שלנו, גלקסיית שביל החלב. לפי רישומים סיניים מאותה התקופה, הפיצוץ היה כה בהיר עד כי נראה במשך היום, ובלילה הטיל צל. השאריות של אותה סופרנובה, הקרויות כיום "ערפילית העקרב", נחקרו לעומק ונמצאו כבעלות הרכב לא שגרתי. ההשערה הייתה כי אותה סופרנובה נבעה מלכידת אלקטרונים, אך מכיוון שהיא התרחשה לפני קרוב ל-1000 שנה, לא ניתן היה להוכיח זאת. כעת, עם הגילוי של SN2018zd, מתחזקת ההשערה שגם הסופרנובה של שנת 1054 אכן הייתה מסוג לכידת אלקטרונים.

 

"זה מדהים שבאמצעות כלים מודרניים אנחנו שופכים אור גם על אירועים היסטוריים ביקום", אומר ד"ר הרכבי. "כיום, עם טלסקופים רובוטיים שסורקים את השמים ביעילות חסרת תקדים, אנחנו יכולים לגלות עוד ועוד תופעות נדירות אך קריטיות להבנת חוקי הטבע, מבלי שנצטרך לחכות עוד 1000 שנה בין אירוע אחד לשני".

 

ד"ר הרכבי הוא חבר בפרויקט הסופרנובה העולמי ועושה שימוש ברשת הטלסקופים לאס קומברס, כדי לחקור תופעות משתנות ונדירות כמו סופרנובות, מיזוגי כוכבי נויטרונים, וקריעה של כוכבים על ידי חורים שחורים.

 

ד"ר יאיר הרכבי (צילום: ישראל הדרי)

צוות המחקר המהפכני

מחקר

28.06.2021
יש לך דקה?

חוקרים מאוניברסיטת תל אביב יצרו מערכת זיכרון חשמלי דקיקה בעובי שני אטומים בלבד

 

  • מדעים מדויקים

חוקרים מאוניברסיטת תל אביב הצליחו להנדס את הטכנולוגיה הזעירה ביותר בעולם, בעובי שני אטומים בלבד. לדבריהם, הטכנולוגיה החדשה מציעה דרך לקודד מידע חשמלי לתוך היחידה הדקה ביותר המוכרת למדע היום, בגביש שהוא מהחזקים והיציבים ביותר בטבע. פריצת הדרך תוכל להוביל לייעול בהתקנים אלקטרוניים מבחינת צפיפות, מהירות ועלות.

 

מערכת בעובי של שני אטומים

הדמיית עובר בבטן אמו, פירוק וירוס זעיר למרכיביו ואפילו האזנה לחורים שחורים שהתמזגו לפני מיליארד שנים - המשותף לפיתוח הטכנולוגיות האלה ולרבות אחרות הוא הסקרנות אודות התנהגותם של אטומים ואלקטרונים בחומר, והרצון לחזות ולשלוט בתכונות המשותפות שלהם כשהם מתמצקים יחד למבנה מסודר של גביש. בלב המחשב לדוגמה, מצוי התקן גבישי זעיר, שמטרתו לשלוט בתגובה כלשהי בעלת שני מצבים לפחות (מיתוג) - "כן" או "לא", "מעלה" או "מטה", "קטן" או "גדול". ללא חלוקה משלימה זו לא ניתן לקודד ולעבד מידע. האתגר הוא למצוא מנגנון שיאפשר מיתוג בהתקן קטן, מהיר וזול.

 

נכון להיום, ההתקנים המתקדמים ביותר עשויים מגבישים קטנטנים, המכילים כמיליון אטומים בלבד (כמאה אטומים בגובה, ברוחב, ובעובי), כך שאפשר למקם מיליון כמותם כמיליון פעמים בשטח של מטבע אחד, ולמתג כל אחד מההתקנים במהירות של כמיליון פעמים בשנייה. שיפור היחידות הזעירות כך שיפעלו באופן יעיל, מהיר, צפוף וזול יותר היא אולי המשימה המרכזית של המדע והתעשייה בעת הנוכחית.

 

צוות חוקרים מבית הספר לפיזיקה ולאסטרונומיה ומבית הספר לכימיה בפקולטה למדעים מדויקים ע"ש ריימונד ובברלי סאקלר, שכלל את מעיין ויזנר שטרן, יובל ושיץ, ד"ר ואי כאו, ד"ר יפתח נבו, פרופ' ערן סלע, פרופ' מיכאל אורבך, פרופ' עודד הוד וד"ר משה בן שלום, ועמיתיהם מיפן, הצליחו להנדס מערכת בעובי של שני אטומים בלבד, העשויה לאפשר דחיסה ועיבוד של מידע ובכך עשויה להביא לשיפור משמעותי בהתקנים אלקטרוניים בהיבטים שונים. בעקבות פריצת הדרך הטכנולוגית, החוקרים הצליחו לראשונה למזער משמעותית את עובי ההתקנים הגבישיים עד כדי שני אטומים בלבד. ד"ר בן שלום מדגיש כי המבנה החדש מאפשר התקני זכרון המתבססים על יכולת קוונטית של אלקטרונים לדלג ביעילות ובמהירות דרך מחסומים בעובי של מספר קטן של אטומים, ולכן עשויה לאפשר ייעול משמעותי בהתקנים אלקטרוניים מבחינת צפיפות, מהירות וצריכת אנרגיה. המחקר פורץ הדרך, שמומן בסיוע המועצה האירופאית למחקר ERC, הקרן הישראלית למדע ISF ומשרד המדעMOST , התפרסם לאחרונה בכתב העת היוקרתי Science.

 

משחק לגו אטומי

במסגרת המחקר, החוקרים עסקו בחומר דו-ממדי, שכבה בעובי אטום בודד של אטומי בור וחנקן המסודרים במבנה משושה מחזורי. במהלך הניסוי הם הצליחו לשבור את הסימטריה של גביש זה על ידי הרכבה מלאכותית של שתי שכבות כאלו. "בצורתו הטבעית והתלת-ממדית חומר זה בנוי ממספר רב של שכבות המונחות אחת על פני השניה, כאשר כל שכבה מסובבת ב-180 מעלות ביחס לשכבה שמתחתה, בתצורה אנטי מקבילה", מספר ד"ר בן שלום.

 

"במעבדה הצלחנו לערום את השכבות באופן מלאכותי בתצורה מקבילה, שממקמת לכאורה אטומים מאותו סוג בחפיפה מלאה למרות הדחייה החזקה שביניהם (כתוצאה ממטענם הזהה). בפועל, הגביש מעדיף להחליק את אחת השכבות מעט ביחס לשנייה, כך שרק חצי מהאטומים של כל שכבה חופפים, אך אלו שחופפים הם מסוגים שונים (כלומר עם מטען בסימן הפוך), בעוד ששאר האטומים ניצבים מעל (או מתחת), לחלל ריק - מרכז המשושה. על אף שמצב זה קצת פחות יציב מהסידור הטבעי (נקרא מצב מטא-סטבילי), הסידור החדש מבחין היטב בין השכבות. לדוגמה, אם בשכבה העליונה האטומים החופפים הם רק מסוג בור, הרי שבשכבה התחתונה המצב הפוך.

 

ד"ר בן שלום מוסיף כי התגלית התאפשרה הודות למאמץ משותף ופורה במיוחד עם עמיתיהם התיאורטיקנים שביצעו חודשים של סימולציות מחשב כדי לנתח לעומק למה האלקטרונים במערכת מסתדרים בדיוק כפי שמדדנו.

 

 

דרכים מקוריות לשליטה במידע בהתקנים של מחר

הדוקטורנטית מעיין ויזנר שטרן, ממובילות המחקר, מסבירה: "שבירת הסימטריה שהצלחנו ליצור במעבדה ואינה קיימת בגביש הטבעי, כופה על המטען החשמלי להתארגן מחדש בין השכבות וליצור קיטוב חשמלי זעיר בניצב למישור השכבות. הקיטוב הנגדי שנוצר נותר יציב גם כשהפסקנו את השדה החיצוני, בדומה למערכות 'פרו-אלקטריות' תלת ממדיות, שנמצאות בשימוש רחב בטכנולוגיה עכשווית".

 

"האפשרות לאלץ סידור גבישי ואלקטרוני במערכת כה דקה, עם מאפייני קיטוב והיפוך יחודיים הנובעים מקשרי הואן-דר-ואלס החלשים בין השכבות (כוחות הפועלים בין כל שני אטומים או שתי מולקולות שונות בטבע בעוצמות שונות), אינה מוגבלת רק לגביש הבור והחנקן", מוסיף ד"ר בן שלום. "למעשה, אנו צופים כי ניתן להרחיב את התופעה לגבישים שכבתיים רבים בעלי מאפייני סימטריה מתאימים, ולהשתמש בהחלקה הבין-שכבתית כדרך מקורית ויעילה למימוש התקנים אלקטרונים מתקדמים".

 

"אנו נרגשים לגלות מה יקרה במצבים אחרים שנכפה על הטבע, וחוזים כי אפשר יהיה ליצור צימודים חדשים בין דרגות חופש שונות. אנו מקווים כי המזעור וההיפוך באמצעות החלקה יביא לשיפור בהתקנים אלקטרוניים של היום, ובמיוחד יאפשר דרכים מקוריות אחרות לשליטה במידע בהתקנים של מחר. בנוסף להתקני מחשוב, ניתן לחזות תרומה להתקני גילוי, אגירה והתמרת אנרגיה, תגובה עם קרני אור ועוד. האתגר שלנו, כפי שאנו רואים אותו, הוא למצוא גבישים נוספים עם דרגות חופש חדשות ומחליקות", מסכמת ויזנר שטרן.

 

היפוך קיטוב חשמלי בין זוג שכבות אטומיות באמצעות החלקה

מחקר

21.06.2021
הדמיון המפתיע בין סופות הוריקן לתנועה של חלבונים

גם חלבון בגודל של כמה ננומטרים וגם הוריקן בגודל של מאות קילומטרים פועלים לפי עקרונות דומים

  • מדעים מדויקים

כל תא בגוף עטוף בממברנה שמפרידה אותו מהעולם החיצון. ממברנה היא לא רק מחיצה פסיבית, היא חיונית לתפקוד התקין של התא. על פני הממברנה ישנם חלבונים רבים שאחראים לפעולות שונות בתא. למשל, חלבון הנקרא ATP synthase אחראי על הפקת ואחסון אנרגיה. החלבונים יכולים לנוע על פני הממברנה מכיוון שהממברנה אינה קשיחה, אלא יריעה נוזלית (ממש כמו בועת סבון). חלק מהחלבונים, כמו ATP synthase, מסתובבים ויוצרים מערבולות קטנות מסביבם.

 

מחקר בינלאומי חדש בהשתתפות חוקרים מאוניברסיטת תל אביב מצא קשר מפתיע בין תנועה של חלבונים בממברנות ביולוגיות לתנועה של הוריקנים. על פי החוקרים גם במערכת של החלבונים וגם במערכת של ההוריקנים אפשר להראות שישנם חוקי שימור, אנלוגיים לשימור אנרגיה, שמגבילים את הקונפיגורציות האפשריות, ולכן תורמים להופעת סדר מדינמיקה כאוטית לחלוטין.

 

המחקר נערך בהובלת ד"ר נעמי אופנהיימר מבית-הספר לפיזיקה ולאסטרונומיה ע"ש ריימונד ובברלי סאקלר באוניברסיטת תל אביב, ביחד עם ד"ר ריקמוי סמנתה מ-Indian Statistical Institute וחוקרים נוספים מה-Flatiron Institute  בניו-יורק. המחקר פורסם לאחרונה בכתבי העת Physics of Fluids ו-Physical Review Letters.

 

סדר אחרי הכאוס

במסגרת המחקר הנוכחי, החוקרים החליטו לבדוק האם יש סיבה לסיבוב של החלבונים מעבר לייצור אנרגיה ומה הזרימה שנוצרת כתוצאה מהמערבולות האלו? להפתעתם, התברר שהסיבוב תורם ליצירת מבנים מסודרים, ושהזרימה שנוצרת בעקבות סיבוב חלבונים אלו דומה מאוד לדינמיקה של הוריקנים ושל זרימות אטמוספריות על פני סקלות שונות מאוד (חלבון הוא בגודל של כמה ננומטרים והוריקן הוא בגודל של מאות קילומטרים).

 

"במהלך המחקר ראינו שחלבונים אשר מבולגנים תחילה, מהר מאוד יצרו גבישים משושים מסודרים, וזה מאוד הפתיע אותנו שכן להבדיל מגבישים מולקולריים, אין משיכה בין החלבונים, ולמרות זאת נוצר סדר בתום הכאוס הראשוני", מסבירה ד"ר נעמי אופנהיימר. "מדובר בחוקי שימור מפתיעים כפליים במערכת החלבונית, מכיוון שהמערכת מחוץ לשיווי משקל וצורכת אנרגיה".

 

עד היום רוב המחקרים שנעשו על ממברנות ביולוגיות הניחו שהממברנה שטוחה. המחקר הנוכחי מתמקד בזרימה בממברנות כדוריות, ולפיו ישנן השלכות משמעותיות לעקמומיות על הזרימה הנוצרת. למשל, בממברנה כדורית, חוץ מכל חלבון שמסתובב ויוצר מערבולת סביבו, נוצרות באופן ספונטני מערבולות נוספות בנוזל. כלומר, נוצרת מערבולת אפילו כשאין חלבון שייצר אותה. המערבולות החדשות נעות בזרימה ויכולות להתנגש עם ״אנטי מערבולות״ ולהעלם. בנוסף, אם התא קטן מאוד, אפילו חלבון אחד המסתובב על פני התא יגרום לסיבוב כולל של כל התא.

 

המחקרים מסכמים את התצפיות של המבנים המסודרים הגבישיים שיוצרים חלבוני ATP Synthase בממברנה, והם מתבססים על מחקרים קודמים בתחום אשר התמקדו בתנועה של חלקיק אחד בממברנה כדורית, אך לא על סיבוב החלקיק או חלקיקים נוספים, כמו גם על מחקר שהראה לראשונה כי גביש הוא מצב אפשרי של חלבונים.

 

הבנה של הזרימה בממברנת התא

"אנחנו מתבססים על מחקרים קודמים ומראים באופן תיאורטי ועל בסיס סימולציות שמעל ריכוז מסוים החלבונים תמיד יתגבשו באופן ספונטני והגביש הזה יהיה יציב," מספרת ד"ר אופנהיימר. "שיטת המחקר היא מידול הבעיה והפשטה שלה. התחלנו ממידול של הממברנה ושל החלבונים בעזרת משוואות. פתרנו את המשוואות אנליטית או בעזרת מחשב, ולאחר מכן כתבנו סימולציות שימדלו את התנועה של עשרות עד אלפי חלבונים כאלו בממברנה שטוחה או כדורית".

 

הבנה של הזרימה בממברנה עלולה לסייע לתכנן תרופות באופן יעיל יותר. כמו כן, ממצאי המחקר הם צעד חשוב בהבנה של ערבוב אקטיבי בממברנה. ההיווצרות (וההיעלמות) של מערבולות שהתגלו מגדילה את הערבוב בממברנה, מה שתורם לזירוז ריאקציות כימיות בתא.

 

"אנחנו מקווים שהמחקר שלנו ידרבן חוקרים נוספים לעשות תצפיות נסיוניות בתאים ביולוגיים ולהסתכל על הזרימות שקורות על פני התא. בתחום התיאורטי, אנחנו מתכננים להסתכל על תנועה של סוגים נוספים של חלבונים על פני הממברנה, כמו גם על מקרים נוספים שבהם רואים סדר הנוצר מזרימה של מיקרואורגניזמים," מסכמת ד"ר אופנהיימר.

מחקר

09.05.2021
משנה מקום משנה צורה

אוניברסיטת תל אביב שיגרה לחלל "חומר חכם" - פולימר מקופל שנפרס לצורתו המקורית בחימום, והוא יקיף את כדור הארץ במסלול

  • הנדסה וטכנולוגיה
  • מדעים מדויקים

הלוויין TAUSAT-1 של אוניברסיטת תל אביב והמרכז למחקר גרעיני (ממ"ג) שורק, ששוגר לאחרונה לחלל, ממשיך לעשות היסטוריה: ב-9 באפריל, בשעה שבע בערב (שעון ישראל), ניתן האות ממרכז הבקרה באוניברסיטת תל אביב, וחומר חכם בעל זיכרון צורני (shape memory polymer, או SMP), שינה את צורתו ונפרס במסלול סביב כדור הארץ. זאת הפעם הראשונה שחומר חכם משוגר מישראל לחלל. מנגנון הפריסה שפותח יוכל לחסוך בעתיד את הצורך לשגר מנגנונים כבדי משקל, ולשמש לפריסת רכיבים שונים כמו לוחות סולאריים ואנטנות.

 

נכנס למסלול

"מדובר באקטואטור - רכיב שאחראי להנעת חלקים ומערכות - על בסיס פולימר משנה צורה", אומר פרופ' נעם אליעז מהמחלקה למדע והנדסה של חומרים בפקולטה להנדסה ע"ש אידי ואלדר פליישמן. האקטואטור פותח במסגרת עבודת המאסטר של דבי מרגוי ובהנחיה משותפת של פרופ' אליעז וד"ר רונן ורקר מממ"ג שורק. הפולימר החכם הוא ניסוי אחד מבין חמישה שעורך TAUSAT-1 במעבדה מוטסת זעירה, בגודל של 10×10×10 ס"מ, שפותחה על ידי מחלקת סביבת חלל בממ"ג.

 

"היו עוד ננו-לוויינים ששוגרו מישראל, חלקם הצליחו וחלקם לא, אבל זאת הפעם הראשונה שמשוגר מישראל לוויין עם מנגנון פריסה של פולימר משנה צורה. הפולימרים האלה הם חומרים חכמים שיכולים לחזור לצורתם המקורית עקב גירוי חיצוני כמו אור, חום, שדה חשמלי או שדה מגנטי", אומר פרופ' אליעז.

 

"חומרים חכמים הם פתרון עתידני ויצירתי לצורך שיגור מנגנוני פריסה מתכתיים כבדי משקל", מוסיף ד"ר רונן ורקר. "חומרים חכמים מאפשרים לנו לשלוט בתהליך הפריסה ללא מגע פיזי וללא קשר עין עם מרכז הבקרה, ולחסוך דרמטית במסה ובנפח של המטען המשוגר לחלל. האקטואטור שפיתחנו נפרס בתגובה לחום. בנוסף, זווית הכיפוף של האקטואטור גם משנה את ההתנגדות החשמלית שלו, ובאמצעות מדידת ההתנגדות החשמלית אפשר לקבל אינדיקציה לכך שהוא אכן נפרס בהצלחה".

 

מעבדה מוטסת

המעבדה המוטסת של TAUSAT-1 מכילה שורה של ניסויים מדעיים נוספים, שנועדו לחקור את סביבת החלל במטרה למצוא פתרונות טובים יותר לשיגור ולתפעול של לוויינים וחלליות בסביבה זו, בהם גם מדידת קרינה מייננת מצטברת באמצעות גלאי טרנזיסטור בעל שכבת תחמוצת עבה, ההופכת אותו לרגיש מאוד לקרינה מצטברת. מערכת הניסוי מודדת את השתנות ערכי מתח הסף להפעלת הטרנזיסטור באופן רציף ולאורך זמן, וכך מאפשרת מדידה גם של מנות קרינה נמוכות במיוחד.

 

הננו לוויין אופיין, פותח, הורכב ונבדק במסגרת המרכז לננו-לוויינים בקמפוס, שיתוף פעולה ייחודי בין הפקולטה להנדסה ע"ש איבי ואלדר פליישמן ובית הספר פורטר לסביבה ומדעי כדור הארץ, בפקולטה למדעים מדויקים לבין המרכז למחקר גרעיני - שורק.

מחקר

28.04.2021
המיזם המשולש לאיתור כוכבי הלכת

בפרויקט ראשון מסוגו בחלל, אוניברסיטת תל אביב תתווך בין חלליות הדגל של סוכנות החלל האירופאית ו-NASA

  • מדעים מדויקים

שיתוף פעולה פורץ גבולות ואטמוספירה עומד לקרות בקרוב בחלל: תוכנית של אוניברסיטת תל אביב תתווך בין שתי חלליות, האחת של סוכנות החלל האירופאית (ESA), והשנייה של סוכנות החלל האמריקאית (NASA), במטרה להצליב בין הנתונים המגיעים משתי חלליות הדגל של הסוכנויות. שיתוף הפעולה נעשה בהובלת שלשה חוקרים מהפקולטה למדעים מדויקים ע"ש ריימונד ובברלי סאקלר, פרופ' (אמריטוס) צבי מזא"ה, פרופ' שי צוקר ותלמיד המחקר אביעד פנחי, והוא  מאפשר איתור מדויק ומהיר יותר של כוכבי לכת מחוץ למערכת השמש.

 

כשחללית אחת היא העיניים של השנייה

TESS, חללית המחקר של NASA, האמונה על גילוי כוכבי לכת מחוץ למערכת השמש, אינה יכולה לצפות בכוכבי הלכת עצמם. במקום זאת, היא מגלה כוכבי לכת המקיפים שמשות רחוקות לפי כמות האור הנפלט מהשמשות לאורך זמן. כוכבי הלכת מסתירים חלקית את אותן שמשות כשהם עוברים על פניהן וכך גורמים לירידה מחזורית קטנה בעצמת האור המגיע אלינו. אבל בחלק מן המקרים, הירידה בעצמת האור הנמדדת על ידי החללית נגרמת בעקבות שינויים בעוצמת האור של כוכבים שכנים ולא כתוצאה מנוכחותו של כוכב לכת, בגלל איכות הצילום של הטלסקופ שעל החללית.

 

כדי לאמת את נוכחותו של כוכב הלכת יש צורך בתצפיות מעקב נוספות מכדור הארץ, דבר הדורש הרבה זמן ומשאבים. בזמן ש-TESS תרה אחר פלנטות סביב כוכבים אחרים, Gaia, חללית המחקר של סוכנות החלל האירופאית, ממפה את מבנה הגלקסיה שלנו, גלקסיית שביל החלב. היא עושה זאת על ידי מדידת המרחק ועוצמת האור של למעלה ממיליארד כוכבים בפירוט שלא היה כמוהו, אך קצב הצילום שלה נמוך בהרבה מזה של TESS.

 

קבוצת המחקר של אוניברסיטת תל אביב בהובלתו של פרופ' צבי מזא"ה, יצרה שיתוף פעולה בין שתי סוכנויות החלל המובילות בעולם. הקבוצה בנתה מערכת להצלבת נתונים מהחללית Gaia, שלה כושר הפרדה יוצא דופן בצילומיה והיא מסוגלת להבחין בין הכוכבים (השמשות), לבין הנתונים על כוכבי הלכת הפוטנציאלים מהחלליתTESS . הצלבת הנתונים מאפשרת ניפוי מהיר של המקרים שבהם מדובר בשמשות שכנות ולא בכוכבי לכת. שיתוף הפעולה שהחל לפעול בימים אלה כבר הניב זיהוי של כוכבים שהתעממות האור שלהם נגרמה על ידי כוכבים שכנים ולא על ידי כוכבי לכת, וכן כוכבים שאכן קיימים סביבם כוכבי לכת.

 

צעד קטן לאנושות, צעד גדול לקידום המדע

"זהו פרויקט מרגש מאוד. יצרנו מערכת שמצליבה בין נתונים המגיעים משתי החלליות המובילות בתחומן, Gaia ו-TESS, אשר כל אחת מהן משלימה את החסר עבור החללית השנייה לכדי תמונת מצב שלמה ומדויקת. כל הנתונים מתנקזים אלינו ומעובדים אצלנו, וכבר הגענו ללא מעט תוצאות שכל הצדדים מרוצים מהם", אומר בהתרגשות אביעד פנחי. "בהתחלה לא האמנתי שנצליח לגרום לשתי סוכנויות החלל לשתף פעולה, אבל ההתלהבות של פרופ' מזא"ה מדבקת, מה שהוביל לכך שבנינו את המערכת שלנו עוד לפני ששיתוף הפעולה יצא רשמית לפועל, ובסופו של דבר גם הם נסחפו בהתלהבות".

 

"היכולות והמטרות של Gaia ושל TESS הן שונות אך משלימות. הרעיון לשלב את הכוחות של שתי החלליות הללו עלה אצלנו לפני שנתיים ולאחר מאמצים רבים שיתוף הפעולה הזה רואה אור כעת. מטרת העל שלנו היא לקדם את המדע עבור האנושות כולה. זהו אירוע מרגש ומשמח ביותר ואנו גאים להיות החוליה המקשרת שמאפשרת אותו", מוסיף פרופ' שי צוקר, ומחזק את דבריו פרופ' צבי מזא"ה: "זהו מאמץ בינלאומי אדיר, אשר אנחנו מהווים את החוליה המקשרת שלו. אני נרגש לראות את שיתוף הפעולה הזה קורם עור וגידים ומניב תוצאות. משמח אותי לראות שהצלחנו להגיע לעמק השווה למען קידום האנושות בתחום חקר החלל."

 

סחפו אחריהם את סוכנויות החלל הגדולות. מימין: אביעד פנחי (צילום: גל בירנאום), פרופ' שי צוקר ופרופ' צבי מזא"ה

מחקר

19.04.2021
במהירות העור

טכנולוגיה אופטית חדשנית תאפשר אבחון אוטומטי ומיידי של מלנומה

  • מדעים מדויקים
  • רפואה ומדעי החיים

סרטן המלנומה נחשב לחמור ולקטלני ביותר מבין סרטני העור הממאירים, וכ-200,000 מקרים חדשים שלו מתגלים מדי שנה בעולם. חשיבות הגילוי המוקדם קריטית להצלחת הטיפול ולהצלת חיי המטופל, אך נכון להיום נאלצים החולים להסיר תחילה את הנגע ולהמתין לתוצאות בדיקה פתולוגית שמאפשרת אבחון סופי. פיתוח טכנולוגי חדש צפוי לחולל מהפכה בתחום. צוות המעבדה של פרופ' אברהם קציר מבית הספר לפיזיקה ואסטרונומיה בפקולטה למדעים מדויקים ע"ש ריימונד ובברלי סאקלר, פיתח טכנולוגיה אופטית חדישה שיכולה להבחין בין סוגי סרטן עור: מלנומה וסרטנים מסוכנים פחות. מדובר באבחון מהיר, בלתי פולשני ושאינו כרוך בכאב. הטכנולוגיה כבר נוסתה בהצלחה על כמאה מטופלים בבית חולים מרכזי בישראל, וכעת מתכננים החוקרים לאמת את השיטה במדידות על מאות חולים.

 

לצבוע את הסרטן

לדבריו של פרופ' קציר, במקרה של מלנומה, אבחון מיידי יכול להציל חיים. "כאשר מתגלה בבדיקה שגרתית על ידי רופא עור נגע חשוד, הוא מוסר בניתוח קטן ונשלח לבדיקה מעבדתית. פתולוג מאבחן את הנגע וקובע אם זו מלנומה. כאשר מזהים מלנומה מוקדם, כשהיא עדיין שטחית ועובייה קטן מ-1 מ"מ ומסירים אותה - אזי מרבית החולים מחלימים. אבחון מאוחר, כשעובי המלנומה גדול מ-1 מ"מ, מקטין בהרבה את סיכויי ההחלמה ומסכן חיים".

 

"המחשבה שהנחתה אותנו בפיתוח הטכנולוגיה הייתה שבתחום הנראה יש לחומרים שונים צבעים שונים, אבל בתחום האינפרא-אדום יש לחומרים שונים מעין "צבעים" אחרים, שתלויים בהרכב הכימי של כל חומר", מסביר פרופ' קציר. "על כן הערכנו שאם נערוך מדידות באמצעות מכשירים המסוגלים לזהות "צבעים" אלו, יהיו לעור בריא ולכל אחד מהנגעים השפירים והממאירים "צבעים" שונים, מה שיאפשר לנו לזהות מלנומה".

 

קבוצת המחקר של פרופ׳ קציר פיתחה סיבים אופטיים ייחודיים, השקופים לאינפרא-אדום. הקבוצה, בשיתוף הפיזיקאים פרופ' יוסף רייחלין מאוניברסיטת אריאל, ד"ר מקס פלטקוב מהקריה למחקר גרעיני וסבטלנה בסוב מקבוצת קציר, פיתחה מערכת המבוססת על סיבים אלו ואשר מתאימה לצרכי מדידות על עור. החוקרים חיברו קצה אחד של סיב כזה למכשיר למדידת "צבעים" באינפרא-אדום, והקצה השני נגע קלות, למשך שניות אחדות, בנגע על עורו של חולה. הסיב איפשר לבדוק מיד את ה"צבע" של הנגע.

 

מהיר ולא פולשני. פרופ' קציר משתמש בטכנולוגיה החדשה לזיהוי סוג הנגע העורי

 

'טביעת אצבע' צבעונית

לדבריו של פרופ' קציר, ניסויים קליניים נעשו על נגעי עור חשודים בכמאה חולים. הפיזיקאים ביצעו בעזרת המערכת החדשה מדידות של ה"צבע" של כל אחד מנגעים אלו, לפני שהם הוסרו ונשלחו לבדיקה פתולוגית. כשהגיעו התוצאות, ראו החוקרים כי לכל הנגעים שנקבעו בפתולוגיה שהם מסוג מסוים, למשל מלנומה, יש "צבע" אופייני באינפרא-אדום, בעוד שלכל אחד מהנגעים מסוגים אחרים יש "צבע" אחר.

 

"טכנולוגיה זו מעניקה מעין 'טביעת אצבע' המאפשרת אבחון ברור של הנגעים השונים, בעזרת מדידת הצבעים האופייניים", מדגיש פרופ' קציר. "באופן זה, ניתן לאבחן נגעים בשיטה אופטית בלתי פולשנית, והרופא והמטופל מקבלים את התוצאה באופן אוטומטי ומיידי. זאת בניגוד לבדיקה השגרתית כיום, הכרוכה בניתוח ובאבחון פתולוגי שלוקח זמן רב".

 

"מלנומה היא סרטן עור מסכן חיים ועל כן חשוב מאד לאבחן אותה מבעוד מועד, כאשר היא עדיין שטחית. המערכת החדשנית תאפשר לכל רופא עור לקבוע אוטומטית את אופיו של נגע חשוד, ובמיוחד האם הוא מלנומה. למערכת יש פוטנציאל לחולל שינוי דרמטי בתחום האבחון והטיפול בסרטן עור, ואולי גם בסוגים אחרים של סרטן. האתגר הגדול יהיה להפוך את הטכנולוגיה, שהיא עדיין יקרה, לכזו שייעשה בה שימוש בכל בית חולים או בכל קליניקה", מסכם פרופ' קציר.

מחקר

27.12.2020
לראשונה בישראל: קידוח בקרקעית ים המלח מתעד 220,000 שנה של רעידות אדמה

קידוח ראשון מסוגו בקרקעית ים המלח חושף: רעידת אדמה קשה בעוצמה 6.5 בסולם ריכטר צפויה בשנים הקרובות

  • מדעים מדויקים

מחקר ראשון מסוגו שנערך בקרקעית ים המלח חושף כי רעידת אדמה הרסנית בעוצמה של 6.5 בסולם ריכטר צפויה לפגוע באזורנו בשנים הקרובות. על פי המחקר רעידת אדמה בעוצמה כזו מתרחשות בארץ ישראל במחזוריות ממוצעת של בין 130 ל-150 שנה, אך היו מקרים בהיסטוריה שהפער בין רעידה אחת לשנייה היה של עשרות שנים בודדות בלבד.

 

רעידת האדמה האחרונה בעוצמה של 6.5 בסולם ריכטר הורגשה בבקעת ים המלח ב-1927, אז נפגעו מאות אנשים ברבת עמון, בירושלים, בבית לחם ואפילו ביפו. כעת, בעקבות ממצאי המחקר, החוקרים מתריעים שרעידת אדמה נוספת עלולה בסבירות גבוהה לקרות עוד בימי חיינו, בשנים הקרובות או בעשורים הקרובים.

 

המחקר נערך בהובלת צוות חוקרים בינלאומי, בהשתתפות פרופ' שמואל מרקו, ראש בית הספר לסביבה ולמדעי כדור הארץ ע"ש פורטר באוניברסיטת תל אביב, ועמיתיו החוקרים מבית הספר לסביבה ולמדעי כדור הארץ: ד"ר ין לו, פרופ׳ אמוץ עגנון, ד"ר ניקולס ולדמן, ד"ר נדב ווצלר וד"ר גלן ביאסי. תוצאות המחקר פורץ הדרך פורסמו בכתב העת היוקרתי Science Advances.

 

במסגרת המחקר צוות החוקרים הסתייע בארגון בינלאומי שנקרא ICDP, שמבצע קידוחי עומק באגמים בכל רחבי העולם, במטרה לחקור את האקלים הקדום של כדור הארץ ושינויים אחרים שקרו בסביבה. ב-2010 הוצבה האסדה במרכז ים המלח והחלה לקדוח בקרקעית, לעומק של מאות מטרים, המאפשרים ניתוח של כ-220,000 שנות גיאולוגיה של ים המלח – הרקורד הארוך מסוגו בעולם.

 

עונות השנה בשכבות

לדבריו של פרופ' מרקו, כיוון שים המלח הוא המקום הנמוך בכדור הארץ, מדי חורף, מי השיטפונות שזורמים לים המלח נושאים עמם סחף, שמצטבר בקרקעית האגם לשכבות שונות. שכבה כהה בת כמילימטר המייצגת את סחף החורף ושכבה בהירה בת כמילימטר שמייצגת את האידוי המוגבר של המים במשך הקיץ, כאשר כל שתי שכבות כאלו מייצגות שנה אחרת.

 

יחד עם זאת, ברגע שיש רעידת אדמה, המשקעים מתערבלים, השכבות ששקעו קודם בסידור מושלם מתערבבות ושוקעות מחדש בצורה אחרת. בעזרת משוואות פיזיקליות ומודלים ממחושבים שהחוקרים פיתחו במיוחד לצורך מחקר זה, הם הצליחו לשחזר מהרקורד הגיאולוגי את ההיסטוריה של רעידות אדמה לאורך התקופה.

 

מניתוח הממצאים עולה כי שכיחות רעידות האדמה בבקעת ים המלח אינה קבועה בזמן. היו תקופות של אלפי שנים עם יותר פעילות טקטונית ואלפי שנים עם פחות פעילות טקטונית. בנוסף, לחוקרים התברר כי הייתה הערכת חסר משמעותית בתדירות רעידות האדמה בישראל.

 

אם עד כה חוקרים סברו כי בקע ים המלח רועד בעוצמה של 7.5 בסולם ריכטר מדי 10,000 שנה בממוצע – כעת מסתבר שהרעידות הקטלניות תכופות הרבה יותר, מחזוריות ממוצעת שנעה בין בין 1,300 ל-1,400 שנה. החוקרים מעריכים שהרעידה האחרונה בעוצמה כזאת פגעה בנו בשנת 1,033 – כלומר כמעט לפני אלף שנה. פירושו של דבר שבמאות השנים הקרובות צפויה רעידה נוספת בסולם 7.5 ומעלה.

 

לעומת זאת, החוקרים כאמור מצאו שרעידות אדמה בעוצמה של 6.5 מתרחשות אומנם באזורנו בממוצע מדי 130 עד 150 שנה, אך התדירות בין הרעידות משתנה, ובעוד שהיו מקרים שבהם הפערים בין רעידה אחת לשנייה היו של מאות שנים, הרי שגם היו מקרים שבהן התרחשו רעידות אדמה עוצמתיות בהפרש של עשרות שנים בודדות בלבד.

 

"אני לא רוצה להפחיד", מסכם פרופ' מרקו, "אבל אנחנו חיים בתקופה פעילה מבחינה טקטונית. הרקורד הגיאולוגי לא משקר, ורעידת אדמה גדולה בישראל בוא תבוא. כמובן, אין לנו דרך לחזות בדיוק מתי האדמה תרעד מתחת לרגלינו - מדובר בתחזית סטטיסטית – אבל לצערי אני כן יודע לומר שרעידת אדמה שתגרום למאות נפגעים תקרה בשנים הקרובות, זה יכול להיות בעוד עשר שנים או עשרות שנים, אבל זה גם יכול בשבוע הבא ואנחנו חייבים להיערך לכך.

 

מחקר

08.11.2020
בעקבות החומר האפל הקל (שקשה מאוד לגלות)

פיתוח טכנולוגי חדש יסייע בגילוי חלקיקי החומר האפל

  • מדעים מדויקים

אחת מהתעלומות הגדולות שנותרו עדיין ללא מענה בפיזיקה של ימינו היא מהות החומר האפל. היה זה אייזיק ניוטון שהסביר לראשונה את כוח המשיכה המחזיק כוכבים בתנועה זה סביב זה. תורתו של ניוטון התפתחה והוכללה ליחסות הכללית שפיתח אלברט איינשטיין. אולם ניתוח של תצפיות אסטרונומיות בתנועת הגלקסיות והכוכבים לימד אותנו כי תיאוריות אלו אינן יכולות להסביר את התצפיות, אלא אם הרוב המוחלט של החומר ביקום והגורם המרכזי לכוח המשיכה אינו החומר הסטנדרטי שאנחנו מכירים היטב, אלא מה שקיבל את הכינוי חומר אפל (Dark Matter).

 

החומר האפל הוא ההסבר המקובל לכך שכוכבים לא בורחים מהגלקסיות שלהם. כמות החומר האפל ביקום הנדרשת כדי להסביר את התצפיות האסטרונומיות גדולה פי חמש יותר מהחומר הנראה שמורכב מאטומים מוכרים. במילים אחרות, הפיזיקה עדיין מחפשת את מה שמהווה למעלה מ- 80% מהיקום. למרות חיפושים בלתי נלאים במאיצי חלקיקים, בתצפיות אסטרונומיות ובגלאים ייעודיים, המדע טרם הצליח לפענח את זהותו החלקיקית של החומר אפל: מהי  מסתו, אילו כוחות (בנוסף לכבידה) פועלים עליו, כיצד הוא מגיב עם החומר הנראה, וכיצד הוא נוצר ביקום המוקדם, לפני יותר מ-13 מיליארד שנה.

 

משימה בלתי אפשרית?

אחת הדרכים לחפש חומר אפל היא לטמון גלאים רגישים במיוחד בעומק האדמה, שלשם חלקיקי חומר אנרגטיים שמגיעים בקצב גבוה לכדור הארץ מהחלל, כמעט ואינם חודרים. על פי התיאוריה המקובלת, בשל סיבוב כדור הארץ סביב השמש וסיבוב השמש סביב מרכז הגלקסיה, אנו חולפים על פני מיליארדי חלקיקי חומר אפל בכל רגע נתון.  אם חומר זה מגיב עם הגלאי אפילו רק בסבירות נמוכה מאוד, מדי פעם אחד מאותם חלקיקים אפלים יוכל ״לבעוט״ באחד מהחלקיקים המרכיבים את הגלאי, ולהעביר כמות מזערית של אנרגיה, אותה המדענים מנסים לאתר.

 

ככל שהחומר האפל קל יותר, כך כמות האנרגיה שהוא יכול להעביר קטנה יותר, והמשימה הופכת מקשה לבלתי אפשרית בשיטות גילוי אלו. מכאן, האתגר המרכזי הוא פיתוח גלאים רגישים במיוחד, אתגר המחייב פיתוח גישות חדשות לגילוי, המאפשרות רגישות שיא לאותות נמוכים ואפשרות להבחין בינם לבין סיגנלים מדומים.

 

טכנולוגיה בעלת רגישות גבוהה

עתה, חוקרים מאוניברסיטת תל אביב מעריכים כי פיתוח טכנולוגי חדש עשוי להביא לפריצת דרך בגילוי חלקיקי החומר האפל. לטכנולוגיה החדשה רגישות גבוהה ורעש רקע הנמוך ביותר שנמדד אי פעם בגלאי סיליקון, שעשוי לסייע בגילוי חלקיקי החומר האפל, שהמסה שלהם נמוכה מאוד וקשה מאוד לאתר אותם.

 

הטכנולוגיה פותחה על ידי חוקרים מישראל, מארה"ב ומארגנטינה. בקבוצת המחקר הישראלית חברים החוקרים: פרופ׳ תומר וולנסקי, ד״ר לירון ברק ופרופ׳ ארז עציון מבית הספר לפיזיקה ואסטרונומיה בפקולטה למדעים מדויקים ע"ש ריימונד ובברלי סאקלר של אוניברסיטת תל אביב.

 

שלב חדש ומסעיר בחיפוש אחר החומר האפל

לפני כעשור הציע פרופ׳ תומר וולנסקי עם שותפים מארה"ב שיטה חדשה ורגישה במיוחד, הבוחנת את האינטראקציה של חומר אפל עם האלקטרונים – אותם חלקיקים תת-אטומים החגים סביב גרעיני האטום – ובכך מאפשרת את החיפוש אחר חומר אפל קל, שעד לאותו הזמן נחשב לבלתי ניתן לגילוי.

 

בעקבות הפיתוח הרעיוני, פותח לאחרונה גלאי חדש על ידי הקולבורציה הבינלאומית SENSEI, שבה שותפים גם החוקרים מאוניברסיטת תל אביב. הגלאי החדש, הנקרא Skipper-CCD, מאפשר לגלות את שחרורו של אלקטרון בודד מתוך טריליוני הטריליונים של האלקטרונים החגים בו. בחודשים האחרונים החלה התקנה של הגלאי במעבדה התת קרקעית, SNOLAB שבקנדה, ותוצאות ראשונות צפויות בשנה הבאה. הפיתוח מביא לשלב חדש ומסעיר בחיפוש אחר החומר האפל. 

 

על פיתוח זה, זכה פרופ' תומר וולנסקי בפרס היוקרתי "פריצת דרך-אופקים חדשים בפיזיקה 2021" (Breakthrough Prize- The New Horizons in Physics Prize).  הפרס הוענק על ידי קרן "פריצת דרך" (Breakthrough Prize), שנוסדה בשנת 2012 על ידי פילנתרופ המדע יורי מילנר, במטרה להוקיר תרומות משמעותיות לידע האנושי. הפרס מוענק מדי שנה לחוקרים בתחומי המתמטיקה, הפיזיקה ומדעי החיים. 

 

 

מחקר

12.10.2020
לראות את העולם בצבעים חדשים

טכנולוגיה חדישה תאפשר ראייה וצילום של צבעים שהעין האנושית לא קולטת

  • מדעים מדויקים

פיתוח חדש של חוקרים מאוניברסיטת תל אביב יאפשר לזהות בצילום רגיל צבעים שהעין האנושית וגם מצלמות רגילות לא מסוגלות לקלוט. בין השאר, הטכנולוגיה החדשה תאפשר לצלם גזים כמו מימן, פחמן ונתרן, שלכל אחד מהם יש צבע ייחודי, או חומרים ביולוגיים שונים שנמצאים בטבע אך לא נראים בעין. את הטכנולוגיה החדשה ניתן יהיה ליישם בתחומים רבים בחיי היום יום כמו משחק וצילום, ובענפי תעשייה חשובים כמו ביטחון, רפואה ואף בלווייני חישה מרחוק בחלל.

 

מעבר למה שהעין רואה

לצבעוניות של תמונה חשיבות גדולה, שכן לחומרים רבים יש חתימת צבע ייחודית בתחום התת-אדום הבינוני. כך, למשל, לתאים סרטניים יש ריכוז גבוה יותר של מולקולות מסוג מסוים. "העין האנושית קולטת פוטונים באורכי גל של בין 400 ננומטר – הצבע הכחול, ל-700 ננומטר – הצבע האדום", מסביר ד"ר מרג'ן ממנהלי המחקר. "אבל זה רק חלק מזערי מהספקטרום האלקטרומגנטי, שכולל גם רדיו, מיקרו, רנטגן ועוד. מתחת ל-400 ננומטר יש קרינה על-סגולה, או UV, ומעל ל-700 ננומטר ישנה קרינה תת-אדומה, או אינפרה-אדומה, שבעצמה נחלקת לתת-אדום קרוב, בינוני ורחוק. בכל אחד מהמקטעים האלה של הספקטרום האלקטרומגנטי יש מידע רב של צבעים שעד כה היה סמוי מהעין".

 

הטכנולוגיות הקיימות כיום לגילוי אינפרא אדום יקרות ובעיקר מתקשות לשקף את אותם ״צבעים״. בהדמיה רפואית, נעשו ניסויים שבהם ממירים תמונות תת-אדום לאור הנראה כדי לזהות את התאים הסרטניים לפי המולקולות. עד היום, המרה זו נעשתה צבע אחרי צבע, ולשם כך נדרשו מצלמות משוכללות ויקרות מאוד, שלא בהכרח היו נגישות לאזרחים בחיי היום יום. במסגרת המחקר, החוקרים הצליחו לפתח טכנולוגיה זולה ויעילה, "שמתלבשת" על מצלמה רגילה ולמעשה מאפשרת בפעם הראשונה להמיר בבת אחת את הפוטונים של האור מכל תחום התת-אדום הבינוני לתחום האור הנראה, בתדרים שהאדם יכול לקלוט.

 

את המחקר פורץ הדרך ערכו ד"ר מיכאל מרג'ן, יוני ארליך, ד"ר אסף לבנון ופרופ' חיים סוכובסקי מהמחלקה לפיזיקה של חומר מעובה בפקולטה למדעים מדויקים ע"ש ריימונד ובברלי סאקלר. תוצאות המחקר פורסמו לאחרונה בכתב העת Laser & Photonics Reviews

 

צבעים חדשים. הטכנולוגיה שתשנה את הדרך בה אנו רואים את העולם

 

טביעת ה(א)צבע של החומר

"בתחום התת-אדום הבינוני יש אינפורמציה חד-חד-ערכית על החומרים בעולמנו, בעיקר למולקולות אורגניות", מסביר פרופ' סוכובסקי. "כלומר, לחומרים שונים יש 'טביעת אצבע' שונה בצבע. אנחנו בני האדם רואים בין אדום לכחול. אם היינו יכולים לראות בתחום התת-אדום, היינו רואים שליסודות כמו מימן, פחמן ונתרן יש צבע ייחודי. לוויין סביבתי שהיה מצלם בתחום הזה היה רואה איזה מזהם נפלט עכשיו מאיזו ארובה, ולוויין ריגול היה רואה איפה מחביאים חומרי נפץ או אורניום. בנוסף, מאחר שכל עצם פולט חום בתחום התת-אדום, ניתן לראות את כל המידע הזה גם בלילה".

 

לאחר שרשמו פטנט על המצאתם, מפתחים החוקרים בימים אלה את הטכנולוגיה באמצעות מענק מפרויקט קמין של רשות החדשנות, ויש כבר מספר חברות ישראליות ובינלאומיות שהביעו בה עניין. "בעתיד נוכל להציע בעלות של כמה מאות דולרים מכלול שירותים המבוססים על הגביש הייחודי שלנו, שאותו ניתן יהיה להתקין בקלות גם על מכשיר סלולרי. כך יוכל המשתמש לראות בלילה בצבעים שלא הכיר עד כה ובעושר מידע חדש", מסכם פרופ' סוכובסקי.

 

פרופ' נועה שנקר (צילום: תום שלזינגר)

מחקר

19.08.2020
כל התרופות זורמות אל הים

שיירי תרופות שנשפכים לים גורמים לנזק סביבתי ולפגיעה קשה ביצורים הימיים

  • מדעים מדויקים
  • סביבה
  • רפואה ומדעי החיים

בעולם שבו אנו חיים כמעט לכל מחלה ופגע יש תרופה. אנחנו נוטלים כדורים, מורחים משחות, בולעים סירופ, מרגישים יותר טוב ושוכחים מכל הסיפור. אבל חשבתם פעם מה קורה לפסולת הרפואית שלנו ולאן היא מגיעה? במחקר בהובלת פרופ' נועה שנקר ותלמידת המחקר גל נבון מבית הספר לזואולוגיה בפקולטה למדעי החיים ע"ש ג'ורג' ס וייז וממוזיאון הטבע ע"ש שטיינהרדט נדגמו מי ים ב-11 אתרים שונים לאורך חופי ישראל. בעשרה מתוכם נמצא ריכוז משמעותי של שיירי תרופות, שמוזרמות דרך השפכים אל הים. שיירי התרופות נדגמו באיצטלנים – חסרי חוליות ימיים קבועי-מקום הניזונים מסינון מי הים. מסתבר שהחשיפה לתרופות עלולה להשפיע עליהם לטווח ארוך ולמעשה להפר את האיזון העדין של כל מארג החיים הימי, ואפילו לפגוע בחובבי המטבח הקולינרי שמבוסס על מאכלי הים.

 

מה לאיצטלנים ולתרופות של בני אדם?

איצטלנים הם חסרי חוליות ימיים שגודלם מספר סנטימטרים, הנצמדים למשטחים קשים כמו סלע, מזח או שובר גלים. מכיוון שהם ניזונים מחלקיקים קטנים שנמצאים במים - נאגרים בגופם במהלך הזמן חלקיקים רבים מהסביבה הימית, בהם חומרים מזהמים.

 

במסגרת המחקר דגמו החוקרים איצטלנים מתשעה אתרים לאורך חוף הים התיכון (אכזיב, עכו, המרינה בחיפה, שדות ים, תחנת הכוח בחדרה, חוף אכדיה בהרצליה, חוף הסלע בבת-ים, המרינה באשדוד והמרינה באשקלון), ושני אתרים בים סוף (המרינה באילת וריף הדולפינים). הם ביצעו בהם אנליזה כימית על מנת לחפש חומרים פעילים משלוש תרופות נפוצות בשימוש האדם, שידועות בכך שכמעט ואינן מתפרקות במכונים לטיהור שפכים ונותרות זמן רב בסביבה הימית: בזפיברט, המשמש להורדת רמות שומנים בדם; קארבאמזפין לטיפול באפילפסיה ולייצוב מצב הרוח; ודיקלופנק, נוגד דלקות המצוי בתרופה המוכרת 'וולטרן'.

 

הממצאים שהתגלו מדאיגים מאוד: ב-10 מתוך 11 האתרים שנדגמו נמצאו שיירים של התרופות שנבדקו בריכוזים משמעותיים.

  • בארבעה אתרים (באשדוד, באשקלון, בשדות ים ובחיפה) נמצאו כל שלושת החומרים
  • בחמישה אתרים (אכזיב, עכו, הרצליה, בת ים והמרינה באילת) נמצאו שיירים של שתיים משלוש התרופות
  • בריף הדולפינים באילת, נמצאו רק שיירי תרופה אחת – דיקלופנק, אך בריכוז מדאיג
  • ריכוזים גבוהים במיוחד של דיקלופנק ובזפיברט נמצאו בעכו, באשדוד ובאשקלון

רק באיצטלנים שנדגמו מהעומק בתחנת הכוח בחדרה לא נמצאו כלל תרופות.

 

בלעו תרופה? גל נבון דוגמת אצטלנים מסוג Styela plicata במרינה קישון (צילום: ליאון נובק)

 

לא מתפרקות

פרופ' שנקר והחוקרת גל נבון מסבירות כי התרופות שבני האדם צורכים אינן מתפרקות בגופנו באופן מלא, ואחוזים גבוהים מהחומרים הפעילים מופרשים מהגוף בצורתם המקורית. בנוסף, עקב חוסר מודעות, תרופות שאינן בשימוש מושלכות לעתים קרובות לאסלה או לפח. מכוני טיהור השפכים הקיימים היום אינם ערוכים לטפל בשיירי תרופות, ואין פיקוח על ריכוזם בתום הטיפול בשפכים, בניגוד למזהמים אחרים. בסופו של דבר, חלק ניכר מהחומרים הללו מגיע דרך הביוב אל הים.

 

לדבריהן, בסביבה הימית ברחבי העולם ישנו מגוון גדול של שיירי תרופות, בהם סוגי אנטיביוטיקה, נוגדי דלקות, משככי כאבים, הורמונים, נוגדי דיכאון ועוד. "חלק ניכר מתרכובות אלה הן יציבות מאוד", מציינות החוקרות ומוסיפות: "הן אינן מתפרקות במהירות בסביבה הימית, והנזק ליצורים ימיים עלול להיות גדול במיוחד, מכיוון שהתרופות נועדו מלכתחילה לפעול על מערכות ביולוגיות (גוף האדם). כך למשל, מחקרים שונים שנעשו בעולם מצאו כי אסטרוגן המצוי בגלולות למניעת היריון יוצר סממנים נקביים בדגים זכרים, ולכן פוגע ביכולת הרבייה של מינים מסוימים; פרוזק גורם לאגרסיביות וללקיחת סיכונים בקרב סרטנים; נוגדי דיכאון פוגעים בזיכרון ובכושר הלמידה של דיונונים ועוד".

 

במחקר השתתפה גם המעבדה ההידרוכימית של המרכז לחקר המים בביה״ס לסביבה ומדעי כדור הארץ ע"ש פורטר בפקולטה למדעים מדויקים ע"ש ריימונד ובברלי סאקלר, בראשות פרופ' דרור אבישר. המאמר פורסם באוגוסט 2020 בכתב העת Marine Pollution Bulletin.

 

לעצור את הזיהום הכרוני

״אנו עובדים כבר 15 שנה על הגורל הכימי-פיסיקלי של שיירי תרופות במקורות מים יבשתיים, והימצאותם של שיירים אלו בסביבה הימית הפתיעה אותנו. תוצאות המחקר מעידות על ההיקף הגדול של זיהום כרוני בשיירי תרופות, וכן על קליטתם של מיקרו וננו-מזהמים, הנמדדים בריכוזים נמוכים מאוד, באורגניזמים הימיים״, אומר פרופ׳ אבישר.

 

"במחקר שלנו מצאנו שישראל אינה פטורה מהבעיה הגלובלית החמורה של זיהום מי הים בחומרים תרופתיים. התרופות שאנו צורכים מגיעות לים, בעיקר באמצעות הביוב, וגורמות נזק רב לסביבה הימית ולהשפעה עקיפה על בני אדם, הניזונים ממאכלי ים ונחשפים לזיהום זה", מסכמת פרופ' שנקר. "כדי להתמודד עם הבעיה ניתן לנקוט בצעדים שונים. ברמת הפרט, אנו ממליצים לכלל האוכלוסייה לקחת אחריות אישית ולהשליך תרופות שאינן בשימוש למכלים המיועדים לכך בבתי המרקחת ובקופות החולים. כמו כן, אנו פועלים להרחבת המחקר בנושא ניטור זיהום התרופות לאורך חופי ישראל, על ידי אנליזה מתקדמת למגוון גדול יותר של תרופות שנמצאות בשימוש נרחב. בנוסף אנו בוחנים אילו שינויים נגרמים לבעלי חיים הנחשפים לריכוזים סביבתיים של תרופות אלה".

גארי רוזנמן והבריכה הקוונטית

מחקר

27.07.2020
עושים גלים

חוקרים הצליחו למדוד תופעה קוונטית שנחזתה בשנת 1927, ופתרו תעלומה מדעית

  • הנדסה וטכנולוגיה
  • מדעים מדויקים

לראשונה בעולם, צוות חוקרים מאוניברסיטת תל אביב הצליחו ליצור תנאי מעבדה מיוחדים, שאיפשרו להם למדוד בצורה מדעית תופעה קוונטית שנחזתה לפני כמאה שנה, אך מעולם לא נחקרה. במאמץ משותף של בית הספר לפיזיקה ולאסטרונומיה ע"ש ריימונד ובברלי סאקלר, בית הספר להנדסה מכנית ובית הספר להנדסת חשמל, בשיתוף פעולה עם חוקרים מהמכון לפיזיקה קוונטית באולם שבגרמניה, בנו החוקרים בריכת גלים מיוחדת באורך חמישה מטרים, שמדמה התפשטות גלים קוונטיים. באמצעות הבריכה, צוות החוקרים בהובלת הדוקטורנט גרי גאורגי רוזנמן, פרופ' עדי אריה, פרופ' לב שמר, מטיאס צימרמן, מקסים אפראמוב ופרופ' וולפגנג שלייך, צפו לראשונה בתופעה קוונטית בשם פאזת קנארד, שנחשבת לנדבך מרכזי בתורת הקוונטים, שנחזה בשנת 1927 אבל מעולם לא נמדד במעבדה. התגלית פורצת הדרך הובילה לפרסום שני מאמרים מדעיים ב-Physical Review Letters וב-Physical Review E - Rapid Communications.

 

גלי כבידה בבריכה

מכניקת הקוונטים היא שמה של תיאוריה מדעית, המתארת את עולם החלקיקים ברמה התת-אטומית. אחת מאבני היסוד בתורת הקוונטים היא התיאור הכפול של גופים פיזיקליים, הן כחלקיקים והן כגלים. בדומה לגלים בים, גלים קוונטיים מתארים תנודות מחזוריות במרחב ובזמן, ומתאפיינים בפאזה, או מופע. הפאזה של הגל קובעת האם בנקודה מסוימת במרחב ובזמן יהיה הגל בשיא המשרעת שלו, בשפל המשרעת או בכל מצב ביניים אחר. בשנת 1927 חזה הפיזיקאי התיאורטי ארל הסה קנארד כי חלקיק קוונטי שמופעל עליו כוח קבוע, כמו כוח כבידה על גוף בעל מסה, או שדה חשמלי קבוע על חלקיק טעון חשמלית, יצבור פאזה הקרויה כיום על שמו - פאזת קנארד.

 

"המטרה של המחקר שלנו היא לייצר פלטפורמה שמקיימת אנלוגיה מתמטית שלמה עם משוואת שרדינגר, המשוואה העיקרית של מכניקת הקוונטים, אבל בהתקן ענק שניתן לראותו בעין", מסביר רוזנמן. "הבריכה שלנו מייצרת גלי כבידה משטחיים, שמתנהגים באופן דומה לגלי חומר זעירים בעולם הקוונטי, וכך מאפשרת לנו למדוד תופעות קוונטיות במערכת מקרוסקופית. מבחינה תיאורטית יש תופעות במכניקת הקוונטים שקשה מאוד למדוד, ואנחנו מצאנו דרך לעקוף את המגבלה הזאת".

 

"תחילה זיהינו את השקילות בין מערכת קוונטית שמקיימת את משוואת שרדינגר לבין מערכת הידרודינמית של גלים שמתקדמים על פני מים", אומר רוזנמן וממשיך "בשלב השני, לקחנו את הקשר הזה שלב אחד קדימה ובנינו מערכת שמקיימת את משוואת שרדינגר וגם מפעילה כוח קבוע על הגל. על ידי שינוי הכוחות, אנחנו יכולים לראות במו עינינו כיצד חלקיקים צוברים את הפאזות שנחזו על ידי קנארד באופן תיאורטי. לפאזת קנארד עשויים להיות גם שימושים מעשיים, למשל במדידה רגישה של כוחות או בהבנה כיצד מערכות מאיצות תת-אטומיות פועלות. בימים אלה אנחנו משתמשים בבריכת הגלים כדי לצפות לראשונה באפקטים פיזיקליים אחרים, כמו צבירת הפאזה של גלים הנעים בסמוך לחורים שחורים".

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש
שנעשה בתכנים אלה לדעתך מפר זכויות, נא לפנות בהקדם לכתובת שכאן >>