מחקרים

RESEARCH

מה מעניין אותך?

כל הנושאים
מוזיאון הטבע
אמנויות
מוח
הנדסה וטכנולוגיה
חברה
מדעים מדויקים
ניהול ומשפט
סביבה וטבע
רוח
רפואה ומדעי החיים

מחקר

15.04.2024
המהפכה בתעשיית הננו-אלקטרוניקה כבר כאן

פיתוח חדש עשוי להאיץ את השימוש בגרפן בתעשיית הננו-אלקטרוניקה ולשמש ביישומים טכנולוגיים רבים

  • מדעים מדויקים

מחקר בינלאומי חדש בהשתתפות חוקרים מאוניברסיטת תל אביב פיתח שיטה חדשה לגידול רצועות אולטא-ארוכות וצרות של גרפן (חומר הנגזר מגרפיט), המשמשות כחצי מוליך לטובת תעשיית הננו-אלקטרוניקה. החוקרים סבורים שהפיתוח עשוי לשמש בעבור יישומים טכנולוגיים רבים בהם התקני מיתוג מתקדמים, התקנים ספינטרוניים, ובעתיד אף לטובת מחשוב קוונטי.

 

המחקר נערך בהובלת צוות חוקרים בינלאומי, בהם פרופ' מיכאל אורבך ופרופ' עודד הוד מבית הספר לכימיה בפקולטה למדעים מדויקים ע"ש סאקלר, וכן מדענים מסין, דרום קוריאה ויפן. המחקר פורסם בכתב העת Nature.

 

פרופ' אורבך ופרופ' הוד מסבירים שגרפן הוא למעשה שכבה בודדת של גרפיט הבנויה ככוורת של אטומי פחמן. הגרפן מתאים מאוד לשימושים טכנולוגיים, שכן מלבד החוזק המכאני יוצא הדופן שלו, בשנים האחרונות התגלו תכונות מרתקות נוספות של מבנים העשויים ממספר קטן של שכבות גרפן מפותלות ובניהן הולכת-על, פולריזציה חשמלית ספונטאנית, הולכת חום נשלטת, ועל-סיכה מבנית - מצב שבו חומר מציג חיכוך ושחיקה זניחים.

 

אחת המגבלות של שימוש בגרפן לצרכים של תעשיית האלקטרוניקה היא העובדה שהוא חצי-מתכתי, כלומר מחד נשאי המטען יכולים לנוע בו בחופשיות אך מאידך כמות נשאי המטען הזמינים להולכה בו היא נמוכה מאוד. מכאן שלא ניתן להשתמש בגרפן לא כמתכת מוליכה וגם לא כחצי מוליך המשמש את תעשיית השבבים האלקטרוניים.

 

עם זאת, אם גוזרים מתוך יריעת גרפן רחבה רצועה דקה וארוכה של גרפן, נשאי המטען הקוונטיים מתוחמים במימד הצר של היריעה, דבר שהופך אותם לחצי מוליכים ומאפשר שימוש בהם בהתקני מיתוג קוונטיים. נכון להיום קיימים מספר חסמים העומדים בפני שימוש ברצועות גרפן להתקנים ובניהם היכולת לגדל יריעות צרות, ארוכות ובעלות מבנה הדיר המבודדות מן הסביבה.

 

במחקר החדש החוקרים הצליחו לפתח שיטה לגידול קטליטי של רצועות גרפן צרות, ארוכות והדירות היישר בין שכבות החומר המבודד בורון-ניטריד הקסגונאלי וכן להדגים התקני מיתוג קוונטיים בעלי ביצועי שיא המבוססים על הרצועות שגודלו. מנגנון הגידול הייחודי נחשף באמצעות חשבונות דינמיקה מולקולארית מתקדמים המפותחים בקבוצות החוקרים מישראל. חשבונות אלו הראו כי חיכוך אולטרא-נמוך בכיווני גדילה מסויימים בתוך גביש הבורון-ניטריד מכתיב את הדירות מבנה הרצועה, מאפשר את גידולה לאורכים גדולים ומהווה סביבה נקייה ומבודדת לרצועה שגדלה.

 

החוקרים סבורים שהפיתוח מהווה פריצת דרך מדעית וטכנולוגית בתחום גידול רצועות גרפן ארוכות ישירות במטריצות מבודדות, שצפויה לפתוח את הדלת בפני מחקר ענף שיוביל לשימוש ברצועות אלו בתעשיית הננו-אלקטרוניקה.

 

פרופ' אורבך ופרופ' הוד מסכמים: "החשיבות של הפיתוח החדש היא בכך שלראשונה ניתן יהיה לגדל ולייצר התקני מיתוג ננו-אלקטרוניים מבוססי פחמן ישירות בתוך מטריצה מבודדת. התקנים מסוג זה עתידים לשמש יישומים טכנולוגיים רבים בהם מערכות אלקטרוניות, ספינטרוניות ואף התקני מחשוב קוונטי".

 

מימין: פרופ' הוד ופרופ' אורבך

מימין: פרופ' הוד ופרופ' אורבך

מחקר

03.03.2024
תגלית מדעית: חוקרים ראו תופעות ממכניקת הקוונטים בתנועת מטוטלות

המערכת החדשה מאפשרת להתבונן בתופעות שמתרחשות בתוך חומרים מיוחדים מסוג "טופולוגי" על ידי צילום התנועה של מטוטלות באמצעות מצלמה רגילה

  • הנדסה וטכנולוגיה
  • מדעים מדויקים

קשה מאוד ולעיתים אף בלתי אפשרי להסתכל לתוך מערכות קוונטיות, שמורכבות מחלקיקים מיקרוסקופיים כמו אטומים או אלקטרונים. מחקר חדש באוניברסיטת תל אביב הצליח לבנות מערכת מכנית גדולה, שמצייתת לחוקי דינמיקה דומים לאלה המופיעים במערכות קוונטיות. המערכת החדשה מאפשרת להתבונן בתופעות שמתרחשות בתוך חומרים מיוחדים מסוג "טופולוגי" על ידי צילום התנועה של מטוטלות באמצעות מצלמה רגילה. המחקר, פרי של שיתוף פעולה של ד"ר יזהר נדר מהמרכז למחקר גרעיני-שורק, חביבה סירוטה-כץ מהמחלקה להנדסה ביו-רפואית, ד"ר מיטל גבע ופרופ' יאיר שוקף מבית הספר להנדסה מכנית ופרופ' יואב לחיני ופרופ' רוני אילן מבית הספר לפיזיקה ואסטרונומיה באוניברסיטת תל אביב,  פורסם לאחרונה בכתב העת המדעי PNAS.

 

 

החוקרים מסבירים כי מושגים כגון "פונקציית גל", "סופרפוזיציה" ו-"מצבי צבירה טופולוגיים" מיוחסים בדרך כלל למכניקת הקוונטים, השולטת בעולם המיקרוסקופי של האלקטרונים, האטומים והמולקולות. לפי התיאור המקובל במערכות אלו לאלקטרון, שהוא חלקיק הנע באטום או במוצק, יכולות להיות תכונות אשר מביאות לידי ביטוי תופעות גליות, כגון ההסתברות להתפשט במרחב כמו גלים בבריכה שלתוכה נזרקה אבן, היכולת של האלקטרון להיות במספר מקומות בו זמנית, להתאבך עם עצמו ועוד.

 

כמו-כן, התכונות הגליות מובילות לתופעה יחודית הקיימת במוצקים מבודדים מסוימים, בהם למרות שהאלקטרונים בחומר המבודד לא זזים תחת השפעת שדה חיצוני, הסידור הפנימי של החומר בא לידי ביטוי במצב שנקרא "טופולוגי". פירוש הדבר הוא שלגל של האלקטרונים מתווסף גודל שיכול "להיסגר על עצמו" במספר אפשרויות שונות, בדומה לגליל לעומת טבעת מוביוס. מצב זה של האלקטרונים, שבגינו הוענק פרס נובל בפיזיקה בשנת 2016, נחשב למצב צבירה חדש של החומר, ומהווה נושא מחקר פעיל מאוד בעשורים האחרונים.

 

למרות העניין הרב, במערכות קוונטיות ובגבישים אטומיים קיימת מגבלה במדידה של תופעות אלו. זאת משום שבמערכות אלו, בגלל אופייה של מכניקת הקוונטים, אין דרך למדוד את פונקצית הגל האלקטרונית ואת הדינמיקה שלה ישירות. במקום זאת, חוקרים מודדים בעקיפין את התכונות הגליות והטופולוגיות של האלקטרונים בחומר, לדוגמא, על ידי מדידת המוליכות החשמלית של מוצקים. 

 

חמישים מטוטלות בשורה אחת

במסגרת המחקר, החוקרים חשבו מה אם נוכל לבנות מערכת מכנית גדולה, שתציית לחוקי דינמיקה דומים לאלה המופיעים מערכות הקוונטיות האלו, ובה נוכל למדוד הכול? ואכן הם בנו מערכת של חמישים מטוטלות בשורה, עם אורכי חוטים שהשתנו מעט בין מטוטלת אחת לשנייה. בנוסף, החוטים של כל זוג מטוטלות סמוכות חוברו אחד לשני בגובה משתנה ומבוקר, כך שהתנועה של כל אחת מהן משפיעה על תנועת שכנותיה.

 

מצד אחד, המערכת צייתה לחוקי הפיזיקה היומיומיים שלנו - חוקי ניוטון, אבל הערכים המדויקים של אורכי המטוטלות ושל החיבורים ביניהן יצרו קסם: חוקי ניוטון עצמם הביאו לכך שהגל שיצרה תנועת המטוטלות, יציית בקירוב מצויין למשוואת שרדינגר - המשוואה היסודית של תורת הקוונטים, ששולטת על תנועת האלקטרונים באטומים ובתוך מוצקים. התוצאה היא שהדינמיקה של המטוטלות, הנצפית לעין בעולם המאקרוסקופי (ונמדדה בפשטות על ידי הטלפונים הניידים של החוקרים), מחקה בצורה מדויקת התנהגויות של אלקטרונים בגביש.  

 

כשהחוקרים הסיטו כמה מטוטלות בתוך השורה, ואז עזבו אותן ונתנו לגל הנוצר להתקדם באופן חופשי, הם יכלו למדוד ישירות את התפתחות הגל בתוך המערכת - משימה בלתי אפשרית כשמדובר על תנועת אלקטרונים. יכולת זו אפשרה מדידה ישירה של שלוש תופעות. הראשונה מכונה תנודות בלוך. במערכת אלקטרונית תופעה זו מיוחסת לאלקטרונים הנמשכים בכיוון מסויים על ידי מתח חשמלי, ולמרות זאת לא נעים בכיוון המתח, כמו במתכות רגילות, אלא מבצעים תנודות הלוך ושוב בשל נוכחות הסביבה המחזורית של הגביש. תופעה זו מיוחסת רק למוצקים נקיים מאוד, שקשה מאוד למצוא בטבע. לעומת זאת, במערכת המטוטלות, נצפה גל כשהוא נע הלוך ושוב בצורה מחזורית, בדיוק בהתאם לניבוי של בלוך.

 

התופעה השנייה שנצפתה ישירות במערך המטוטלות מכונה מנהור זנר. מנהור היא תופעה קוונטית ייחודית, אשר מאפשרת מעבר של חלקיקים דרך מחסום, בניגוד לאינטואיציה הקלאסית. במקרה של מנהור זנר הדבר בא לידי ביטוי בפיצול של חבילת הגלים תחת כח חיצוני גדול מספיק, שלאחריו החלקים נעים בכיוונים הפוכים. חלק אחד של הגל חוזר לאחור כמו בתנודת בלוך רגילה, וחלק אחר מצליח ״למנהר״ דרך מצב אסור וממשיך להתקדם. הפיצול של הגל לשניים, ובעיקר החיבור בין תוצאת המנהור לתנועת הגל ימינה או שמאלה, היא סימן היכר של משוואת שרדינגר. אכן, זו הייתה הסיבה העיקרית שהיא גרמה לשרדינגר עצמו חוסר נחת, מה שהביא אותו לנסח את הפרדוקס המפורסם שלו, לפיו ממשוואת שרדינגר עולה שמנהור קוונטי באטום בודד יכול להוביל לכך שהגל של חתול שלם מתפצל לחתול-חי וחתול-מת. החוקרים ניתחו את תנועת המטוטלות וחילצו ממנה את הפרמטרים של התנועה – כמו למשל את היחס בין העוצמות של שני חלקי הגל המפוצל, ששקול להסתברות למנהור זנר הקוונטי. תוצאות הניסוי הראו התאמה מצוינת עם הניבויים של משוואת שרדינגר.

 

 

חשוב לזכור כי בסופו של דבר, מערכת המטוטלות היא מערכת הנשלטת על ידי חוקי הפיזיקה הקלאסית, ולכן אינה יכולה לדמות את כל העושר של מערכות קוונטיות. לדוגמא, במערכות קוונטיות עצם המדידה יכולה להשפיע על התנהגות המערכת (ולגרום לחתול להיות, לבסוף, או חי או מת, כשצופים בו). ואילו כאן אין תופעה מקבילה. אבל גם בתוך הגבולות האלה, מערך המטוטלות מאפשר מדידה של תכונות מעניינות ולא טריוויאליות שמתקיימות במערכות קוונטיות, אבל שלא ניתן למדוד אותן בהן בצורה ישירה.

 

התופעה השלישית שנצפתה ישירות בניסוי היא התפתחות של חבילת גלים בתווך בעל מאפיינים טופולוגיים לא טריוויאליים. כאן החוקרים מצאו דרך למדוד בצורה ישירה את המאפיין הטופולוגי מתוך הדינמיקה של חבילת גלים בתווך – משימה כמעט בלתי אפשרית בחומרים קוונטיים. לצורך כך, מערכת המטוטלות כוונה פעמיים, כך שהמטוטלות דימו את משוואת שרדינגר של אלקטרונים, פעם במצב טופולוגי, ופעם במצב טריוויאלי (כלומר רגיל). מתוך השוואה של הבדלים קטנים ביותר בתנועת המטוטלות בין שני הניסויים ניתן היה להבחין בין שני המצבים. האבחנה דרשה מדידה עדינה למדי ובאה לידי ביטוי בהפרש של בדיוק חצי תנודה של המטוטלות בין שני הניסויים, שכל אחד ארך כ-12 דקות, וכלל כ-400 תנודות שלמות של המטוטלות. הפרש קטן זה נמדד בדיוק מובהק ועם התאמה לתיאוריה.

 

הניסוי פותח פתח למימוש של בעיות נוספות, מעניינות ומורכבות אפילו יותר, כמו השפעות של רעש וזיהומים או של זליגת אנרגיה על הדינמיקה של חבילות גלים במשוואת שרדינגר. אלו השפעות שאפשר לדמות בקלות במערכת, בעזרת הפרעה יזומה ומבוקרת לתנועת המטוטלות.

פרופ' שלומי ראובני, הדוקטורנט אופיר בלומר וד"ר ברק הירשברג

מחקר

08.02.2024
לא רק במחשבים: "חוקיות" ה-Restart עובדת גם בסימולציות כימיות

חוקרים גילו שהדרך המקורית להאיץ תהליכים כימיים היא אתחול מחדש

  • מדעים מדויקים

מחקר חדש של אוניברסיטת תל אביב מגלה "שהחוקיות" שנכונה לעולם המחשבים, נכונה כנראה גם לעולם הכימיה. החוקרים גילו שכדי להאיץ דגימות של סימולציות כימיות, כל מה שצריך לעשות, הוא לעצור אותן ולאתחל מחדש (Restart).

 

להתגבר על מגבלת הזמן של סימולציה

המחקר נערך בהובלת הדוקטורנט אופיר בלומר, בשיתוף פעולה עם פרופ' שלומי ראובני וד"ר ברק הירשברג מבית הספר לכימיה בפקולטה למדעים מדויקים ע"ש ריימונד ובברלי סאקלר. המחקר פורסם במגזין היוקרתי Nature Communications.

 

החוקרים מסבירים כי סימולציות דינמיקה מולקולרית הן כמו מיקרוסקופ וירטואלי. הן עוקבות אחר התנועה בזמן של כל אחד מהאטומים במערכות כימיות, פיזיקליות וביולוגיות כמו חלבונים, נוזלים וגבישים. הן מספקות תובנות אודות מגוון רחב של תהליכים, ומשמשות במספר יישומים טכנולוגיים, בהם פיתוח תרופות חדשות. אולם, הסימולציות מוגבלות לזמנים הקצרים ממיליונית השנייה, ולכן לא מסוגלות לתאר תהליכים המתרחשים לאט יותר, כמו קיפול חלבונים והיווצרות גבישים. מגבלה זו מוכרת כבעיית סקלת הזמנים, והיא אחד האתגרים הגדולים בתחום.

 

"במחקר החדש הראינו כי ניתן להתגבר על המגבלה באמצעות אתחול אקראי של הסימולציות (stochastic resetting)", מסביר הדוקטורנט אופיר בלומר. "במבט ראשון, הדבר נראה מנוגד לאינטואיציה - כיצד יתכן שהסימולציות יסתיימו מהר יותר אם מתחילים אותן מחדש? אבל כשבוחנים את הנושא לעומק מתברר שהתשובה נעוצה בכך שאם נחזור על הניסוי בסימולציה פעמים רבות, הזמן שייקח לו לסיים ישתנה מאוד. לפעמים יסתיים מהר, ולפעמים יתקע במצבי ביניים זמן ממושך. אתחול הסימולציות מונע מהן להיתקע במצבי ביניים אלו, ומקצר את הזמן הממוצע לסיום התהליך". 

 

במסגרת המחקר, החוקרים שילבו את האתחול האקראי עם מטאדינמיקה, שיטה פופולרית לסימולציות של תהליכים איטיים. השילוב איפשר האצה רבה יותר מכל אחת מהשיטות בפני עצמה. יתרה מזאת, מטאדינמיקה זקוקה לידע מוקדם רב על התהליך כדי להצליח להאיץ את הסימולציות. השילוב עם אתחול אקראי מקטין תלות זאת מאוד, וחוסך לכימאים מאמץ רב כדי להריץ אותן. לבסוף, הראו החוקרים כי השילוב מאפשר ניבוי מדויק יותר של הקצב של התהליכים האיטיים. השיטה המשולבת שימשה בהצלחה להאצת הדגימה של קיפול חלבון במים, ובעתיד תאפשר להאיץ סימולציות של מערכות גדולות אף יותר.

מחקר

24.12.2023
תגלית חדשה: יערות הגשם בסכנה בשל הפחתת סופות הרעמים באזור

כריתת היערות באמזונס עשויה להקטין את כמות סופות הרעמים ולפגוע ביער הגשם שמספק לנו חמצן

  • מדעים מדויקים
  • סביבה וטבע

חוקרים מאוניברסיטת תל אביב מצאו לראשונה כי בעשורים האחרונים, בעקבות הפעילות המתמשכת של כריתת היערות באגן האמזונס, ירד משמעותית מספר סופות הרעמים באזור זה, והצטמצם המרחב שבו הן מתרחשות. לדבריהם, מדובר בממצא מפתיע:  "במרבית האזורים בעולם ההתחממות הגלובלית גורמת לעלייה במספר סופות הרעמים, אך במחקר זה גילינו שבדיוק באזורים בהם בוראו היערות, מספר הסופות דווקא ירד. הממצאים הללו מדאיגים מכיוון שירידה בכמות הסופות מביאה לירידה בכמות הגשמים, אשר בתורה גורמת לפגיעה נוספת ביערות – וחוזר חלילה. מדובר בתהליך מסוכן של היזון חוזר, שעלול לפגוע קשות ביערות שמספקים לנו חלק ניכר מהחמצן באטמוספירה וקולטים חלק גדול מהפחמן הדו-חמצני שנפלט על ידינו לאטמוספירה."  

 

המחקר הובל על ידי פרופ' קולין פרייס והסטודנט ראם בקנשטיין מהחוג לגיאופיזיקה בבית הספר לסביבה ולמדעי כדור הארץ ע"ש פורטר באוניברסיטת תל אביב. המאמר פורסם בכתב העת Quarterly Journal of the Royal Meteorological Society (QJRMS). 

 

איום נוסף על הריאות של כדור הארץ

"יערות האמזונס הם יער הגשם הטרופי הגדול ביותר בעולם, והם ממלאים תפקיד קריטי בוויסות אקלים כדור הארץ," מסביר פרופ' פרייס. "יערות אלה אף מכונים 'הריאות של כדור הארץ', מכיוון שבאמצעות תהליך  הפוטוסינתזה הם מייצרים חלק משמעותי מהחמצן באטמוספירה וסופגים ממנה כמות גדולה של פחמן דו-חמצני – גז חממה שיש לו תרומה משמעותית לשינויי האקלים. בנוסף, יערות הגשם עצמם מייצרים גשם: העצים פולטים לאוויר אדי מים שהופכים לגשם מקומי, וגם נישאים על ידי הרוח ומביאים גשם למקומות מרוחקים."

 

עם זאת החוקרים מציינים כי תהליכים חשובים אלה מצויים כיום בסכנה בשל פעילות נרחבת של בירוא יערות באמזונס. "כשהאדם כורת עצים ומפנה שטחים לצרכים מגוונים: שימוש בעץ עצמו, חקלאות, פיתוח תשתיות, כריית מינרלים, ועוד. למעשה, ב-30 השנים שבין 1990 ל-2020 חוסלו באגן האמזונס יערות ששטחם הכולל גדול מיבשת אירופה כולה. הרס היערות גורם לפגיעה ברמת החמצן ולעלייה בגזי החממה באטמוספרה, וגם לשיבוש בגשמים שעלול להגיע לכדי בצורת באזורים מסוימים. בנוסף, לעתים קרובות העצים שנכרתו נשרפים, וכך נפלט לאוויר פחמן דו-חמצני נוסף, שמגדיל את הנזק הסביבתי". 

 

במחקר זה, הראשון מסוגו בעולם, ביקשו החוקרים לעקוב אחר שינויים בהיקף סופות הרעמים באגן האמזונס בעשורים האחרונים. בהיעדר נתוני סופות רעמים מהאמזונס שחוזרים עשרות שנים אחורה, בנו החוקרים מודל אמפירי המסתמך על פרמטרים אקלימיים מהמרכז האירופאי ERA5, שאוסף נתונים מאז 1940, ולצד נתוני סופות רעמים שנאספו באמצעות רשת עולמית של חיישנים לאיתור ברקים שנקראת WWLLN -Worldwide Lightning Location Network.

 

"ברק הינו תוצאה של שדה חשמלי עצום שנפרק בבת אחת, ומשדר גלי רדיו שניתן לקלוט אותם גם במרחק של אלפי קילומטרים," מסביר פרופ' פרייס. "החיישנים של רשת WWLLN פרוסים ב-70 מוסדות מחקר בכל העולם, והם קולטים וממפים סופות רעמים בכל מקום על פני כדור הארץ, בזמן אמת וללא הפסקה. גם כאן באוניברסיטת תל אביב, על הגג של הבניין למדעים מדויקים, יש לנו חיישן שקולט גלי רדיו מסופות רעמים שמתחוללות באזור שלנו, וגם באפריקה, בהודו, ואפילו בדרום אמריקה. הצלבת המידע מהתחנות השונות, מאפשרת קביעה מדויקת של המיקום והזמן של כל ברק, וכך מתקבלת מפה גלובלית של ברקים לאורך זמן."   

 

ירידה של כ-8% בהיקף סופות הרעמים

באמצעות המודל האמפירי בדקו החוקרים את הקשר בין כמות והתפלגות סופות הרעמים לבין שינויים בטמפרטורה באזור האמזונס החל משנות ה-80. ניתוח סטטיסטי של הנתונים העלה ממצאים מפתיעים: על אף העלייה בטמפרטורה הנובעת מההתחממות הגלובלית, חלה ירידה של כ-8% בהיקף סופות הרעמים. החוקרים: "כשבדקנו לעומק את הממצאים הבלתי צפויים, גילינו שאזורי הירידה בסופות הרעמים חופפים במידה רבה לאזורים שבהם בוצעה פעילות נרחבת של בירוא יערות. זו הפעם הראשונה שהתגלה קשר בין סופות רעמים לבירוא יערות. לפי ההערכה שלנו, אובדן של כל מגטון פחמן - שווה ערך לכמיליון עצים גדולים שנכרתו, מביא לירידה של כ-10% במספר סופות הרעמים."   

 

פרופ' פרייס מסכם: "במחקר זה בדקנו מגמות בסופות רעמים באגן האמזונס בעשורים האחרונים. ציפינו למצוא עלייה בכמות הסופות בעקבות ההתחממות הגלובלית, כפי שנצפה באזורים רבים בעולם, אך להפתעתנו מצאנו מגמה הפוכה: ירידה של 8% במהלך 40 שנה. בירור נוסף העלה שמרבית הירידה נצפתה בדיוק באזורים בהם יערות הגשם בוראו והוחלפו בחקלאות או בשימוש אחר של האדם. ניתן להסביר זאת בכך שבהיעדר היערות פחתה משמעותית הלחות באוויר, שהיא מקור האנרגיה והלחות להיווצרות סופות רעמים. התוצאה היא פחות סופות רעמים, פחות עננים, פחות גשם, וכתוצאה מכך גם פחות צמיחה של היער. כך נוצר תהליך של היזון חוזר שיכול לגרום להתייבשות היערות, דבר שעלול לפגוע משמעותית באפקטים החיוניים של 'הריאות של כדור הארץ' – ייצור חמצן וספיגת פחמן דו חמצני." 

מחקר

14.09.2023
הקשר בין סופות ברקים לענני נוצה

עלייה במספר סופות הברקים עשויה להגדיל את כמות ענני הנוצה ולהגביר את תהליך התחממות כדור הארץ

  • מדעים מדויקים
  • סביבה וטבע

מחקר חדש של אוניברסיטת תל אביב מצא קשר סטטיסטי מובהק בין סופות ברקים ברחבי העולם להיווצרותם של ענני נוצה (ענני צירוס), שעלולים להגביר את התחממות כדור הארץ. החוקרים: "ידוע שענני נוצה עשויים לגרום להתחממות כדור הארץ,  ועם זאת קשה מאוד לעקוב אחריהם ולהשיג עבורם נתונים מדויקים. הממצאים שלנו, מצביעים על כך שעלייה במספר סופות הברקים ברחבי העולם, עשויה להגדיל מאוד את כמות ענני הנוצה ובכך להעצים את משבר האקלים."

 

המחקר נערך בהובלת פרופ' קולין פרייס מהחוג לגיאופיזיקה בבית הספר לסביבה ולמדעי כדור הארץ ע"ש פורטר באוניברסיטת תל אביב, בשיתוף עם חוקרים באוניברסיטת טריפורה בהודו. המאמר פורסם בכתב העת Geophysical Research Letters של האיחוד הגיאופיזי האמריקאי (AGU).

 

"לענני נוצה, אותם עננים קלילים שאנו רואים בשמיים, יש השפעה משמעותית על האקלים של כדור הארץ," מסביר פרופ' פרייס. "כמות גדולה של ענני נוצה עשויה לשמש כמעין שמיכה, שמגבירה את ההתחממות, בעוד שכאשר הכמות מעטה, החום עולה כלפי מעלה ומשתחרר אל מחוץ לאטמוספירה. מסיבה זו מגלים חוקרי האקלים עניין רב בענני הנוצה, ומנסים לנבא שינויים שעשויים להתחולל בהם - בעיקר בעקבות העלייה בגזי החממה והתחממות כדור הארץ. אך כאן אנו נתקלים בבעיה משמעותית, מכיוון שקשה מאוד להשיג נתונים מדויקים ומקיפים על ענני נוצה. הם דקים מאוד ולפעמים בלתי נראים לעין, גם ללוויינים בחלל, ובנוסף הם נמצאים באטמוספירה העליונה, הרחק מתחנות המדידה שעל הקרקע."

 

האם ניתן להשתמש בברקים כמדד אמין לכמות ענני הנוצה?

כדי לתת מענה לאתגר בחנו החוקרים אם ניתן להשתמש בסופות ברקים, שהמידע עליהן נגיש וזמין, כמנבא יעיל לכמות ענני הנוצה שנוצרים באטמוספירה. החוקרים מסבירים שברק נוצר כאשר שדה חשמלי עצום נפרק בבת אחת ומייצר טמפרטורה גבוהה מאוד, עד 30,000 מעלות צלסיוס, שגורמת להבזק האור העוצמתי המוכר לכולנו. כתוצאה מכך משדר הברק גלי אור וגלי רדיו הניתנים לקליטה גם במרחק של אלפי קילומטרים, וכך ניתן לעקוב אחרי הברקים ולמפות אותם – בזמן אמיתי ולאורך זמן.

 

במחקר הנוכחי הסתמכו החוקרים על נתוני ברקים שנאספו בכל העולם לאורך 6 שנים על ידי לוויין LIS-ISS של NASA הקולט את האור הנפלט מברקים. החוקרים בחנו את הנתונים הללו מול נתונים של ענני נוצה (המידע החלקי הקיים היום בשילוב עם מודלים המשלימים את התמונה), במטרה לבדוק אם קיים קשר בין מספר הברקים ביום, בחודש, או בשנה, לבין כמות ענני הנוצה שנוצרים באטמוספירה. הממצאים הצביעו על התאמה מובהקת סטטיסטית: ככל שיש יותר סופות רעמים יש יותר ענני נוצה. לדברי החוקרים, המשמעות היא שאכן ניתן להשתמש בברקים – שאותם קל לאתר ולמדוד, כמדד אמין לכמות ענני הנוצה באטמוספירה, היום ובעתיד.

 

פרופ' פרייס: "גילינו שסופות ברקים מהוות מנגנון מרכזי בהיווצרות ענני נוצה בעולם, ושמעקב אחר ברקים יכול להסביר יותר מ-70% מהשינויים בכמויות של ענני הנוצה בעולם. הסופות משמשות כמעין 'שואב אבק' ענק ששואב לחות מפני כדור הארץ, בעיקר מהימים ומהיערות, ונושא אותה לגובה רב. שם, בגובה של כ-10 ק"מ הופכת הלחות לגבישי קרח דקים שיוצרים את ענני הנוצה."

 

פרופ' פרייס מסכם: "במחקר שלנו מצאנו קשר סטטיסטי מובהק בין מספר סופות הברקים המתחוללות על פני כדור הארץ לבין כמות ענני הנוצה שנוצרים באטמוספירה ברמה הגלובלית. מודלים רבים צופים כיום ששינויי האקלים יביאו למגמה של עלייה בתופעת סופות הברקים בשנים הבאות, אם כי טרם נאספו די נתונים כדי לקבוע זאת בוודאות. על פי המחקר שלנו, אם ההשערות הללו נכונות, צפויה העלייה במספר סופות הברקים לגרום גם לעלייה בכמות ענני הנוצה, אשר כאמור מהווים מעין שמיכה אטמוספירית, ועלולים להגביר עוד יותר את תהליך התחממות כדור הארץ."

מחקר

02.07.2023
חוקרים מדדו לראשונה את מסלולי בוהם ואת הפוטנציאל הקוונטי במערכת קלאסית

בזאת איששו החוקרים תופעות מדעיות שנחזו עד כה רק באופן תיאורטי

  • מדעים מדויקים

חוקרים מאוניברסיטת תל אביב ומאוניברסיטאות בארה"ב ובגרמניה, הצליחו למדוד בפעם הראשונה מסלולי בוהם (Bohm trajectories) ואת הפוטנציאל הקוונטי (Quantum Potential) במערכת קלאסית, תופעות שנחזו עד היום באופן תיאורטי ונמדדו באופן חלקי בלבד. התגלית המדעית התאפשרה במסגרת מחקר שבחן את דינמיקת ההתפשטות של חבילות של גלי כבידה משטחיים על פני מים, על ידי מדידתם לאורך בריכת גלי מים באורך 18 מטרים. גלים אלה מקיימים את משוואת היסוד של תורת הקוונטים, משוואת שרדינגר, ולכן מאפשרים למדוד תופעות גליות המוכרות מתורת הקוונטים במערכת קלאסית.

 

צוות החוקרים כולל את מר גאורגי גרי רוזנמן, דוקטורנט מבית הספר לפיזיקה באוניברסיטת תל אביב, פרופ' דניס בונדר מאוניברסיטת טוליין שבארה"ב, פרופ׳ וולפגנג שלייך מאוניברסיטת אולם שבגרמניה, פרופ׳ לב שמר מבית הספר להנדסה מכנית מאוניברסיטת תל אביב ופרופ׳ עדי אריה מבית הספר להנדסת חשמל  ומופקד הקתדרה לננו-פוטוניקה ע"ש מרקו ולוסי שאול. המחקר פורסם לאחרונה בכתב העת היוקרתי Physica Scripta.

 

איור 1 - חלק עליון: תיאור סכימטי של המערכת הניסיונית למדידת גלי כבידה משטחיים על פני מים וחילוץ מסלולי בוהם והפוטנציאל הקוונטי. חלק תחתון: (a) צילום חזית של הבריכה בה נוצרים הגלים. (b) מחוללי הגלים הנשלטים על ידי מחשב. (c) חיישנים המודדים את גובה פני המים.

 

עושים גלים

תאוריית דה ברוגלי-בוהם (De Broglie–Bohm theory), הידועה גם בשם מכניקה בוהמית, מתארת את ההתפתחות של פונקציית גל של חלקיק קוונטי במרחב ובזמן על ידי סדרה של מסלולים מוגדרים (הקרויים מסלולי בוהם) שהחלקיק נע באחד מהם. מסלולים אלה נקבעים על ידי משוואת תנועה התלויה בפונקציית הגל ההתחלתית. באופן שקול, ניתן להגדיר פוטנציאל קוונטי שמגדיר את התפתחות פונקציית הגל. התאוריה נקראת על שמם של לואי דה ברוגלי (1892–1987) ודייוויד בוהם (1917–1992) והוצעה על ידם על מנת להסביר את התופעות הנמדדות בפיסיקה קוונטית.

 

איור 1 - ימין: מדידות ניסיוניות של ניסוי שני הסדקים ומסלולי בוהם שנמדדו (פסים שחורים). המימוש של הסדקים נעשה בתחום הזמן, על ידי יצירת שני פולסים של גלי כבידה משטחיים, בזמנים (t=-4, +4 sec). ניתן לראות את ההתפתחות של מסלולי בוהם לאורך בריכת הגלים (ציר X). יש אזורים שאף מסלול לא חוצה אותם, ועוצמת הגל שתימדד בהם תהיה אפס. הסיבה לכך היא שנוצרת באזורים אלה התאבכות הורסת. לעומתם, יש אזורים שבהם יש צפיפות גבוהה של מסלולי בוהם, ובהם עוצמת הגל מקסימלית (כתוצאה מהתאבכות בונה). איור 2 - שמאל: מראה את הפוטנציאל הקוונטי. הגל נע רק ב'עמקים' (כלומר באזורים שבהם הפוטנציאל נמוך) ולא מגיע ל'הרים' (כלומר לאזורים שבהם הפוטנציאל גבוה).

 

חלון חדש להבנת הדינמיקה של גלים

בעוד שתאוריית דה-ברוגלי-בוהם פותחה עבור תיאור של מערכת קוונטית, הניסוי שבוצע עוסק במערכת קלאסית של גלי כבידה משטחיים על פני מים, אך כאלו שמקיימים את משוואת שרדינגר. לפיכך, צוות החוקרים זיהה כי ניתן ליישם את תאוריית דה ברוגלי-בוהם כדי לבחון באופן נסיוני את מסלולי בוהם ואת הפוטנציאל הקוונטי, אבל בהתקן גדול שניתן לראותו בעין. בניסוי מיוצרים גלי כבידה משטחיים בבריכה באורך של 18 מטרים, שמתנהגים באופן דומה לגלי חומר זעירים בעולם הקוונטי וכך החוקרים הצליחו למדוד במערכת מקרוסקופית תופעות שנחזו במקור למערכות קוונטיות.

 

בפרט, ניתן לראות בניסוי שחזור מלא של מסלולי בוהם של הניסוי המפורסם של עקיפת חבילת גלים דרך שני סדקים. המימוש של הסדקים נעשה בתחום הזמן על ידי עירור שני פולסים של גלי כבידה משטחיים במישור הכניסה של בריכת הגלים, ולאחר מכן נמדדה ההתפתחות של פונקציית הגל לאורך הבריכה, וממנה נקבעו מסלולי בוהם והפוטנציאל הקוונטי. המערכת הניסיונית שימשה גם למדידת חבילות גלים אחרות כגון חבילת גלים הנוצרת מעקיפה של שלושה סדקים, וחבילת גל שצורתה פונקציית איירי (Airy). מעבר לאישוש התיאוריה של בוהם לגלים קוונטים ומסלולי בוהם, ניסויים אלו פותחים חלון חדש לקראת הבנת הדינמיקה של סוגים שונים של גלים קלאסיים, לרבות גלים אלקטרומגנטיים, פלזמה, אקוסטיים ועוד. מסלולי בוהם מאפשרים להמחיש בצורה ויזואלית כיצד גלים אלה מתפתחים במרחב ובזמן ונותנים הבנה אינטואיטיבית לתופעות של התאבכות בונה והורסת של גלים אלה.

 

 

מחקר

02.04.2023
6 חוקרות וחוקרים מאוניברסיטת תל אביב זכו במענקי המחקר היוקרתיים ביותר של האיחוד

המענק היוקרתי מוענק לחוקרים בעלי רקורד של הישגי מחקר משמעותיים ב-10 השנים האחרונות

  • מדעים מדויקים

מועצת המחקר האירופית (ERC) פרסמה את תוצאות הקול הקורא של מענק ERC Advanced Grant לשנת 2022. המענק היוקרתי מיועד לחוקרים בעלי רקורד של הישגי מחקר משמעותיים ב-10 השנים האחרונות. על המדענים להיות מובילים בתחומם ויוצאי דופן מבחינת מקוריות ומשמעות תרומתם למחקר. אוניברסיטת תל אביב מובילה במספר הנשים הזוכות - שלוש מתוך כלל ששת הזוכים.

 

"אנחנו גאים מאוד בחוקרים והחוקרות שלנו, ומוקירים את עבודתם. אני שמח לראות שאוניברסיטת תל אביב מצליחה לייצר סביבת עבודה בה חוקרינו מצליחים להגיע להישגים משמעותיים ולמחקר פורץ דרך. אני מברך את עבודתם החשובה ובטוח כי הם ימשיכו לעשות חיל במחקרם", אמר פרופ' דן פאר, סגן הנשיא למחקר ופיתוח וראש המעבדה לננו-רפואה באוניברסיטת תל אביב.

 

החוקרות והחוקרים שמחקריהם פורצי הדרך זכו השנה למענק הם:

פרופ' אינה סלוצקי | בית הספר לרפואה ובי"ס סגול למדעי המוח | מדענית מוח שחוקרת מהו המנגנון השומר על יציבות הפעילות המוחית ברשתות עצביות

ההנחה המרכזית היא שכשל במנגנון זה הוא הגורם המרכזי לירידה הקוגניטיבית במחלת האלצהיימר. המחקר במעבדתה חשף כי שנים רבות לפני הופעת הסימפטומים הראשונים של המחלה, כבר קיימת פעילות מוחית פתולוגית שמופיעה במצבי שינה והרדמה. המחקר מתבסס על שיטות אופטיות, חשמליות ומולקולריות מהמתקדמות בעולם. ממצאי המעבדה עשויים להוות בסיס להבנה טובה יותר של מחלת האלצהיימר ומחלות נוספות ובעתיד לתרום לפיתוח טיפולים חדשים ואבחון מוקדם בתחום.

 

 

פרופ' רני שפיגלר | בית הספר לכלכלה ע"ש איתן ברגלס | חוקר בתחום התיאוריה הכלכלית

מחקרו עוסק באינטראקציות אסטרטגיות בין מקבלי החלטות, אשר משתמשים בלמידת מכונה כדי לבנות תחזיות לגבי הסביבה בה הם פועלים. המחקר יבנה מודלים כלכליים פשוטים ששואבים רעיונות מתורת המשחקים ההתנהגותית, ומבוססים על שתי הנחות יסוד: (1) למידת מכונה בסביבה כלכלית מתבססת על נתונים שנובעים מההחלטות האנדוגניות של השחקנים במערכת, (2) למידת מכונה מגלה העדפה למודלים פשוטים שיסבירו את הנתונים, כחלק מהניסיון להימנע מ- overfitting. מטרת המחקר היא לבחון השלכות תיאורטיות של צירוף שתי הנחות יסוד אלה, ואת משמעותן האפשרית עבור מגוון מערכות כלכליות, כגון שוקי אשראי או תמחור אוליגופוליסטי.

 

 

פרופ' תמי הרציג | החוג להיסטוריה כללית, סגנית הדקאן | היסטוריונית שתחקור את תופעת השעבוד של נשים באזורים האירופיים של אגן הים התיכון, בין השנים 1500 עד 1800

יותר ממיליון בני אדם משועבדים הובאו בכפייה לאזורים אלה מאפריקה, אסיה, ומזרח אירופה, ובמחקר זה הטענה היא שנשים וילדות היוו חלק משמעותי מהאוכלוסייה המשועבדת באירופה הים-תיכונית. המחקר מבקש לבדוק את ההשפעות שהיו לנוכחות המתמשכת של שפחות זרות-מוסלמיות, יהודיות ואחרות, על החברה הנוצרית בשטחי איטליה, ספרד, צרפת ומלטה של ימינו. הוא יתבסס על מחקר ארכיוני רחב-היקף, וכן על ניתוח  של ממצאי תרבות חומרית וייצוגים חזותיים.

 

 

פרופ' בני אפלבאום | בית הספר להנדסת חשמל | חוקר בתורת הקריפטוגרפיה עוסקת בחישוב ותקשורת בנוכחות יריב

מחקרו מתמקד בשאלות יסוד, כגון כיצד ניתן לאכסן ולעבד מידע פרטי באופן מבוזר בין מספר רב של משתתפים אשר חלקם מושחתים ואף בעלי כוח חישובי בלתי מוגבל. מטרת המחקר היא להציג פתרונות משופרים לבעיות אלה, ובאופן כללי יותר, להבין מהי העלות, מבחינת משאבי חישוב ותקשורת, הנדרשת כדי להשיג בטיחות מרבית. המחקר תיאורטי בעיקרו ומשתמש בכלים מתמטיים.

 

 

פרופ' לילך הדני | בית הספר למדעי הצמח ואבטחת מזון | חוקרת בעולם מדעי הצמח שתחקור את הקשר בין צמחים וצלילים

תקשורת בין צמחים לסביבתם חיונית לשרידותם. ידוע שצמחים משתמשים באור, ריח ומגע כדי לתקשר עם צמחים וחיות. אולם מה לגבי קולות? מחקרים אחרונים הראו שצמחים יכולים להגיב לקולות (למשל של מאביקים), ויכולים גם להשמיע קולות, במיוחד תחת עקה. במחקר הזה יחקרו מה צמחים יכולים לשמוע, מה משמעות הקולות שהם משמיעים, ומי מקשיב להם. המחקר ישלב ניסויים בצמחים בתנאים שונים, למידת מכונה לפענוח הצלילים שהצמחים משמיעים, ומודלים אבולוציוניים.

 

 

פרופ' גידי בוהק | החוג לפילוסופיה יהודית ותלמוד ותוכנית הלימודים במדעי הדתות | חוקר יהדות שימפה ויחקור את הספרות היהודית הלא-רבנית מימיהם של חז״ל, כולל ספרות אסטרולוגית, מאגית, רפואית ועממית

המחקר יזהה טקסטים יהודיים לא-מוכרים, בעיקר מגניזת קהיר, כדי לבחון היבטים רבים של התרבות היהודית בשלהי העת העתיקה, החל בתופעות של תרגום טקסטים מיוונית ומלטינית לארמית ולעברית וכלה בתפילות למלאכים ואמונות בכוחם של גרמי השמים להשפיע על בני האדם. מחקר זה יתרום גם להבהרת מעמדם של חז״ל עצמם בחברה היהודית בשלהי העת העתיקה.

מפה של גלקסיית שביל החלב שבה נמצאת מערכת השמש שהורכבה בעזרת התצפיות של סוכנות החלל האירופאית. המפה מציינת את מיקומם של שני החורים החדשים שהתגלו. BH1 נמצא בקבוצת הכוכבים נושא הנחש ו-BH2 בקבוצת סנטאור.

מחקר

02.04.2023
שחור זה (החור) השחור החדש

צוות בינלאומי, שכולל קבוצת חוקרים מאוניברסיטת תל אביב, זיהה חור שחור ראשון, Gaia BH1, שנמצא במרחק של 1500 שנות אור מכדור הארץ

  • מדעים מדויקים

החללית Gaia שוגרה ע"י סוכנות החלל האירופית ב-2013 ומאז היא מנטרת באופן קבוע את המיקום של למעלה ממיליארד כוכבים בגלקסיה שלנו בדיוק חסר תקדים. ארגון הכולל כמה מאות מדענים ברחבי אירופה (כולל ישראל), מעבד את הנתונים המגיעים מהחללית ומנגיש אותם לשימוש הקהילה המדעית כולה. אחד הצוותים, ובהם קבוצת מחקר של אוניברסיטת תל אביב בהובלתו של פרופ' (אמריטוס) צבי מזא"ה מבית הספר לפיזיקה ולאסטרונומיה, מתמקד במחקר של כוכבים כפולים המתגלים מתוך נתוני החללית. לאחרונה פרסם הארגון רשימה של יותר מרבע מיליון כוכבים כפולים שאחד מבני הזוג הוא חור שחור – אובייקט שמיימי מן הנדירים ביקום, החג סביבם, בהם חור שחור שנמצא במרחק 1500 שנות אור מכדור הארץ.

 

בן זוג בלתי נראה

צוות החוקרים מאוניברסיטת תל אביב, שכולל גם את ד"ר סהר שחף (הנמצא כעת במכון וויצמן), ד"ר שמחון פייגלר וד"ר דולב בשי, פיתח טכניקה לזיהוי כוכבים כפולים שאחד מבני הזוג הוא חור שחור. קשה מאוד לגלות חורים שחורים, מפני שהאור איננו יכול להבקיע את כוח המשיכה החזק שבסביבתו של החור השחור. כאשר חור שחור "דומם" כזה נמצא במערכת זוגית עם כוכב רגיל, משתמשים בתנועת הכוכב הנראה כדי למדוד את המסה של בן הזוג הבלתי נראה ולהוכיח שזהו אכן חור שחור. בשנים האחרונות פורסמו מספר הצעות לזיהוי חורים שחורים דוממים במערכות זוגיות, אבל בכל המקרים התעוררו שאלות קשות שערערו את אמינות הזיהוי.

הנתונים של גאיה שפורסמו לאחרונה איפשרו לזהות מספר קטן של כוכבים שתנועתם על פני מישור השמיים מעידה על קיומו של חור שחור דומם כבן זוג. לפני חודשים אחדים גילה צוות בינלאומי, שכולל את קבוצת המחקר מאוניברסיטת תל אביב, חור שחור ראשון, Gaia BH1, שנמצא במרחק של 1500 שנות אור. תצפיות ייעודיות מן הקרקע שנערכו באינטנסיביות בחודשים האחרונים אישרו כעת את קיומו של Gaia BH2, חור שחור שני הנמצא במרחק של כ-4000 שנות אור. שני החורים השחורים כבדים (כל אחד) פי 10 מן השמש שלנו.

"זהו גילוי מרגש", אומר פרופ' צבי מזא"ה. "השילוב הראשון מסוגו בין התצפיות מן הקרקע, לבין נתוני החללית, מוכיח מעל לכל ספק שגילינו שני חורים שחורים דוממים. הקירבה היחסית שלהם אלינו מראה כי מספרם של החורים השחורים הדוממים בחלל הוא גדול, והנתונים של החללית הממשיכים לזרום יביאו לגילויים של אובייקטים רבים כאלה, כפי שאכן ציפו עבודות תיאורטיות שונות. אני גאה שקבוצת המחקר שלנו זכתה להשתתף בעיבוד הנתונים של גאיה, ואחר כך במעקב אחרי המועמדים שהתגלו, שילוב ראשון מסוגו שהביא לזיהויים של שני חורים שחורים קרובים יחסית. אני מקווה שהגילוי יוביל להבנה מעמיקה על אופן ההיוצרות של מערכת כפולות כאלה, תהליך שפרטיו אינם מובנים כרגע". 

מחקר

19.01.2023
חוקרים הצליחו להוכיח באמצעות מערכת הדמיה אולטרה-מהירה: ככל שחלקיקים פולריטונים

התגלית עשויה לשמש ככלי פורץ דרך בעולמות הפקת האנרגיה סולארית, עיבוד מידע וכדומה

  • מדעים מדויקים

פוטונים הם חלקיקי אור הנעים בצורה חופשית ובמהירות עצומה של 300,000 ק"מ לשנייה. לפי תורת הקוונטים ניתן "לערבב" חומר עם פוטונים על ידי שימוש במבנים מלאכותיים וליצור יצור כלאיים הנקרא "פולריטון". לפני כעשור התגלה שניתן להשתמש בפולריטונים על מנת לשלוט בתכונות של חומרים ובתהליכים כימיים.

 

מחקר חדש באוניברסיטת תל אביב יצר מערכת הדמיה אולטרה-מהירה באמצעותה הצליחו לחזות בהתנהגות של חלקיקים הנקראים "פולריטונים" – חלקיקים אשר נוצרים מ"ערבוב" של אור וחומר. לראשונה הצליחו להסריט את החומרים הללו ולהבין את התנהגותם המיוחדת: ככל שהם מכילים יותר "אור" כך הם מהירים ויעילים יותר.

 

המחקר נערך בהובלת ד"ר טל שוורץ, ראש המעבדה לחקר ננואופטיקה מולקולרית, וד"ר באלה מוקונדהקומר במחלקה לכימיה פיזיקלית בפקולטה למדעים מדויקים ע"ש ריימונד ובברלי סאקלר, ופורסם בעיתון היוקרתי “Nature Materials”. במחקר השתתפו הסטודנטים אריה סימחוביץ' וגל סנדיק, ד"ר עדינה גולומבק וד"ר גיא אנקונינה.

 

החוקרים פיתחו מערכת אופטית ייחודית על מנת לחקור האם ניתן לנצל את הערבוב עם האור להגברת תהליכי הולכה אלקטרונית בחומרים, וגילו תכונה מעניינת: ככל שיש אחוז גבוה יותר של אור בפולריטון, כך תנועתו במרחב הופכת להיות יעילה ומסודרת יותר, אך מכיוון שעדיין יש לו אופי "חומרי", ניתן להשתמש בו לצורך תהליכים אלקטרונים בהתקנים שונים.

 

הסרטת התמונה כמו בווידאו

ד"ר שוורץ מסביר: "במערכת שבנינו, ישנו משטח לוכד פוטונים ועליו שכבת מולקולות. כאשר יורים קרן לייזר למשטח ניתן ליצור את אותם פולריטונים בנקודה ספציפית וכן לצפות בתנועתם על המשטח. עד כה, חוקרים צילמו בצורה סטטית את המתרחש, כך שהם יכלו לומר שיש תנועה במשטח אך לא היה בידם מידע נוסף לגבי אופן התנועה או מהירותה. במחקרנו, פיתחנו מערכת אופטית מיוחדת שאיפשרה לנו לצפות בתנועה באופן דינמי וליצור מעין סרט וידאו בקצב מהיר ביותר. לצורך ההשוואה, במצלמת וידאו רגילה רואים 30 תמונות בשנייה, ואצלנו יותר ממיליון בריבוע תמונות בשנייה. באמצעות כך הצלחנו למדוד בצורה ישירה את מהירות ההתקדמות של הפולריטונים, וכן לזהות לראשונה מעבר בין שני סוגי תנועה שונים: כאשר פולריטון מכיל מעט אור, טווח התנועה שלו אכן מוגבר בכמה סדרי גודל ביחס למצב הטבעי בחומר, אך הוא נע באופן המכונה 'תנועה דיפוסיבית', כלומר תנועה המלווה בפיזורים אקראיים המובילים לשינויים תכופים בכיוון ההתקדמות ולכן יעילות התנועה מוגבלת.

 

"מצד שני, כאשר הפולריטון מכיל כמות גבוהה של אור, הוא מצליח "להתגבר" על אותם פיזורים, כך שמופיעה תנועה המכונה 'תנועה בליסטית' - תנועה מסודרת במהירות קבועה, אשר מגיעה ל2/3 ממהירות האור. האופי המשולב של הפולריטונים מאפשר מצד אחד מהירות גבוהה ומעבר של מרחקים ארוכים פי מיליון מסקלת המרחק המולקולרית, תוך כדי איבודי אנרגיה פחותים, ומצד שני אינטראקציות אלקטרוניות המאפשרות שליטה והמרה של האור לאנרגיה האגורה בחומר".

 

לנצל באופן מיטבי את אנרגיית השמש

"אנו מצפים להשפעה בתחומים שונים, למשל בתחום התאים הסולריים. שם, אנרגית השמש נבלעת באזור אחד בהתקן ולאחר מכן צריכה לעבור לאזור אחר שבו היא מומרת לאנרגיה חשמלית. בדרך כלל תהליך זה הוא איטי ומוגבל בטווח על פניו הוא מתרחש, דבר אשר פוגם ביעילות התא הסולרי. באמצעות פולריטונים ניתן יהיה להעביר את האנרגיה ביעילות רבה יותר ולנצל באופן מיטבי את אנרגיית השמש. דוגמה נוספת היא התקנים אלקטרואופטיים אשר משמשים לתקשורת אופטית ועיבוד מידע. שימוש בפולריטונים יכול להאיץ את קצבי העבודה ולהוריד באופן משמעותי את התנגדות החומרים המשמשים בהתקנים אלו, כך שנצטרך להשקיע פחות אנרגיה בהפעלתם".

 

מחקר

27.12.2022
פתרון לתעלומה מדעית: חלבוני קרום התא "אוהבים לנדוד" לאזורים בעלי

הבנה מעמיקה של התהליך יכולה לקדם את עולם הרפואה בטיפולי פוריות, מתן תרופות ועוד

  • מדעים מדויקים

תגלית חדשה באוניברסיטת תל אביב: חלבוני קרום התא החיוניים לאיחוי תאים 'אוהבים לנדוד' לאזורים בעלי עקמומיות גבוהה. החוקרים מסבירים כי כל התאים בגוף האדם עטופים בקרומים, שמפרידים בין תכולת התא לסביבה שלו. כמו כן, ישנם מקרים בהם מתבצע תהליך של איחוי בין תאים, למשל בהפריה של זרע וביצית. יחד עם זאת המנגנון שגורם לאיחוי התאים עדיין נותר כתעלומה מדעית. מחקר חדש באוניברסיטת תל אביב הצליח ליצור שימוש חדשני במערכת המדמה קרום תא (ממברנה) בעל עקמומיות. המערכת הניסיונית הזו מאפשרת לחקור את השפעת הצורה של הקרום המכיל חלבונים 'עקמומיים' על מיקום החלבונים ואיחוי קרומי תאים.

 

המחקר נערך בהובלת הדוקטורנט רביב דהרן, בהנחיית ד"ר רעיה סורקין מבית הספר לכימיה בפקולטה למדעים מדויקים ובשיתוף פעולה עם פרופ' מיכאל קוזלוב מאוניברסיטת תל אביב, וקבוצת חוקרים מאוניברסיטת ציגווה בסין. המחקר פורסם לאחרונה בכתב-העת היוקרתי PNAS.

 

העקמומיות חשובה לאיחוי

ד"ר סורקין מסבירה: "איחוי ממברנות הוא תהליך חיוני בגופנו המתרחש בתהליכים שונים כגון מעבר אותות במוח, תהליכי הפריה ותקשורת בין תאים. הבנה מעמיקה יותר של התהליך יכולה לקדם את עולם הרפואה בטיפולי פוריות, מתן תרופות ועוד. במעבדה אנו מנסים להבין את ההיבט הכימי-פיזיקלי של תהליך זה. בתאים יש ממברנות דינמיות בצורות שונות. ישנן ממברנות עם עקמומיות מאוד גבוהה, ומכך עולה השאלה מדוע נדרשת עקמומיות כזאת? ככל הנראה הצורה העקמומית חשובה למגוון תהליכים כמו למשל תהליך האיחוי".

 

במסגרת המחקר החדש, החוקרים התמקדו בשני חלבונים הממוקמים על גבי ממברנות התאים. חלבון אחד נמצא על הביצית והוא קריטי בתהליכי ההפריה, והשני חיוני ליצירת בועיות המשמשות לתקשורת בין תאים. במעבדה יצרו החוקרים מערכת המאפשרת לבחון את ההשפעה של עקמומיות ומתח הממברנה על התארגנות ומיקום החלבונים. בהמשך, החוקרים יצרו בועיות ממברנות גדולות, כדי שיהיה קל להבחין בהשפעות השונות, וסימנו את החלבונים עם צבען ביולוגי. בשלב הבא הם השתמשו במכשיר לכידה אופטית, המכונה מלקחיים אופטיים, שבעזרתו ניתן לבצע מניפולציות לחלקיקים מיקרוסקופיים.

 

החוקרים מציינים כי מדובר בטכנולוגיה שמאפשרת להחזיק ולהזיז חלקיקים בעזרת אור. בעזרת כדור זכוכית קטן המוחזק במלכודת האופטית ניתן למשוך מהבועית צינוריות ממברנה דקות, ובכך לדמות תהליכים ביולוגיים שבהם צינוריות כאלה נוצרות, כפי שקורה בפני השטח של הביצית. החוקרים שילבו את המלקחיים האופטיים עם מכשיר נוסף שבאמצעותו ניתן לשאוב חלק מהממברנה, דבר המאפשר שליטה בעקמומיות ובמתח שלה.

 

ד"ר סורקין: "באמצעות המערך הזה הצלחנו להוכיח שהחלבונים הללו 'אוהבים לנדוד' לאזורים בעלי עקמומיות גבוהה. בעבודות קודמות נמצא שעכברה שבה החלבון הזה חסר תהיה עקרה. זאת אומרת שלצורה העקמומית של קרום הביצית ולנדידת החלבון לאזור הזה יש חשיבות גדולה בתהליך ההפריה. תגלית זו תאפשר בעתיד לפתח טיפולי פוריות או אמצעי מניעה חדשים.

 

אנו מאמינים שמחקר רב תחומי הוא המפתח להבנת תהליכים ביולוגיים שחשובים לבריאות ואיכות החיים שלנו. ישנה אמירה מפורסמת של ריצ'ארד פיינמן, "מה שאני לא יכול ליצור, אני לא יכול להבין". זו הגישה שלנו במעבדה: אנחנו רוצים לדמות תהליכים ממברנליים מהמרכיבים הכי בסיסיים שדרושים למנגנונים ביולוגיים ההכרחיים לחיים כמו הפריה או תקשורת בין תאים. על ידי שליטה מדויקת במאפייני התהליך כמו הצורה ומתח הפנים של הממברנה, נוכל להבין את המנגנונים ולטפל במצבים פתולוגים. על ידי כך אנו מקווים לתרום לשיפור הבריאות ואיכות החיים".

מחקר

22.11.2022
להחליק את זה: שלבים אטומיים בסולם החשמלי הדק בטבע

מחקר של אוניברסיטת תל אביב חושף סולם אטומי ייחודי של פוטנציאלים חשמליים

  • מדעים מדויקים

מחקר חדש של אוניברסיטת תל אביב חושף מערכת גבישים דו-ממדית, המאפשרת שליטה ייחודית במטען החשמלי שלה באמצעות החלקה בין שכבות אטומיות. המערכת החדשה יוצרת שלבי סולם בעובי אטומי של פוטנציאלים חשמליים נפרדים ומוגדרים היטב, וייתכנו לה שלל יישומים בתעשייה בכלל ובטכנולוגיות מידע בפרט.

 

המחקר נערך בהובלת צוות החוקרים: ד"ר סווארופ דב, סטודנט המחקר נועם ראב, פרופ' משה גולדשטיין וד"ר משה בן שלום, מבית הספר לפיזיקה באוניברסיטת תל אביב, ד"ר וואי כאו, פרופ' עודד הוד ופרופ' מיכאל אורבך מבית הספר לכימיה באוניברסיטת תל אביב, ופרופ' ליאור קרוניק ממכון ויצמן למדע. תוצאות המחקר פורסמו בכתב העת היוקרתי Nature.

 

ד"ר משה בן שלום, ראש המעבדה לחומרים קוונטים שכבתיים בבית הספר לפיזיקה מסביר: "אנחנו סקרנים מאוד לגלות איך אטומים מחליטים להסתדר בחומר, איך האלקטרונים בוחרים להתערבב ביניהם, ואיך אפשר לתמרן את הסדר האטומי והמטען החשמלי מבחוץ. קשה לענות על השאלות האלה בגלל הכמות הגדולה של האטומים והאלקטרונים אפילו בהתקנים המזעריים של היום. אחד הטריקים הוא לחקור גבישים, שכן האטומים שלהם מסודרים במבנה מחזורי, כך שהמידע על כל המערכת נקבע על ידי התכונות של התא המחזורי האחד – שכולל מספר בודד של אטומים ואלקטרונים. ועדיין קשה לנו להבין ולחזות את הסדר שלהם, בגלל שהאלקטרונים נפרסים בו-זמנית על פני כל האטומים והתכונות של המערכת הקוואנטית נקבעות על ידי כל החלקיקים יחד ויחסי הגומלין שביניהם".

 

החלקטרוניקה

דרך אחת לגלות את סדר האטומים ואת התפלגות המטען החשמלי היא לשבור את הסימטריה של המבנה, כך שייווצר שדה חשמלי פנימי קבוע בגביש. גבישים אלו נקראים "פולאריים" או מקוטבים. ב-2020 יצרה המעבדה של ד"ר בן שלום גביש מקוטב חדש על ידי הדבקה של שתי שכבות זהות – כאשר כל שכבה היא בעובי אטום בודד. לעומת הגבישים הסימטריים שגדלים בטבע בהם כל שכבה חדשה מסתובבת, כדי למקם אטומים מסוג אחד בדיוק מעל לאטומים מסוג שני, החוקרים הדביקו את זוג השכבות ללא הסיבוב – וכך גרמו להחלקה זעירה בין השכבות ששוברת את הסימטריה, גורמת לדילוג של האלקטרונים משכבה אחת לאחרת, ויוצרת קיטוב חשמלי פנימי. בשלב שני גילו החוקרים שאפשר להחליק בין השכבות קדימה ואחורה וכך למתג את הקיטוב החשמלי באמצעות שדה חשמלי חיצוני (ראו איור). לתופעה הם קראו SlideTronics, "החלקטרוניקה".

 

"החלקה וטיפוס בין קיטובים חשמליים": מבנה הגביש המחזורי מכיל זוג אטומים במרווחים קבועים בכל שכבה אופקית. ניתן להחליק כל שכבה נוספת ימינה או שמאלה במישור האופקי כדי למקם אטום כחול בדיוק מעל אטום אדום או להפך ובכך להקפיץ אלקטרונים עם מטען חשמלי מעלה או מטה בין השכבות. שלא כמו בגבישים מקוטבים המוכרים עד כה, הפוטנציאל החשמלי במערכת החדשה משתנה בערך קבוע ומוגדר היטב בין כל שלב ושלב. ניתן לטפס בצורה נשלטת בין כל האפשרויות השונות, כלומר ניתן למתג בין יחידות המידע באותו גביש בניגוד לזוג מצבים בטכנולוגיות קודמות.

 

גביש בעובי שני אטומים בלבד

ד"ר בן שלום מוסיף: "הגביש המקוטב החדש שגילינו, בעובי שני אטומים בלבד, הוא הדק ביותר האפשרי ועשוי לשמש בטכנולוגיות מידע מבוססות מנהור קוואנטי. אנו מפתחים יחידות מנהור כאלו בחברת Slide-Tro LTD שהוקמה ע"י האוניברסיטה ומשקיע חיצוני ופועלת כעת מתחת לרדאר, ומאמינים כי התופעה מאפשרת בסיס רחב להתקנים אלקטרוניים חדשניים החל מפתרונות להפחתת הספק ועד ליחידות זיכרון משופרות. בהיבטי מחקר יסודי, התגלית העלתה בנו מייד שאלות חדשות: איך יסתדר המטען? ומה יהיה גודל הקיטוב? אם נדביק שכבות נוספות למערכת בצורה שתשבור או תשמור את הסימטריה? במילים אחרות, במקום לרדד את עובי המערכת על ידי איכול שכבות מהגביש, כפי שנעשה עד כה, יכולנו כעת לערום גבישים מקוטבים שכבה אחר שכבה זו מעל זו, ובו בזמן למדוד את גודל הקיטוב והפוטנציאל החשמלי שנוצר בכל שלב בסולם השכבות".

 

בניסוי הנוכחי הצליחו החוקרים להשוות אזורים סמוכים בעלי מספר שכבות שונה, שנערמו יחד עם החלקות בכיוונים שונים היוצרים קיטובים בגדלים שונים. לדוגמה, עבור ארבע שכבות (ושלושה משטחי מגע מקוטבים) יש ארבע אפשרויות לסדר את כיוון שלושת הקיטובים: כולם מצביעים למעלה ↑↑↑, שניים למעלה ואחד למטה  ↑↑↓, אחד למעלה ושניים למטה ↑↓↓ או שלושה למטה ↓↓↓.

 

"לשמחתנו גילינו סולם של קיטובים מוגדרים היטב המופרדים ביניהם בערכי קיטוב אחידים, כך שכל שלב בסולם יכול לשמש כיחידת מידע נפרדת", אומר נועם ראב, סטודנט המחקר שמדד את הגבישים. "זוהי כאמור תגובה שונה מאוד מזו של הגבישים המוכרים עד כה, שבהם תגובת פני השטח לקיטוב היא משמעותית והחלפת הקיטוב אפשרית כיחידה אחת בלבד – כלומר שינוי הקיטוב בשכבה אחת משנה את מטען השכבות כולן".

 

ד"ר סווארופ דב, כותב מוביל במאמר, מדגיש: "הצלחנו גם לטעון את השכבות באלקטרון נוסף לכל מאה אטומים בערך ולשפר בכך משמעותית את הולכת הגבישים במישור מבלי לפגוע בקיטוב הניצב". תוך הסתייעות בחישובים תיאורטיים על סמך עקרונות היסוד של המכניקה הקוואנטית, גילינו שאפשר לתכנן ולבנות צירופי גבישים שכבתיים נוספים באמצעות החלקה יחסית בין השכבות, וכי המידע אודות הקיטוב והסימטריה של המערכת נותר כלוא בין השכבות ומוגן מהסביבה," אומר ד"ר וואי כאו, כותב ראשי נוסף שערך את החישובים. "למעשה ה'החלקטרוניקה' עזרה לנו לגלות את סולם הקיטובים הדק ביותר שאפשר לבנות," מסכם ד"ר בן שלום. "המשך מתבקש למחקר עתידי הוא תמרון סדרים אלקטרוניים נוספים, כגון קיטוב מגנטי ומוליכות-על באמצעות החלקות דומות בין סימטריות גבישיות שונות".

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש
שנעשה בתכנים אלה לדעתך מפר זכויות, נא לפנות בהקדם לכתובת שכאן >>