חומר חדש שנוצר מחומרים טבעיים יכול להתקדם במהירות במים ולשאת עד פי 40 ממשקל גופו

מחקר
חומר חדש שנוצר מחומרים טבעיים יכול להתקדם במהירות במים ולשאת עד פי 40 ממשקל גופו
תגלית חדשה של אוניברסיטת תל אביב: ערבוב של גבישים כיראליים (שלא ניתן לחפוף ביניהם על ידי סיבוב במרחב), עם מתכות, יוצר חומר חדש, מעין "מנוע טבעי", שכאשר מניחים אותו על המים, הוא יכול לשוט על המים ולשאת על גופו משקל של עד פי 40 ממשקלו. החוקרים מקווים שהתגלית תאפשר פיתוח של חומרים מסוג חדש למגוון שימושים.
המחקר נערך בהובלת ד"ר איתי כרמלי תחת מעבדתו של פרופ' שחר ריכטר מהמלחקה למדע ולהנדסת חומרים בפקולטה להנדסה ע"ש איבי ואלדר פליישמן והמרכז לננוטכנולוגיה באוניברסיטת תל אביב. המחקר נעשה בשיתוף עם פרופ' אוסוואלדו דיאגוז ופרופ' טוביה מילוא מאוניברסיטת תל אביב, פרופ' חגי כהן ממכון ויצמן וכן חוקרים נוספים מאוניברסיטת בן -גוריון ותל אביב, מאוסטרליה ומארה"ב.
החוקרים מסבירים כי במאה ה-17 התגלתה תופעה מרהיבה: אם לוקחים פיסות של קמפור, חומר המופק מעץ הודי, ושמים אותן על פני המים - חתיכות העץ מתחילות 'לרקוד' על פני המים. ההסבר הכימי-פיזיקלי מאחורי תופעה זו הוא מנועי טבע. הקמפור הינו חומר מסיס חלקית וגם נדיף, מה שמאפשר למולקולות שלו להתפזר על פני המים ולגרום לתנועתו. האפקט שמסביר תופעה זו נקרא 'אפקט מרנגוני' והוא נוגע להשפעתו של מעבר חומר ממקום למקום על מתח הפנים.
במחקר הנוכחי, צוות המחקר מאוניברסיטת תל אביב גילה חומרים חדשים שמתנהגים בצורה דומה, וכאשר מניחים אותם על המים, הם מתחילים להסתובב. כיוון תנועתם (עם או נגד כוון השעון), נקבע על ידי המבנה המולקולה שמרכיבה אותם. חומרים אלו שוקלים מספר מיליגרמים בודדים, אך החוקרים גילו כי הם יכולים לסחוב מטען הכבד פי 40 ממשקלם וגם להאיץ את המהירות. החוקרים מעריכים כי זהו "השחיין המלאכותי" המהיר ביותר שעולם המדע מצא עד היום.
"במחקר זה, עסקנו בחומרים עם כיראליות כימית. חומרים כיראליים הם מולקולות הבנויות מאותן חומרי יסוד ועם סימטריה הפוכה, כמו יד ימין ושמאל שלנו. לחומרים אלה ישנן תכונות מיוחדות שהופכות אותם למושא מחקר מעניין", מסביר פרופ' ריכטר ומרחיב "כיוונו את המחקר לסינתזה וגילוי של חומרים היברידיים המורכבים ממולקולות כיראליות וננו מתכות, אשר ינועו בעזרת אור. וכמו שקורה הרבה פעמים במחקר, להפתעתנו גילינו תופעה קצת שונה: אחד ממאות החומרים שיצרנו, התחיל להסתובב על פני המים באופן עצמאי גם בחושך".
בהמשך, ד"ר סלין בוניו שעבדה ביחד עם ד"ר כרמלי על הפרויקט, הבינה שהם יצרו אפקט מרגוני מיוחד: "המבנה של המולקולות הכיראליות, בשילוב העובדה שחלקן מסיס במים וחלקן נדיף, יצר גביש שאינו יציב, שהמולקולות שלו משתחררות וגורמות לסיבוב החלקיק שאותו עזבו, וכך נוצר המנוע. ברמה המולקולרית, האינטראקציות גורמות לשינוי מקומי של תכונות המים וליתר דיוק - של מתח הפנים של המים, מה שמייצר גרדיאנט לא אחיד של ריכוזים על פני המים ובתוצאה מכך תנועה פורטית", אומר פרופ' ריכטר.
פרופ' שחר ריכטר
"כל התהליך נעשה באמצעות ערבוב של גבישים כיראליים עם מתכות, כך שחלקם נעים בכיוון השעון וחלקם נעים בכיוון ההפוך, תלוי בכיראליות של המולקולות שמהן הם מורכבים. גילינו שהכיראליות גורמת להפרשים באנרגיית ההמסה של הגביש, מה שגורם לסיבוב הגביש בכיוון מסוים. לאחר תגלית זו, התחלנו לחשוב במעבדה אילו עוד שימושים ופיתוחים פיזיקליים אפשר לייצר לאפקט זה. כאשר הוספנו למים עם החלקיקים ההיברידים חומר מחזר (מוסר אלקטרון- כמו מחזר שנותן פרח), הוא האיץ את סיבוב החלקיק בצורה דרמטית עד כדי כך שאפילו באמצעות מצלמה מהירה היה קשה לכמת את התנועה בשלמותה", אומר ד"ר כרמלי.
"לאחר מכן, החלטנו גם לנסות ולהוסיף משקל למולקולות ולתת להן לגרור את הגביש. התנועה של המולקולות המשיכה גם עבור משא השוקל פי 40 מהן. אנחנו מצליחים לחזות היום בדיוק של כ-80% את תנועת הגבישים, ומאמינים שתגלית חדשה זו טומנת בחובה את האפשרות ליצור בעתיד מנועים חדשים וירוקים".
מחקר
הפיתוח החדש יאפשר לפזר ענן קרינה אלקטרומגנטית שיסתיר את כלי הטיס
חוקרים מאוניברסיטת תל אביב פיתחו כלי זעיר בהשראת וירוס הקורונה, שמפזר קרינה אלקטרומגנטית ביעילות. מדובר בכדור קטן עם מערך של שפיצים שדומה מאוד בצורתו לווירוס הקורונה. הוא מודפס במדפסת תלת ממד מפלסטיק ומכוסה בנחושת, ומפזר קרינה ביעילות כך שמבנה אחד קטן יכול לשבש פעילות מכ"ם ולהסתיר מטוס. הפיתוח מבוסס על טכנולוגיות מולטי-דיסציפלינריות שמערבות הדפסה תלת-ממדית, שכבות דקות, בינה מלאכותית ואופטימיזציה טופולוגית, לצד עקרונות מכ"ם בסיסיים. לדברי החוקרים, הפיתוח יוכל לעזור בגזרה הביטחונית והמודיעינית להתחמקות מאיכונים של מכ"מים ואף בשימושי לווין שונים. לדוגמה, ניתן לפתור אתגרי תקשורת עם פמטו-לוויינים שלא יכולים לשאת אנטנה גדולה.
מוץ הוא אמצעי להטעיית מכ"ם שתפקידו להסתיר מטרה אמיתית על ידי יצירת ענן שמפזר קרינה אלקטרומגנטית. כלי טיס או שיט מפזרים כמות גדולה של סיבי מתכת ומייצרים מטרת דמה. מכיוון שמטוס הוא מטרה גדולה, נדרשת כמות עצומה של סיבים שמגבילה את השימוש בשיטה. את הבעיה הזאת החוקרים ניסו לפתור במחקרם. המחקר בוצע במעבדתו של פרופ' פבל גינזבורג מהפקולטה להנדסה ע"ש איבי ואלדר פליישמן ומומן ע"י זרועת חיל הים האמריקאי.
"לטכנולוגיה החדשה שפיתחו יש יישומים רבים", מסביר פרופ' גינזבורג. "המומחיות שלנו היא מבנים אלקטרומגנטיים חכמים לטובת תקשורת אלחוטית. מוץ חכם הוא אחד מהאתגרים העכשוויים בתחום הביטחון. הדבר נובע חלקית מהתקדמות במערכות מכ"ם ומסיבות שונות שהציבור הרחב לא יודע. במעבדתנו קיבלנו פניה ממשרד הביטחון אמריקאי לבצע מחקר בנושא מכיוון שאנו מחזיקים בשיא עולמי בסופר-פיזור. גישות שמשלבות בינה מלאכותית מאפשרות לנו לקבל ביצועי-על שכנראה לא ניתן לקבל אחרת".
לדבריו של פרופ' גינבורג, טכנולוגיות המכ"ם מתפתחות מאד מהר ואפשר לקחת אותן ליישומים שונים. "אני אישית נוטה לחשוב על בעיות שעלולות להופיע בעתיד הקרוב, כגון מעקב אחר רחפנים שבעוד מספר שנים יופיעו במקומות רבים, כגון בערים, למטרות משלוחים. במקרה הזה נצטרך לפתח מערכות מעקב יעילות ולמכ"ם פה יש יתרונות רבים הכוללים אמינות, יעילות ומחיר נמוך. לרחפן יש חתימת מכ"ם קטנה ולכן כדאי לפתח שיטות להגדיל אותה וכך לעזור למכ"ם בזיהוי. הפיתוח הנוכחי הוא קפיצת מדרגה נוספת כיוון שהמבנה הוא רחב סרט וכלל כיווני. הצעד הבא שלנו יהיה לגרום למכ"ם לחשוב שמטרה סטטית זזה ומתקרבת, למרות שהיא לא. האם זה סותר את תורת היחסות? התשובה הקצרה היא 'לא, הכל בסדר', אבל זה כנראה יהיה נושא לשיחה הבאה", הואמ סכם בחיוך.
דומה מאוד בצורתו לווירוס הקורונה. הכדור שיעזור להעלים גופי טיס גדולים ממכ"ם
מחקר
פרופ' עדי אריה: "אנחנו עומדים בפתחו של עולם טכנולוגי חדש, ועימו מגיעות שלל הזדמנויות חדשות לצד שלל בעיות שטרם נתקלנו בהן."
אחד האיומים העיקריים בעולמות אבטחת המידע בשנים האחרונות הוא הפיתוח של מחשבים קוונטיים. דור המחשבים החדש שהולך וצובר תאוצה עשוי בעתיד לאפשר פריצה של כמעט כל מקורות ההצפנה הקיימים בעולמנו. במחקר חדש של אוניברסיטת תל אביב פותחה שיטה חדשה ליצירת מקורות אור קוונטיים אשר משמשים כאבן דרך מרכזית בפתרון בעיות האבטחה. מקור האור הקוונטי יכול לפלוט שני חלקיקי אור (פוטונים) השזורים בצורתם המרחבית, לדוגמא פוטון אחד הנראה בקירוב כעיגול במרחב והפוטון השני בעל צורה המכילה (בקירוב) שני עיגולים ולשמש כמקור האור במערכות חדשות של הצפנה קוונטיים.
המחקר נערך בהובלתו של הדוקטורנט אופיר ישרים תחת הנחייתו של פרופ' עדי אריה, ראש הקתדרה על שם מרקו ולוסי שאול, מבית הספר להנדסת חשמל באוניברסיטת תל אביב. כמו כן השתתפו במחקר ד״ר שאולי פרל ויהושע פולי קומר מבית הספר להנדסת חשמל וכן ד״ר אירית יובילר מהמחלקה להנדסת חשמל במכללת סמי שמעון. המאמר, שכותרתו ״יצירת קיודיטים שזורים מרחבית באמצעות הולוגרפיה לא לינארית קוונטית״, פורסם לאחרונה בכתב העת היוקרתי "Science Advances".
צוות המחקר
פרופ' אריה מסביר: "על מנת להעביר מידע חשאי בין שני משתמשים נדרש 'מפתח הצפנה', כלומר סדרה של ביטים שיש רק לשני המשתמשים, המאפשרת להצפין את המידע. בעולם הפיזיקה הקוונטית הוצעה שיטה ליצירת מפתח הצפנה משותף - באמצעות שימוש בשני פוטונים שזורים. כל אחד משני המשתתפים יכול למדוד רק אחד מהפוטונים, אבל בגלל שהם שזורים, קיים קשר בין המדידות הנפרדות האלה, אשר מאפשר את יצירת מפתח ההצפנה המשותף. היתרון הגדול של שיטת הצפנה זו לעומת השיטות הקיימות היא בכך שברגע שיש ניסיון פריצה למידע זה, מתוקף תכונותיו הפיזיקליות (חלקיקים בודדים שנהרסים לאחד שמדדו אותם) השידור ישתבש - ונוכל לדעת על ניסיון הפריצה".
אופיר ישרים מוסיף: "כדי לבצע את כל המתואר לעיל, עלינו לייצר מערכת שבה זוג פוטונים שזורים קוונטית בעלי אותה צורה מרחבית. רוב הניסויים שנעשו עד היום השתמשו בעיקר בתכונת הקיטוב של האור, אך תכונה זו היא בעלת שני ממדים בלבד ומגבילה את כמות המידע שאפשר לצרוך ולהעביר. לכן, המגמה כיום היא לעבור לתכונה אחרת של האור- צורה מרחבית, בעלת מספר רב יותר של ממדים ולכן יש לה יתרונות מבחינת קצב העברת מידע ובנוסף יש לה גם יתרון מבחינת בטיחות המידע."
"עד היום, חוקרים ביצעו את העבודה בשני שלבים - יצירת הפוטונים השזורים ולאחר מכן העברה לצורה מרחבית, על ידי סדרה של רכיבים אופטיים. בעבודתנו הצלחנו לייעל את התהליך ע"י שימוש בגביש שהמקדם הלא ליניארי שלו תוכנן כך שיתפקד כמעין הולוגרמה קוונטית: אלומת לייזר רגילה מאירה את ההולוגרמה הלא לינארית, אשר יוצרת שזירות בין חזיתות הגל (הצורות המרחביות) של שני הפוטונים הנוצרים. זו הכללה לתחום הקוונטי של שיטת ההולוגרפיה הסטנדרטית, אשר מאפשרת לאחסן משרעת ומופע של אלומת אור ולשחזר אותה על ידי הארת ההולוגרמה על ידי לייזר. בדרך זו, יצירת השזירות נעשית על ידי מספר מינימלי של רכיבים – תכונה חשובה בשביל מעבר מהמעבדה ליישומים מעשיים. כדוגמא, ניתן יהיה להתקין מקור קוונטי זה על לוויינים או רחפנים, שבהם נדרש להשתמש במקור אור בעל נפח מינימלי".
פרופ' אריה מסכם: "אנחנו עומדים בפתחו של עולם טכנולוגי חדש, ועימו מגיעות שלל הזדמנויות חדשות לצד שלל בעיות שטרם נתקלנו בהן. אני מאמין שמחקרנו הינו חלק מדור חדש של יישומים בתחומי המדע והטכנולוגיה הקוונטיים. בנוסף ליישומים בתחום התקשורת המוצפנת, מקורות האור שפותחו במחקר עשויים להיות שימושים בחיישנים קוונטים בעלי רגישות גבוהה."
מחקר
הכירו את המיקרו-רובוט ההיברידי: טכנולוגיה חדשנית זעירה בגודל 10 מיקרון (גודל של תא ביולוגי)
חוקרים באוניברסיטת תל אביב פיתחו מיקרו-רובוט היברידי בגודל תא ביולוגי בודד (כ-10 מיקרון), שניתן לשליטה ולניווט באמצעות שני מנגנונים שונים – חשמלי ומגנטי. המיקרו-רובוט מסוגל לנווט בין התאים השונים בדגימה ביולוגית, להבחין בין סוגי תאים שונים ואף לזהות האם מדובר בתא בריא או תא גוסס, ואז להעמיס עליו את התא הרצוי ולשאת אותו להמשך אנליזה, החדרת תרופה או גן או לבודדו לצורך ריצוף גנטי. לדברי החוקרים, הפיתוח עשוי לסייע בקידום מחקרים בתחום החשוב של 'אנליזת תא בודד' (single cell analysis), וכן באבחון רפואי, בהובלת תרופות, בכירורגיה ובשמירה על הסביבה.
הטכנולוגיה החדשנית פותחה בהובלת פרופ' גלעד יוסיפון מבית הספר להנדסה מכנית ומהמחלקה להנדסה ביו-רפואית באוניברסיטת תל אביב, ובהשתתפות הפוסט-דוקטורנטית Dr. Yue Wu מאוניברסיטת תל אביב, וכן הסטודנטית סיון יעקב והפוסט-דוקטורנט Dr. Afu Fu מהטכניון. המאמר פורסם בכתב העת Advanced Science.
פרופ' גלעד יוסיפון מסביר כי מיקרו-רובוטים הם חלקיקים סינטטיים זעירים בגודל של תא ביולוגי, שיכולים לנוע ממקום למקום ולבצע פעולות שונות (לדוגמה: איסוף יעיל של מטענים סינטטיים או ביולוגיים) באופן אוטונומי על פי תכנון מראש, או באמצעות שליטה מבחוץ בידי מפעיל או מערכת בקרה. לדבריו, יכולת התנועה העצמית של המיקרו-רובוטים (הקרויים לפעמים גם מיקרו-מנועים וחלקיקים אקטיביים), הונדסה בהשראת מיקרו-שחיינים ביולוגיים, דוגמת חיידקים ותאי זרע. מדובר בתחום חדשני שמתפתח במהירות, עם מגוון רחב של שימושים בתחומים כמו רפואה וסביבה, וגם ככלי מחקרי.
"הכוונה בעתיד היא לפתח מיקרו-רובוטים שיפעלו גם בתוך הגוף – למשל כנשאי תרופות יעילים שניתן לנווט אותם למטרה באופן מדויק."
במסגרת הפיתוח החדשני, החוקרים השתמשו במיקרו-רובוט כדי ללכוד תא דם, תא סרטני או חיידק בודד, והראו כי הוא מסוגל להבחין בין תאים בעלי רמות חיות שונות – תא בריא, תא שנפגע על ידי תרופה, או תא שמת או גוסס בתהליך 'התאבדות' טבעי (הבחנה כזאת עשויה להיות משמעותית לדוגמה בעת פיתוח תרופות נגד סרטן).
כמו כן, לאחר שזיהה את התא המבוקש, הצליח המיקרו-רובוט גם ללכוד אותו ולהובילו להמשך טיפול ואבחון הפגיעה בתא. חידוש חשוב נוסף בטכנולוגיה הוא זיהוי תא המטרה ללא צורך בתיוגו: המיקרו-רובוט מזהה את סוג התא ואת מצבו (דוגמת רמת חיות) באמצעות מנגנון חישה מובנה המבוסס על התכונות החשמליות הייחודיות של התא.
פרופ' יוספון: "הפיתוח החדש שלנו מוסיף נדבך חשוב לטכנולוגיה זו, בשני היבטים עיקריים: הנעה וניווט היברידיים על ידי שני מנגנונים שונים – חשמלי ומגנטי, לצד יכולת משופרת לזהות וללכוד תא בודד ללא צורך בתיוג, לצורך בדיקה מקומית או שליפה והובלה למכשור חיצוני. מחקר זה בוצע על דגימות ביולוגיות במעבדה, אך הכוונה בעתיד היא לפתח מיקרו-רובוטים שיפעלו גם בתוך הגוף – למשל כנשאי תרופות יעילים שניתן לנווט אותם למטרה באופן מדויק."
החוקרים מסבירים שלמנגנון ההנעה ההיברידי של המיקרו-רובוט יש חשיבות מיוחדת בסביבות פיזיולוגיות, כמו למשל ביופסיה נוזלית. "המיקרו-רובוטים שפעלו עד היום בהתבסס על מנגנון חשמלי, לא היו יעילים בסביבות מסוימות המאופיינות במוליכות חשמלית גבוהה יחסית, כמו למשל בסביבה פיזיולוגית, בה ההנעה החשמלית פחות אפקטיבית. כאן יכול להיכנס לפעולה המנגנון המגנטי המשלים, שהוא יעיל מאוד ללא קשר להולכה חשמלית."
פרופ' יוסיפון מסכם: "במחקר שלנו פיתחנו מיקרו-רובוט חדשני, בעל יכולות חשובות שמוסיפות נדבך משמעותי לתחום: הנעה וניווט היברידיים באמצעות שילוב של שדה חשמלי ומגנטי, וכן יכולת לזהות, ללכוד, ולהוביל תא בודד ממקום למקום בסביבה פיזיולוגית. ליכולות אלה יש משמעות רבה עבור מגוון רחב של יישומים וגם למחקר. בין היתר עשויה הטכנולוגיה לתמוך בתחומים הבאים: אבחון רפואי ברמת התא הבודד, החדרת תרופות או גנים לתאים, עריכה גנטית, נשיאת תרופות ליעדן בתוך הגוף, ניקוי הסביבה מחלקיקים מזהמים, פיתוח תרופות, וטכנולוגיית 'מעבדה על חלקיק' שנועדה לבצע אבחון במקומות הנגישים רק למיקרו-חלקיקים."
מחקר
לראשונה בעולם המדע רובוט הצליח "להריח" באמצעות חיישן ביולוגי
אחרי שפיתחו את הרובוט הראשון ששומע באמצעות אוזן ביולוגית, החוקרות והחוקרים של אוניברסיטת תל אביב העניקו לרובוט חוש נוסף: חוש הריח. פריצת הדרך המדעית מאפשרת לרובוט להריח באמצעות חיישן ביולוגי, לזהות האם נמצא בסביבתו ריח ולשלוח בתגובה אותות חשמליים שאותם הוא יודע לקרוא. החוקרים חיברו בהצלחה חיישן ביולוגי למערכת אלקטרונית ובעזרתה, תוך שילוב של אלגוריתם למידת מכונה, הצליחו להפריד ריחות ברגישות הגבוהה פי 10,000 ממכשירים אלקטרוניים קיימים. התקווה היא שבעתיד יוכל רובוט שמצויד בחושים אלו לשמור על חיי אדם ולזהות סכנות רבות, החל מחומרי נפץ וסמים, דרך זיהוי מחלות וכלה באסונות טבע. "השמיים הם הגבול", אומרים החוקרים.
הרובוט הראשון בעל האף הביולוגי. רק באוניברסיטת תל אביב.
"אנו עוברים במגנומטר שעולה מיליוני דולרים ויודע להגיד אם אנו נושאים עלינו מתכות. אבל כשרוצים לבדוק אם נוסע מבריח סמים - מביאים כלב שירחרח אותו"
פריצת הדרך הביולוגית והטכנולוגית נעשתה בהובלת הדוקטורנטית נטע שביל מבית הספר סגול למדעי המוח, ד"ר בן מעוז מהפקולטה להנדסה ע"ש איבי ואלדר פליישמן ובית הספר סגול למדעי המוח, פרופ' יוסי יובל ופרופ' אמיר אילי מבית הספר לזואולוגיה ובית הספר סגול למדעי המוח. תוצאות המחקר התפרסמו בכתב העת היוקרתי Biosensor and Bioelectronics.
ד"ר מעוז ופרופ' אילי מסבירים: "ישנן טכנולוגיות שלא יכולות להתחרות במיליוני שנות אבולוציה. תחום אחד שבו אנו מפגרים במיוחד אחרי עולם החי הוא תחום חישת ריחות. דוגמה לכך אפשר למצוא בנמלי התעופה. כשאנו טסים לחו"ל, אנו עוברים במגנומטר שעולה מיליוני דולרים ויודע להגיד אם אנו נושאים עלינו מתכות. אבל כשרוצים לבדוק אם נוסע מבריח סמים - מביאים כלב שירחרח אותו. בתוך עולם החי, חרקים מצטיינים בקליטת ובעיבוד אותות חושיים . יתוש, למשל, יודע לזהות הפרש של 0.01% ברמת הפחמן הדו-חמצני באוויר. כיום אנחנו רחוקים מלייצר חיישנים שיתקרבו ביכולות שלהם לחושים של חרקים".
החוקרים מציינים שככלל, איברי החישה שלנו ושל כל שאר בעלי החיים, כמו העין, האוזן והאף, משתמשים בקולטנים שמזהים ומפרידים בין אותות שונים. בשלב השני, איבר החישה מתרגם את הממצאים לאותות חשמליים שהמוח מפענח כמידע. האתגר בביו-סנסורים הוא בחיבור איבר חישה כמו האף למערכת אלקטרונית שתדע לפענח את האותות החשמליים שמתקבלים מהקולטנים.
הדוקטורנטית נטע שביל וד"ר בן מעוז
רגיש לריח פי 10,000
"חיברנו את החיישן הביולוגי ואפשרנו לו להריח ריחות שונים תוך כדי שאנחנו מודדים את הפעילות החשמלית שמעורר כל ריח וריח", מסביר פרופ׳ יובל. "המערכת אפשרה לנו לקבל זיהוי של כל ריח כבר ברמת איבר החישה הראשוני של החרק. בשלב השני השתמשנו בלמידת מכונה כדי ליצור 'ספרייה' של ריחות. במחקר הצלחנו לאפיין 8 ריחות, כגון גרניום, לימון ומרציפן, באופן שיכולנו לדעת מתי מוצג ריח לימון ומתי מרציפן. למעשה, אחרי שהניסוי נגמר המשכנו וזיהינו ריחות נוספים, שונים ומשונים, כמו למשל מיני ויסקי סקוטי שונים. השוואה למכשירי מדידה סטנדרטים הראתה שהרגישות של החיישן הביולוגי במערכת שלנו גבוהה פי כ-10,000 ממכשירים שנמצאים היום בשימוש".
"הטבע מתקדם מאיתנו בהרבה, לכן כדאי להשתמש בו. ניתן להשתמש בעיקרון שהצגנו וליישם אותו על חושים אחרים כמו ריח, ראייה ומישוש. לדוגמה, לבעלי חיים מסוימים יש יכולות מדהימות לזיהוי של חומרי נפץ וסמים, וייצור של רובוט עם מחוש ביולוגי יוכל לעזור לנו לשמור על חיי אדם ולזהות עבריינים באופן שלא ניתן כיום. יש בעלי חיים שיודעים לזהות מחלות ואחרים שיודעים לחוש רעידות אדמה. השמיים הם הגבול", מסכם ד"ר מעוז.
בעתיד, החוקרים מתכננים לשלב ברובוט גם יכולות ניווט שיאפשרו לו לאתר את המקור של הריח ולאחר מכן גם את סוגו.
האם בקרוב יוכל לצאת לפנסיה? כלב עבודה מחפש חומרים מסוכנים בשדה התעופה
מחקר
המתקן החדשני נועד למנוע קטילת עטלפים על ידי טורבינות רוח, ולאפשר הפעלה יעילה ורציפה שלהן לטובת ייצור אנרגיה מתחדשת
העולם מתקדם לשימוש באנרגיות מתחדשות, וזה נהדר, אבל לבעלי החיים קצת יותר קשה להתרגל לנוכחות של מערכות שמנצלות את האנרגיות שמציע הטבע. טורבינות הרוח, למשל, קוטלות בעלי כנף רבים, בהם עטלפים, שגומאים מדי לילה קילומטרים רבים בטיסה בגובה שבו פועלים להבי המתקנים. בחלק מהטורבינות בישראל מותקן מנגנון שעוצר את פעילותן כשהוא מזהה התקרבות של בעל חיים, אולם זהו פתרון חלקי בלבד, שגם מאט את פעילות ייצור האנרגיה. חוקרים מאוניברסיטת תל אביב ומאוניברסיטת חיפה בחנו את יעילותו של מכשיר ייעודי המותקן על רחפן, שנועד להרחיק עטלפים מטורבינות הרוח שקוטלות אותם בהמוניהם, ולאפשר לטורבינות לפעול באופן יעיל ורציף. המתקן, שמשדר שילוב של אותות על-קוליים ואורות, מרתיע עטלפים וגורם להם לעוף בגובה רב יותר, מחוץ לאזור הסכנה.
את המחקר הובילו הדוקטורנט יובל ורבר מהחוג לביולוגיה אבולוציונית וסביבתית באוניברסיטת חיפה, ושני המנחים שלו: פרופ' יוסי יובל מבית הספר לזואולוגיה בפקולטה למדעי החיים ע"ש ג'ורג' ס' וייז, ופרופ' ניר ספיר מאוניברסיטת חיפה. המאמר פורסם בכתב העת Remote Sensing in Ecology and Conservation.
"טורבינות רוח נחשבות לטכנולוגיה מבטיחה בתחום האנרגיה המתחדשת, אך הפעלתן כרוכה במגוון אתגרים ביולוגיים. בין היתר, הן קוטלות מספרים גדולים של בעלי חיים מעופפים שנתקלים ברוטורים של הטורבינה, בהם מיליוני עטלפים, שנקטלים בדרך זו מדי שנה ברחבי העולם. כיום, המענה היחיד לקטל העטלפים הוא הפסקת פעילות הטורבינה בזמנים שבהם צפויה פעילות רבה שלהם, אך הפסקות כאלה פוגעות ביעילות הטורבינה ומצמצמות את כמות האנרגיה שניתן להפיק ממנה. במחקר זה בדקנו פתרון אפשרי חדש: מכשיר המותקן על רחפן, שמשדר שילוב של אותות ויזואליים ועל-קוליים המיועד ספציפית לעטלפים. יתרונו של הרחפן בכך שהוא נמצא בתנועה: כשהאותות נייחים וקבועים בעלי החיים נוטים להתרגל ולהתעלם מהם", מסביר פרופ' יובל.
גומאים מאות קילומטרים בלילה, ועפים בדיוק בגובה להבי טורבינות הרוח. עטפלים
"המחקר, שמהווה חלק מעבודת הדוקטורט שלי, נערך באזור עמק החולה, מקום שיש בו פעילות רבה של עטלפים", מסביר יובל ורבר ומרחיב: "הפעלנו את הרחפן בגובה של 100 מ', שהוא הגובה הממוצע של מרכז טורבינות הרוח, ובתנועה לאורך מסלול של כ-100 מ', הלוך וחזור. כדי לעקוב אחר פעילות העטלפים נעזרנו במכ"ם הממוקם על הקרקע, שמאפשר מעקב בגובה של 100 מ' ומעלה, והוספנו מכשיר מסוג לידאר - מכ"ם מבוסס לייזר שמשמש על פי רוב כמכשיר התרעה בכלי רכב, לצורך מעקב בגובה נמוך יותר".
"במקביל ביצענו הקלטות אקוסטיות של העטלפים במעופם, באמצעות מקלטים שמוקמו בשלושה גבהים שונים: מטר אחד, 150 מ' ו-300 מ'. כדי להעלות את המקלטים לגובה נעזרנו בצפלינים. חשוב לציין שהמחקר שלנו היה הראשון בעולם שיישם את הטכנולוגיות הללו - מכ"ם, לידאר, וצפלינים - כדי לעקוב אחר עטלפים".
תיאור פעילות הניסוי
בעזרת מגוון אמצעי המעקב השוו החוקרים בין פעילותם הרגילה של העטלפים לבין פעילותם בנוכחות הרחפן הנושא מכשיר הרחקה. הממצאים היו חד-משמעיים: המכשיר אכן מרחיק עטלפים. בנוכחותו פחתה פעילות העטלפים מתחת לרחפן בכ-40%, ובמרחק של עד כ-500 מטר ממנו. לעומת זאת, התגברה הפעילות מעל לגובה של 100 מ', ובעיקר בגובה רב של עד 800 מ'.
"נראה שהמכשיר יעיל בהרחקת עטלפים מסביבתו הקרובה. העטלפים חשים את האותות הוויזואליים והעל-קוליים שהוא משדר ובוחרים לעוף מעליו, כפי שקיווינו. אנחנו משערים שאם המכשיר יופעל בקרבת טורבינה הוא יגרום לעטלפים להגביה עוף ולהתעופף מעל הטורבינה, מחוץ לטווח הסכנה. מדובר בפתרון יעיל וישים שעלותו סבירה, עם תועלת רבה לכל הצדדים: מצד אחד מניעת קטילתם של עטלפים, ומצד שני אפשרות להפעיל את הטורבינה ולהפיק אנרגיה ירוקה באופן בטוח, רציף ויעיל. בכוונתנו לבצע ניסוי המשך באתר של טורבינות רוח, על מנת לבחון את יעילות המתקן בתנאי אמת", מסכם פרופ' יובל.
מספקות אנרגיה מתחדשת. טורבינות רוח ברמת הגולן
מחקר
הגמישות של מערכת העצבים המרכזית שלה מאפשרת לה להימתח בעת הטלת ביציה באדמה עד פי 2 או פי 3 מאורכה המקורי, ואז לשוב במהירות לאורכה הרגיל ללא נזק
כל אימא תעשה הכל כדי לדעת שהצאצאים שלה נמצאים במקום בטוח. מסתבר שנקבת הארבה יכולה לקחת את זה צעד אחד קדימה: מחקר חדש של אוניברסיטת תל אביב מצא כי מערכת העצבים המרכזית של נקבת הארבה היא בעלת תכונות אלסטיות, שמאפשרות לה להימתח בעת הטלת ביציה באדמה עד פי 2 או פי 3 מאורכה המקורי, מבלי שייגרם לה נזק בלתי הפיך. החוקרים: "איננו מכירים יכולת דומה כמעט אצל אף יצור חי בטבע. מערכת העצבים של האדם למשל, יכולה להימתח עד 30% מבלי להיקרע או להינזק לצמיתות". לדבריהם, בעתיד עשויים הממצאים לתרום לפיתוחים חדשים בתחום הרפואה הרגנרטיבית, כבסיס לשיקום עצבים, ולפיתוח רקמות סינתטיות.
המחקר נערך על ידי צוות חוקרים של אוניברסיטת תל אביב בהובלת ד"ר בת-אל פנחסיק מבית הספר להנדסה מכנית בפקולטה להנדסה ע"ש איבי ואלדר פליישמן, ופרופ' אמיר אילי מבית הספר לזואולוגיה בפקולטה למדעי החיים ע"ש ג'ורג' ס וייז. כמו כן, השתתפו במחקר ד"ר ראקש דאס מבית הספר להנדסת מכונות, ד"ר משה גרשון מבית הספר לזואולוגיה, ופרופ' ערן פרלסון ואמג'ד איברהים מהמחלקה לפיזיולוגיה ופרמקולוגיה בפקולטה לרפואה ע"ש סאקלר.
"כשנקבת הארבה מבקשת להטיל את ביציה, היא חופרת בור באדמה שיעניק להן הגנה ותנאים אופטימליים לבקיעה. לצורך זה היא מצוידת באיבר חפירה ייעודי, שמורכב משני זוגות כפות חפירה, שממוקמים בקצה הבטן, משני צדדיו של צינור ההטלה. תוך כדי חפירה, הנקבה מאריכה את גופה, עד שחיישנים הממוקמים לאורכו מאותתים שהגיעה לנקודה מתאימה להטלה. כך, נקבה בוגרת, שאורך גופה כ-4-5 ס"מ, עשויה למתוח אותו לצורך ההטלה עד לאורך של 10-15 ס"מ, ואז לשוב במהירות לאורכה הרגיל, ולהתארך שוב בהטלה הבאה", מסבירה ד"ר פנחסיק.
"יכולת העל של נקבל הארבה היא כמעט בגדר 'מדע בדיוני'. בטבע בכלל מוכרות רק עוד שתי דוגמאות של 'ביצועים' דומים: לשונו של הלוויתן המכונה 'ראשתן גדול ראש', וסוג מסוים של חילזון ימי, שמערכות העצבים שלהם מסוגלות להתארך משמעותית בזכות מנגנון דמוי אקורדיון. אנחנו ביקשנו לברר מהו המנגנון הביומכני המקנה לנקבת הארבה את יכולתה המופלאה", אומר פרופ' אילי.
במסגרת המחקר, החוקרים הוציאו מנקבות ארבה את מערכות העצבים המרכזיות שלהן, והניחו אותן בתוך נוזל המדמה את הסביבה הטבעית, בתנאים פיזיולוגיים דומים לאלה שבתוך הגוף. באמצעות מכשירי מדידה רגישים ביותר הם מדדו את הכוחות הדרושים כדי להאריך את מערכת העצבים.
"בניגוד להשערות קודמות ולדוגמאות המוכרות, לא מצאנו כל מנגנון דמוי אקורדיון. גילינו שמערכת העצבים של נקבת הארבה עשויה מחומר אלסטי, שמסוגל להתארך ואחר כך לחזור מעצמו למצבו המקורי, מוכן לשימוש חוזר, מבלי שנגרם לרקמה כל נזק. זהו ממצא כמעט בלתי-נתפס מבחינה ביומכנית ומורפולוגית", אומר ד"ר פנחסיק.
"מדובר ביכולת מופלאה שאינה מוכרת באף בעל חיים אחר. במחקרי המשך נברר את הסוגייה לעומקה, במטרה לזהות את המנגנון הספציפי שמאפשר את התכונה הייחודית. אנחנו מקווים שבעתיד יסייעו הממצאים שלנו לפיתוח רקמות סינתטיות עם גמישות גבוהה ולשיקום עצבים בטיפולים של רפואה רגנרטיבית", מסכם פרופ' אילי.
מימין: ד"ר בת-אל פנחסיק , ד"ר ראקש דאס ופרופ' אמיר אילי
מחקר
חוקרים מצאו שיטה חדשה לעקם ולפצל קרני אור בצבעים שונים על ידי תהליך אופטי לא ליניארי
לחומרים שונים יש דרכים שונות להקדם במרחב. קרני אור למשל מתקדמות בתווך אחיד כגון אוויר או זכוכית בקווים ישרים, בעוד שאת מסלולם של חלקיקים טעונים כמו אלקטרונים אפשר לעקם על ידי הפעלת שדה חשמלי או מגנטי. בניסוי שנערך לאחרונה באוניברסיטת תל אביב ופורסם בכתב העת היוקרתי Nature Photonics, הראו החוקרים כי ניתן לפצל ולעקם גם את המסלול של אלומות אור באמצעות שימוש באלומת אור נוספת ובגביש לא ליניארי.
צוות החוקרים מהפקולטה להנדסה ע"ש איבי ואלדר פליישמן ומבית הספר לפיזיקה ולאסטרונומיה בפקולטה למדעים מדויקים ע"ש ריימונד ובברלי סאקלר, כולל את הדוקטורנטים אופיר ישרים (שהוביל את הניסוי), ואביב קרניאלי, ד"ר סטיבן ג׳אקל, ד"ר ג׳וזפה די דומניקו, וד"ר סיוון טרכטנברג-מילס, תחת הנחייתו של פרופ׳ עדי אריה, מופקד הקתדרה ע"ש מרקו ולוסי שאול.
הניסוי שבוצע מבוסס על אנלוגיה בתחום האופטי לאחד מניסויי המפתח של תורת הקוונטים, ניסוי שטרן-גרלך אשר פורסם בדיוק לפני 100 שנה, בשנת 1922. החוקרים הגרמניים אוטו שטרן ו-וולטר גרלך שלחו אטומי כסף דרך שדה מגנטי שמשתנה במרחב, והבחינו כי כתוצאה מכך מתקבל פיצול של אלומת האטומים: מחצית מהאטומים סטו לכיוון אחד, ומחציתם השני לכיוון הנגדי. הסיבה לכך היא שלאלקטרוני הערכיות של הכסף יש תכונה הקרויה ספין, אשר גם קובעת את המומנט המגנטי של כל אלקטרון. השדה המגנטי החיצוני מפעיל כוח על האלקטרון, אשר תלוי בכיוון המומנט המגנטי של אותו אלקטרון. בניסוי התברר כי ערך הספין שנמדד יכול לקבל רק שני ערכים אפשריים (שנקרא להם "מעלה" ו"מטה"), ולכן אלומת האטומים מתפצלת לשתי זוויות בלבד.
כעת, 100 שנים לאחר הניסוי המקורי, ביצעו החוקרים ניסוי מקביל באופטיקה, בו קרני אור פוצלו באמצעות אינטראקציה לא-לינארית (אינטראקציה בה קרני אור יכולות להשפיע אחת על השנייה). במסגרת הניסוי, השתמש צוות המחקר בגבישים אופטיים לא ליניאריים. לטענתם, לרוב משתמשים בגבישים אלה כדי לבצע המרות תדר, כלומר קרן לייזר באורך גל (צבע) מסוים תהפוך לקרן באורך גל אחר.
"בניסוי זה שלחנו שלוש אלומות אור בארכי גל שונים לגביש לא לינארי, שלמען הנוחות נסמן אותם בצורה סימבולית כאלומות בצבע כחול, ירוק ואדום. האלומה הירוקה היא בעוצמה חזקה בהרבה מהאלומות האחרות, ובאמצעות התהליך הלא ליניארי היא מאפשרת המרת אנרגיה מהאלומה הכחולה לאדומה או להיפך. בניסוי שבוצע, נשלחה אלומה ירוקה רחבה, שלה עוצמה מקסימלית במרכזה, והיא יורדת לאפס בשולי האלומה. כך יוצרים אינטראקציה שמשתנה במרחב - אינטראקציה חזקה במרכז האלומה, ואינטראקציה חלשה בשוליה", מסביר פרופ' עדי אריה.
"אלומה זו ממלאת תפקיד אנלוגי לשדה המגנטי המשתנה במרחב בניסוי שטרן-גרלך המקורי. אם נשלח אלומה כחולה לאזור המואר על ידי שיפולי האלומה הירוקה, נקבל פיצול לשתי אלומות הנעות בזויות שונות, שבכל אחת מהן יש כעת אור כחול ואור אדום. באחת האלומות האור הכחול והאור האדום הם בעלי אותו מופע (פאזה), והיא נעה ימינה, ובאלומה השנייה הן במופע הפוך והיא נעה שמאלה. שתי אלומות אלה הן האנלוג של הספין של האלקטרון בניסוי שטרן גרלך המקורי", הוא מוסיף.
לדבריו, אפשר גם להגדיל או להקטין את זווית הפיצול על ידי הגדלה או הקטנה של עוצמת הלייזר הירוק. "לעומת זאת, כאשר הוכנסה אלומה משולבת של כחול ואדום, לא ניתן היה לראות פיצול היות והקרן סטתה לכיוון אחד בלבד, כתלות במופע בין הצבעים שהוכנסו. ניסוי זה מקביל למקרה שבו מכניסים אטומי כסף בעלי ספין ״מעלה״ או ״מטה״ בלבד בניסוי שטרן גרלך".
לסיכום, החוקרים מסבירים כי פיצול מרחבי של אורכי גל אינו דבר חדש. מנסרה, למשל, מאפשרת פיצול מרחבי של אורכי גל לזוויות שונות, ואולם פיצול זה הוא קבוע ומפריד כל צבע לכיוון אחד. בניסוי שהודגם במסגרת מחקר זה, הפיצול מאפשר להשתמש בשילוב אורכי גל, כתלות במופע ביניהם, ולשלוט בזווית הפיצול על ידי אלומת אור נוספת. לתופעה זו יש יישומים פוטנציאלים בתחומים של עיבוד אותות ותקשורת אופטית, תקשורת קוונטית, חישוב קוונטי, חישה מדויקת ועוד. החוקרים מאמינים שהניסוי יהווה את נקודת הפתיחה לניסויים נוספים שמנצלים את ההקבלה בין מערכות של אלקטרונים בשדה מגנטי לבין מערכות אופטיות.
צוות המחקר
מחקר
מחקר ראשון מסוגו חושף ממצאים מדאיגים באשר לרמת הזיהום של מיקרופלסטיק בחופי ישראל
אם טיילתם יחפים על שפת הים ובמקום צדפים הגלים הביאו עמם לחוף אריזות ריקות, כלים חד פעמיים וחלקיקי פלסטיק קטנים - דעו שמדובר במכת מדינה של ממש. מחקר חדש של אוניברסיטת תל אביב, בשיתוף המרכז הישראלי לחקר הים התיכון, בדק את רמת הזיהום בחלקיקי פלסטיק (מיקרופלסטיק), לאורך רצועת החוף של ישראל, וחשף את העובדה הקשה: רצועת החוף בישראל מזוהמת ביותר משני טון מיקרופלסטיק, במיוחד באזור תל אביב וחדרה. לאור הממצאים המדאיגים, החוקרים מתריעים כי החשיפה לפסולת פלסטיק חלקיקית בישראל, שנחשבת למסוכנת לסביבה ולבריאותנו, היא בלתי נמנעת.
המחקר נערך בהובלת הדוקטורנט אנדריי איתן רובין והסטודנטית לימור עומייסי מהמעבדה של ד"ר אינס צוקר, בפקולטה להנדסה ע"ש איבי ואלדר פליישמן ובבית הספר לסביבה ולמדעי כדור הארץ על שם פורטר. המחקר פורסם בכתב העת המדעי Marine Pollution Bulletin.
במהלך שנת 2021 אספו החוקרים דגימות מששה אזורים לאורך רצועת החוף: אשקלון, ראשון לציון, תל אביב, חדרה, חוף דור וחיפה. לאחר האיסוף הועברו הדגימות למעבדה, שם נעשו אנליזות שונות, בהן ספירת חלקיקים, מדידות מסה, ניתוח תמונה וניתוח כימי לזיהוי הפולימר שמרכיב את הפלסטיק וכן זיהוי של היסודות שספוחים על גבי חלקיקי המיקרופלסטיק. החוקרים גילו, בין היתר, כי הדגימות כללו פלסטיק שמקורו באריזות מזון, כלים חד-פעמיים ורשתות דייג.
"מעניין היה לראות כי פלסטיק ממקור יבשתי (כגון אריזות מזון), היה דומיננטי יותר על פני פלסטיק ממקור ימי (למשל, רשתות דיג). הדבר מצביע על הצורך ברגולציה טובה יותר של פסולת חופית", אומר אנדריי איתן רובין.
ד"ר אינס צוקר והדוקטורנט אנדריי איתן רובין
עוד נתון שעלה מממצאי המחקר הוא כי מבין החופים שנבדקו חופי הים של תל אביב וחדרה הם המזוהמים ביותר. רמת הזיהום בחופים אלו, אשר נמצאים בהתאמה בסמיכות לנחל הירקון ולנחל אלכסנדר, הייתה גבוהה פי 4 מרמת הזיהום שנמדדה בראשון לציון ובחוף דור, שהם שני החופים בעלי ריכוז חלקיקי המיקרופלסטיק הנמוך ביותר. יחד עם זאת, גם בשמורת חוף דור, שמנוקה באופן תדיר, נמצאו חלקיקי מיקרופלסטיק בכמות לא מבוטלת.
החוקרים מעריכים כי רמת הזיהום הגבוהה בחופי תל אביב וחדרה והעובדה שהם נמצאים בסמיכות לנחלים, מצביעה על כך שמימי הנחל סוחפים עימם לים חלקיקי מיקרופלסטיק ובכך מעצימים את רמת הזיהום בחוף. כך למשל, מעריכים החוקרים שנחל אלכסנדר אוסף תשטיפים של שפכים לא מטופלים מהגדה המערבית וכן פסולת מאזורי חקלאות ותעשייה הנמצאים בסמוך לאפיקי הנחל. באופן דומה, נחל הירקון סופח אליו מצבור של מיקרופלסטיק ממרכזי התעשייה בתל אביב.
"ככל שחלקיקי הפלסטיק קטנים יותר - כך קשה יותר להרחיק אותם מהסביבה והם מסוכנים יותר לסביבה ולבריאות האדם. את חלקיקי המיקרופלסטיק שנסחפים לים בולעים הדגים, ושרידיהם מגיעים בסופו של דבר אל בני האדם"
"המחקר שלנו מגלה כי רצועת החוף הישראלי מכילה ככל הנראה יותר משתי טונות של פסולת מיקרופלסטיק. פלסטיק זה מתפרק באיטיות תחת התנאים הסביבתיים לחלקיקים קטנים עוד יותר. ככל שחלקיקי הפלסטיק קטנים יותר - כך קשה יותר להרחיק אותם מהסביבה והם מסוכנים יותר לסביבה ולבריאות האדם. את חלקיקי המיקרופלסטיק שנסחפים לים בולעים הדגים, ושרידיהם מגיעים בסופו של דבר אל בני האדם", אומר אנדריי איתן רובין.
"המחקר מהווה נדבך חשוב להבנת השפעות נוכחות מיקרופלסטיק בסביבה. מחקר ניטור הפלסטיק בישראל עוד בחיתוליו, ועלינו לכלול גם ניטור של חלקיקי פלסטיק קטנים יותר, מדגימות סביבתיות נוספות כמו מי ים ונחלים, בכדי להבין עוד יותר דפוסים סביבתיים בהקשר של נוכחות המיקרופלסטיק", מוסיפה ד"ר צוקר ומסכמת "נראה כי החשיפה לפסולת פלסטיק חלקיקית היא בלתי נמנעת. אנחנו פועלים גם בכדי להעריך את ההשפעות הסביבתיות והבריאותיות שעלולות להופיע מהמצאות החלקיקים בשכיחות ובריכוזים גבוהים כמו שנמצאו. מה שבטוח הוא שנדרשים צעדים מעשיים כדי לצמצם את תרומת ישראל לזיהום המיקרופלסטיק בים התיכון".
מחקר
חוקרים הצליחו להוכיח תופעה תיאורטית ולמדוד חבילות גלים מחזוריות
מחקר חדש של אוניברסיטת תל אביב הצליח למדוד בפעם הראשונה היעדר אפקט טלבוט במרחקי שברים של מרחק טלבוט, תופעה שנחזתה עד היום רק באופן תאורטי. מדובר בתופעה שעל פיה כאשר גל אור בעל צבע יחיד עובר דרך מבנה מחזורי, מתקבלת לאחריו שוב ושוב תבנית אור מחזורית, במרחקים קבועים הנקראים מרחקי טלבוט xT. תופעת גלים זו אינה מוגבלת רק לגלי אור ונחקרה עבור סוגים רבים ושונים של גלים, כולל גלי חומר וגלי קול. החוקרים הראו כי ניתן להסביר את שבירת הסימטריה על ידי משוואת גלים מדויקת יותר הנקראת משוואת דיסט׳ה (Dysthe).
התגלית המדעית התאפשרה במסגרת מחקר שבחן את דינמיקת ההתפשטות של חבילות גלים מחזורית בגלי כבידה משטחיים על פני מים, על ידי מדידת ההתפתחות שלהם לאורך בריכת גלי מים באורך 5 מטרים. צוות החוקרים כלל את גאורגי גרי רוזנמן, מבית הספר לפיזיקה ולאסטרונומיה ע"ש ריימונד ובברלי סאקלר, פרופ׳ וולפגנג שלייך מאוניברסיטת אולם, פרופ׳ עדי אריה מבית הספר להנדסת חשמל ומופקד הקתדרה לננו-פוטוניקה ע"ש מרקו ולוסי שאול, ופרופ׳ לב שמר מבית הספר להנדסה מכנית. המחקר פורסם בכתב העת היוקרתיPhysics Review Letters .
דינמיקת ההתפשטות של חבילות גלים מחזוריות נחקרה גם בתחום הלא-ליניארי באופן תאורטי. המדען ניל אחמדייב מצא פתרון אנליטי שנקרא "Akhmediev breather" שמשמעותו "גל נושם", היות והצורה שלו חוזרת על עצמה באופן מחזורי. עם זאת, יש הבדל חשוב לעומת המקרה הליניארי, והוא שמקבלים בצורה מחזורית רק את המבנה המקורי, ואילו המבנים במחזוריות הקצרה יותר לא מופיעים.
בניסוי שבוצע, צוות החוקרים עורר חבילות גלים מחזוריות של גלי כבידה משטחיים. לשם כך נבחר הגל הנושם של אחמדייב (Achmediev breather). כאשר הגלים המעוררים הם בעלי משרעת גדולה, הדינמיקה הלא ליניארית של גלי הכבידה המשטחיים הופכת להיות משמעותית וגורמת להיעלמות התבניות המחזוריות בעלת המחזורים הקצרים, למשל במחצית מרחק טלבוט.
בריכת הגלים באוניברסיטת תל אביב בה התבצע הניסוי
בנוסף, גילו החוקרים במסגרת המחקר כי כאשר אי-הלינאריות גבוהה יותר, המדידות חורגות מהפתרון האנליטי של אחמדייב, וניתן לראות שבירה א-סימטרית של פונקציית הגל. שבירה זו גורמת למעטפת הגלים להאיץ במעט ולהאיט לאחר מכן חזרה למהירות החבורה. שבירת סימטריה זו נגרמת בגלל אי לניאריות מסדר גבוה, אשר אינה נלקחת בחשבון במשוואת הגלים הפשוטה - משוואת שרדינגר הלא לינארית.
שטיחי טאלבוט במערכת של גלי כבידה משטחיים. (1) שטיח טאלבוט ״לינארי״ (2) שטיח טאלבוט ״לא לינארי״ (3) סקיצה של מערכת ניסוי בה נמדדו התופעות
מחקר
האם נוכל לגלות אם אדם שנחשב למחוסר הכרה קולט ומבין את הנאמר סביבו?
תגלית חדשה של אוניברסיטת תל אביב עשויה לסייע לפתור את התעלומה המדעית: כיצד הופך המוח הער את הקלט החושי לחוויה מודעת. החוקרות והחוקרים הסתמכו על נתונים שהתקבלו מאלקטרודות שהושתלו במעמקי המוח האנושי לצרכים רפואיים, כדי לבחון הבדלים בתגובת קליפת המוח לצלילים שונים שמושמעים לנבדק במצבי ערות לעומת שינה. הם הופתעו לגלות שהתגובה המוחית לצלילים עוצמתית גם במהלך השינה בכל המדדים, מלבד אחד: רמת גלי האלפא-בטא הקשורה למידת תשומת הלב, הקשב, והציפיות לגבי צלילים הנקלטים. המשמעות: במצב שינה המוח שומע את הצליל אך לא מצליח להתמקד בו ולזהות אותו, ועל כן תפיסה מודעת של הצליל אינה קיימת במצב של שינה. לדברי צוות המחקר, מדובר לראשונה במדד כמותי ששונה באופן דרמטי בין אדם ער שמודע לצלילים לבין תגובת שמע במצבי שינה, שמתאפיינים בחוסר הכרה וניתוק מהסביבה, שיוכל לשמש כבסיס לפיתוח שיטות יעילות ונגישות למדידת רמת ההכרה של אנשים השרויים לכאורה במצבים שונים של חוסר הכרה.
המחקר נערך בהובלת ד"ר חנה חייט ובסיוע של ד"ר עמית מרמלשטיין מהמעבדה של פרופ' יובל ניר מבית הספר לרפואה ע"ש סאקלר, בית הספר סגול למדעי המוח, והמחלקה להנדסה ביו-רפואית, וכן בהובלת פרופ' יצחק פריד מהמרכז הרפואי של אוניברסיטת UCLA בארה"ב. עוד השתתפו במחקר: ד"ר אהרון קרום וד"ר יניב סלע מקבוצת המחקר של פרופ' ניר וכן ד"ר עידו שטראוס וד"ר פיראס פאהום מהמרכז הרפואי תל אביב (איכילוב). המחקר פורסם בכתב העת היוקרתי Nature Neuroscience.
פרופ' ניר מסביר כי ייחודו של המחקר הוא בכך שהוא מסתמך על נתונים מאלקטרודות שהושתלו במעמקי המוח האנושי ומנטרות את פעילות המוח ברזולוציה גבוהה, כולל ברמת הנוירון (תא עצב) הבודד. לדבריו, מסיבות מובנות, לא ניתן להשתיל אלקטרודות במוחם של בני אדם לצורכי המדע, אך במחקר זה, החוקרים נעזרו במצב רפואי מיוחד שבו הושתלו אלקטרודות במוחם של חולי אפילפסיה, כדי לנטר את הפעילות המוחית באזורים השונים לקראת ניתוח שנועד לסייע להם. החולים התנדבו לבחון את תגובת המוח לגירויי שמע במצבי ערות לעומת שינה.
במסגרת המחקר, הוצבו ליד מיטות החולים רמקולים המשמיעים צלילים שונים. החוקרים השוו את הנתונים שהתקבלו מהאלקטרודות בנוגע לפעילות תאי העצב ולגלים חשמליים מקומיים באזורים שונים של המוח, בזמן ערות ובשלבים שונים של שינה. בסך הכול נאספו נתונים מכ-700 נוירונים, כ-50 נוירונים מכל נבדק, לאורך תקופה של 8 שנים.
ד"ר חנה חייט
"לאחר שצלילים נקלטים באוזן, האות נמסר מתחנה לתחנה בתוך המוח. עד לאחרונה רווחה הסברה שבמצבי שינה, האותות הללו דועכים במהירות כשהם מגיעים לקליפת המוח. במחקר שלנו גילינו להפתעתנו שגם במהלך השינה תגובת המוח חזקה ועשירה מהצפוי, ומתפשטת לאזורים רבים בקליפת המוח ומציתה תגובה דומה בעוצמתה לזו שנמדדה במצב של ערות. אולם בתכונה ספציפית אחת גילינו פער דרמטי בית הפעילות המוחית במצבי ערות ושינה - רמת הפעילות של גלי אלפא-ביתא", מסביר ד"ר חייט.
החוקרים מסבירים שגלי אלפא-ביתא (בין 10 ל-30 הרץ), קשורים לתהליכים של קשב וציפייה, שנשלטים על ידי משוב (פידבק), מאזורים גבוהים של המוח. למעשה, במקביל להעברת המידע "מלמטה למעלה" מקולטני החושים לאזורי עיבוד גבוהים, מתרחשת גם תנועה הפוכה: האזורים הגבוהים, שמסתמכים על ידע מוקדם שנצבר במוח, פועלים כמעין יד מכוונת ואקטיבית ושולחים מידע "מלמעלה למטה", כדי להדריך את אזורי החושים במה להתרכז, ממה להתעלם, וכדומה. כך לדוגמה, כשצליל מסוים נקלט באוזן, אותם אזורים גבוהים מזהים אם הצליל מוכר או חדש, אם הוא ראוי לתשומת לב או שאולי אין צורך להתייחס אליו. פעילות מוחית זו משתקפת כדיכוי של גלי אלפא-בטא, ואכן, מחקרים קודמים זיהו רמה גבוהה של גלים אלה במצבים של מנוחה והרדמה. על פי המחקר הנוכחי, עוצמת גלי האלפא-בטא היא למעשה ההבדל העיקרי בין מצבי ערות לשינה בכל הנוגע לתגובת המוח לגירויי שמע.
"ניתן יהיה לבחון את מידת המודעות לסביבה של אדם דמנטי או של אדם במצב סיעודי שאינו מסוגל לתקשר עם סביבתו"
"לממצאים שלנו יש משמעות נרחבת, מעבר לגבולות הניסוי עצמו. ראשית, הם מספקים מפתח חשוב לשאלה העתיקה והמסקרנת מכל: מהו סוד התודעה? מהי הפעילות המוחית הייחודית שמאפשרת לנו להיות מודעים למתרחש סביבנו, ונעלמת כשאנו ישנים? גילינו קצה חוט חדש, ובמחקרים עתידיים נעמיק במנגנונים האחראים להבדל זה", אומר פרופ' ניר ומסכם "בנוסף, מכיוון שזיהינו מאפיין מוחי ספציפי שמבדיל בין מצבי הכרה וחוסר הכרה, יש בידינו לראשונה מדד כמותי שמאפשר להעריך את רמת המודעות של הנבדק בתגובה לצלילים".
"על ידי שכלול מדידת רמת גלי האלפא-בטא במוח, תוך שימוש באמצעי ניטור נגישים שאינם פולשניים (כמו EEG), אנו מקווים שניתן יהיה, לדוגמא, לוודא במהלך ניתוח שהמטופל שרוי בהרדמה עמוקה ואינו חש דבר. באופן דומה, ניתן יהיה לבחון את מידת המודעות לסביבה של אדם דמנטי או של אדם במצב סיעודי שאינו מסוגל לתקשר עם סביבתו. במקרים כאלה, רמה נמוכה של גלי אלפא-בטא כתגובה לצלילים אף עשויה להעיד שאדם שנחשב למחוסר הכרה בעצם קולט ומבין את הנאמר סביבו. אנחנו מקווים שהממצאים שלנו ישמשו בסיס לפיתוח שיטות יעילות ונגישות למדידת רמת ההכרה של אנשים השרויים לכאורה במצבים שונים של חוסר הכרה."
פרופ' יובל ניר וד"ר עמית מרמלשטיין