Annecy, April 2012.

Ron Peled's Home Page

I am a full professor in the School of Mathematical Sciences of Tel Aviv University. My research interests are in Probability Theory, Statistical Physics and related fields.

In the 2022-2024 academic years I am visiting Princeton University and the Institute for Advanced Study.

231 Schreiber Building, School of Mathematical Sciences, Tel Aviv University
Ramat Aviv, Tel Aviv 69978, Israel

Email: peledron (* the at symbol *)
Phone: (+972)3-6408034


Support from the Israel Science Foundation grants 1048/11, 861/15 and 1971/19, the Marie Skłodowska-Curie Actions International Reintegration Grant SPTRF and the ERC Starting Grant LocalOrder is gratefully acknowledged.

Lecture Notes, Reviews, Slides and Videos of Talks

Post-docs and Students supervised




A Mathematical Gallery

Below are pictures from some of the projects that I have worked on. Click on some of the pictures for more information and related pictures.

Uniformly sampled homomorphism and Lipschitz functions in 2 and 3 dimensions
Left column: homomorphism and Lipschitz functions on a 100 x 100 square with zero boundary values
Right column: middle slice of homomorphism and Lipschitz functions on a 100 x 100 x 100 cube with zero boundary values

Top: the outermost level sets separating zeros and ones of a uniformly sampled homomorphism on a 40 x 40 and 300 x 300 squares with zero boundary values (pictures produced with the help of Steven M. Heilman)
Bottom: The shift transformation applied to the level set of a homomorphism function. This transformation is a major tool in the analysis of homomorphism functions in high dimensions

Gradient Flow / Gravitational Allocation (pictures based on code by Manjunath Krishnapur)
First row: Allocation to the zeros of the planar, hyperbolic and spherical canonical Gaussian Analytic Functions (all cells have equal areas!)
Second row: The potential for the allocations to the planar and hyperbolic Gaussian Analytic Functions.

K-wise independent percolation

4 coloring of Poisson-Voronoi map.

Rough isometry of 1D percolations

Brownian motion on a geometric state space and on the Cantor set
(pictures courtesy of Peter Ralph)