Low Chronology and Greek Protogeometric and Geometric Pottery in the Southern Levant

Alexander Fantalkin

Institute of Archaeology, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
e-mail: fantalk@post.tau.ac.il

The article deals with the absolute chronology of the Iron Age in the Southern Levant and the Aegean world. It first discusses the chronological gap between the conventional dating of Protogeometric pottery in Greece, and its appearance in the Southern Levantine assemblages. The question then asked is whether the Low Chronology recently proposed by Finkelstein will free us from the difficulties raised by the prevailing dating. A brief examination shows that one cannot use the accepted dating of Greek Protogeometric and Geometric pottery to support the 'Finkelstein correction', but rather his Low Chronology provides, for the first time, a basis for the absolute chronology of the Dark Age in Greece. At the end the article proposes a common denominator to reconcile the differences of opinion between major chronological approaches. These may be explained by the differences in the length of existence of the relevant strata.

Introduction

A recently proposed Low Chronology for the Southern Levant Dark Age (Finkelstein 1995; 1996a; 1996b; 1998a; 1998b; 1999a; 1999b) evoked a stormy discussion among Syro-Palestinian scholars (Mazar 1997; Zarzecki-Peleg 1997; Ben-Tor and Ben-Ami 1998; Ben-Tor 2000; Na’aman 2000); after several archaeological congresses, the discussion is far from ending. Such a reaction seems predictable, as the new dating calls for a re-evaluation of the general historical picture, in order to explain the processes in the region between the early-twelfth century (the battles of Ramesses III with the Sea Peoples) and the late-eighth century (the Assyrian campaigns to Palestine).

Among suggested solutions to some thorny chronological problems raised by the prevailing dating, Finkelstein (1999b, 39) considers that his Low Chronology “...closes the one century gap between the dating of the Late Protogeometric pottery in Greece (in the 10th century, not only according to Levantine synchronisms) and its appearance in the Levant in strata usually dated to the 11th century BCE.”

This article attempts to examine whether Finkelstein’s Low Chronology can be reconciled with the accepted Greek Iron Age chronology in order to see whether Greek Protogeometric and Geometric pottery from the Southern Levant can be used for or against Finkelstein’s dating.

Levantine sources of the absolute chronology of the Greek Iron Age and their problems

Since no chronological anchor has been found in Greece itself to tie some historical event to archaeological finds from the Iron Age, scholars have been obliged to resort to comparative material from the East. As in the Southern Levant in Iron Age I–II it is not possible using extra-biblical sources to bridge the chronological gap between the reign of Ramesses III and the Assyrian campaigns, in Protogeometric and Geometric Greece there is no safe chronological anchor between the Late Helladic period and the archaic colonization of Italy and Sicily (Snodgrass 1991). In order to bridge this gap of some 500 years, Southern Levantine sites in which Greek Protogeometric and Geometric pottery was discovered have been used for discussion by classical scholars.

The early Greek pottery found at a number of sites in the Southern Levant has been recently summarized by Waldbaum (1994). Although providing important data from both new and old excavations, this study does not attempt to deal with problems arising from the accepted Greek Iron Age
chronology (after Desborough 1952 and Coldstream 1968). Newly published material from Tel Hadar (Kochavi 1996; 1998; Coldstream 1998; Kopcke forthcoming) and Tel Dor (Gilboa and Sharon 1997) may bring us closer to a reliable absolute chronology for both the Levant and Greece. These finds, especially from Tel Hadar, published after the ‘Finkelstein correction’, drew heightened levels of attention from both classical and oriental scholars (see for instance the discussion which took place in Session VI during the first international symposium on April 3–7, 1995 in Jerusalem; Gitin et al. 1998, 362–366). A brief re-presentation of both cases will show that in spite of several decades of research, both sides are still living in independent worlds when dealing with an absolute chronology for the Iron Age.

Tel Hadar

Part of a Euboean Protogeometric lebes (an almost complete profile) from Tel Hadar was exposed in a clear archaeological context in the storehouse complex of Stratum IV (Kochavi 1996; 1998). The lebes was attributed by Coldstream (1998, 357–359) to the Euboean Middle Protogeometric phase, currently dated to the first half of the tenth century according to Lefkandi’s Protogeometric sequence. He notes that a Late Protogeometric dating can not be excluded, noting Lemos’ opinion, that “...although the shape is unique, the ring foot is typical of Euboean LPG rather than MPG. Nevertheless, the decoration on a clay ground suggests...a date near the beginning of the LPG phase, not much later than the MPG deposit over the Toumba building...” (Lemos, pers. comm. in Coldstream 1998, 358–359, n. 25). Kopcke, who prepared a full publication of this vessel (forthcoming), relates it to Attic Early Geometric, and in his opinion it should be set at c. 900 BCE. Moreover, Kopcke does not accept the Lefkandi chronological sequence (Gitin et al. 1998, 362), so even if his attribution of the vessel is wrong and it belongs to the Middle or Late Protogeometric phase, he would prefer a dating later than the above mentioned scholars. In any case, all proposed dates seem to be in contradiction with the excavator’s opinion: “Judging from the pottery assemblage, the destruction of Stratum IV should be dated to the eleventh century BCE...the Greek ceramic vessel is provisionally dated to the tenth century BCE, but its presence within an assemblage of over one hundred intact vessels from the eleventh century at Tel Hadar will entail a chronological review of the archaeology of the Iron Age in Greece” (Kochavi 1996, 191, translated from Hebrew). It should be noted that even if the end of Tel Hadar IV is set at 980 BCE at the latest, as is proposed now by its excavators (Beck and Yadin) in the forthcoming final report, the above mentioned chronological gap still exists.

Tel Dor

Three Late Protogeometric ceramic fragments recovered in Area D2, Phase 8b at Dor present a similar case (Gilboa and Sharon 1997; for stratigraphic description of that phase, see also Stern et al. 1997). These fragments seem well-stratified (“on the floor”), but the preliminary discussion does not make clear which floor. From the description of this phase it may be understood that the monumental structure from the previous phase (Phase 9) continued in existence, while the whole area around it was covered by a kind of glacis. Moreover, another structure was discerned in the north-western corner of the excavated area, so that there is no way of knowing to which of the structures the said floor should be attributed. Stern et al. (1997, 42) dated Phase 8b to the late-eleventh or early-tenth century BCE, their “Iron Age IB/IIA”. The Late Protogeometric fragments were dated by Coldstream to about the mid-tenth century (in Gilboa and Sharon 1997, 28). In the discussion of the Greek import found in Tel Dor, where the Tel Hadar lebes is also referred to, Gilboa and Sharon (1997, 28) write:

“...The dates offered by the Greek scholars for the finds from Tel Hadar and Dor are later than the dates assigned by the excavators of these two assemblages. This would seem to support Finkelstein’s Low Chronology, but it should be borne in mind that the Greek chronology of these periods is based on parallels from the East...hence these finds can aid in determining the Greek chronology rather than the other way round...” (translated from the Hebrew).

After this brief description of both cases, the issues before us are:
1. in view of the prevailing Syro-Palestinian Iron Age chronology, there is no logical explanation for tenth-century vessels in an eleventh-century context.
2. will Finkelstein’s Low Chronology free us from the difficulties encountered with the prevailing chronology?

The dating of the Greek Protogeometric and Geometric pottery as accepted by most classical scholars after Desborough and Coldstream, is based largely on a small number of fragments of that pottery from uncertain stratigraphic contexts in the Southern Levant (Saltz 1978; Francis and Vickers 1985; James et al. 1991, 95–112). It would seem, at
least at first glance, that if we accept Finkelstein's Low Chronology, the dating of the Protogeometric vessels from Tel Hadar and Tel Dor should also be lowered, as it linked with the dating of Geometric pottery from Syro-Palestinian Iron Age assemblages. It seems that we have a closed loop.

In order to examine this issue at closer quarters, let us briefly review the three main sites in the Southern Levant in which Greek Geometric pottery has been found, pottery on which the foundations of the absolute chronology of the Iron Age in Greece have been laid.

Tell Abu Hawam

A fragment of a probable Euboean pendent-semicircle skyphos and a complete handled glazed cup (Cycladic or Euboean), both Early Geometric II or Middle Geometric I at the latest (for a summary see Saltz 1978, 148), were unearthed in Stratum III of Hamilton's excavation (Hamilton 1934, pls. 12: 96, 13: 95). This stratum was dated by him to the period between the early eleventh century and the last quarter of the tenth century (925?) (Hamilton 1934, 5–8). In spite of Sätz's assumption that “there is no question that the sherds were found in situ in this stratum” (Saltz 1978, 148), Hamilton's methods of recording and publishing raise grave doubts as to the archaeological context. Thus, the fragment of the pendent-semicircle skyphos was found in an unclear context, described by the excavator in the following manner:

“In this area pottery characteristic of Stratum III was found in large quantities at a low level, due doubtless to an excavation in the III period which has left its mark in the destruction of Stratum IV buildings on the northeast side of square G4... The present fragment was found amongst this pottery” (Hamilton 1934, 24).

The fragment from Abu Hawam was defined by Desborough (1952, 193) and Coldstream (1977, 66) as one of the earliest examples of the pendent-semicircle skyphoi group, and was dated by them to the end of the ninth century at the latest. A recent suggestion has been made to shift this date significantly later, to no earlier than 750 BCE (Kearsley 1986, and see below). The complete handled glazed cup was found in the same unclear circumstances: “D, E2 (squares), west of the house 25” (Hamilton 1934, 24).

The dating of Abu Hawam III is still extremely controversial (see below). Following renewed excavations at the site, it was suggested that Stratum III (six construction phases) has a duration from the beginning of the tenth century to at least the mid-eighth century BCE (Herrera and Balensi 1986). Such a conclusion is based on a reassessment of the late Samaria ware, exposed by Hamilton in rooms 13–14, the presence of Black-on-Red II potsherds that come from the destruction level which seals Stratum III, and on the rediscovery of a hitherto unpublished Middle Geometric II/Late Geometric (?) fragment from Hamilton's excavations (Hamilton 1934; Balensi 1985).

Megiddo

Five fragments of Greek Geometric pottery from Megiddo (two rims and three body fragments) are not mentioned in the Chicago excavation reports, and were first published by Clairmont (1955, 99; pl. 20:1a–b, 2a–b), who attributed them to Stratum V. In the excavation report of Tel Sukas, Riis mentioned a letter he had from Hoerth, then curator of the Oriental Institute of Chicago, which stated that the fragments should probably be attributed to Stratum IV rather than Stratum V (Riis 1970, 144–146). Even earlier, based on publications by Wright (1950) and Kenyon (1964), Coldstream (1968, 307) added to the discussion the “new” Stratum, VA/IVB, which had been overlooked by Clairmont. Following this, Saltz (1978, 172–184) also attributed the finds to this stratum. Coldstream (1968, 303–304) states that the body sherds are not of Hellenic origin, but local or Cypriot imitations, whereas the rims “look definitely Attic or Atticizing”, and on the basis of parallels from the Kerameikos, could be attributed to the Attic Middle Geometric I. Evidently from our point of view these fragments are completely insignificant, since they were unstratified. However, in the near absence of other finds, great and undue importance was attached to them providing the foundations of the Greek Iron Age chronology.

Samaria

Eleven fragments of Greek Geometric Pottery, all Attic or Atticizing, of the Attic Middle Geometric II group, were discovered in Samaria. Four of them were retrieved in the Harvard excavations conducted by Reisner, hence it is impossible to know in what context they were found, and to which stratum they should be attributed (Reisner, Fisher and Lyon 1924, 281.1a, 6b; 282.9a, 10a, fig. 157:1, 6b, 9a, 10a; 288.12m; 289, fig. 164:m; pl. 69:d, i). Seven other fragments were unearthed by the Joint Expedition under the supervision of Crowfoot and Kenyon. One of these, described by the excavators as “East Greek, possibly Rhodian, early sixth century BCE” (Crowfoot, Crowfoot and Kenyon 1957,
213; pl. 18:18), belongs in fact to a Greek Middle Geometric II vessel, but was unstratified (Coldstream 1968, 304). Six other fragments, probably of one Argive krater, also belonging to the Middle Geometric II, with good parallels from Attica, were uncovered in four different strata: V, VII, Hellenistic and Roman (Crowfoot, Crowfoot and Kenyon 1957, 210–212; pl. 18:1–2; fig. 34a). According to Coldstream, even if these fragments do not belong to the same vessel, they seem homogeneous in date, and their terminus ante quem should be set at the end of Period V. Such a dating corresponds with Kenyon’s letter, which was published by Riis (1970, 146). According to her: “The result so far therefore is that all the sherds traced are from disturbed fill. But you can take it that if Mrs. Crowfoot says one of the sherds came from V, this was information that I gave her and therefore one of the sherds was in undisturbed stratification...” (our italics). It is obvious that one can not use this kind of evidence in any chronological argument, since Geometric sherds could belong to period VII as well as to period V. So the question is why such unstratified finds should even be discussed? Samaria is an extremely problematic excavation (Finkelstein 1990; Tappy 1992), and no-one today would venture to give its strata and finds a conclusive dating.

Desborough (1952, 294–295), relying on the fragment of the pendent-semicircle skyphos from Abu Hawam III (which according to him marked the end of the Protogeometric period and the beginning of the Geometric period in absolute terms), was the first to attempt to draw a scheme for the absolute chronology of Greek Protogeometric pottery. Some years later, Coldstream’s (1968) comprehensive work on Greek Geometric pottery was published, in which the absolute chronology of this period was given a final expression, accepted today by most classical scholars. The chronology proposed by Coldstream was founded chiefly on the Geometric fragments from Abu Hawam, Megiddo and Samaria. In order to arrive at absolute dates, the scholars were obliged to wrestle with the differing dating of the relevant Iron Age strata by different excavators in Israel.

Desborough, in the absence of additional evidence, was forced to deal with Hamilton’s dating (925/926 BCE) of the end of Stratum III at Abu Hawam. According to him: “Although the date of the end of Stratum III is quite possible, a later date then this (perhaps down to any time before 860–850 B.C.) is also possible. What should be made clear, however, is that this site was not necessarily destroyed by Shishak I in 926 B.C., but could have continued to flourish for two more generations” (Desborough 1952, 182). In other words, Desborough preferred the lower dating in order to date the transition from Protogeometric to Geometric in Attica to c. 900–875 BCE.

Coldstream, who wrote some years after Desborough, was in a possession of updated data from Megiddo and Samaria, which was added to the discussion, and to new studies in the chronology of Israel. As a result, Coldstream used in his discussion two chronological approaches:

1. the so-called ‘Hazorian’ approach, represented by Aharoni and Amiran (1958).
2. the so-called ‘Samarian’ approach, represented by Crowfoot (1940) and Kenyon (1957; 1964).

The key issue in this discussion is the dating of Megiddo VA/IVB. Aharoni and Amiran (after Albright 1943, 2–3, note 1; and Wright 1950, 42–43) attribute the foundation of this stratum to the reign of Solomon and its destruction to Shishak’s campaign. Stratum III at Abu Hawam is parallel, in Aharoni and Amiran’s opinion, to Hazor VIII, Samaria III and the main part of Megiddo IVA. Moreover, in their opinion, Abu Hawam III was destroyed by Jehu in 841 BCE (interestingly, this dating was not accepted by Yadin [Yadin et al. 1958, 23], a propos the ‘Hazorian school’, which preferred Maisler’s dating, 815 BCE, for the end of Abu Hawam III [Maisler 1951]. It should be noted here that Yadin’s acceptance of a lower dating for the end of Abu Hawam III stands in contradiction to his attribution of Megiddo VA/IVB to the reign of Solomon [Yadin 1970]).

In contrast, the ‘Samarian school’ proposes the shifting of the dating of VA/IVB in Megiddo to the ninth century BCE. The first of these was Crowfoot, who, even before the ‘new’ stratum (VA/IVB) was added to the discussion, suggested that the dating of Stratum IV should be shifted from the reign of Solomon to the days of Omri and Ahab (Crowfoot 1940). The reasoning behind this was the architectural similarities between the palaces of Samaria and the royal buildings in Megiddo. His second reason was the stable complexes, which in his opinion belong to the time of Ahab rather than to that of Solomon: “...Unlike Solomon, Ahab was a warrior king: his chariotry was famous: according to the inscription of Shalmaneser III he sent 2,000 chariots to stem the advance of the Assyrians at Qarqar (about 854 B.C.)...” (Crowfoot 1940, 146).

The dates he proposed were: Stratum V c. 960–870 BCE; and Stratum IV c. 870–840 BCE. This reasoning, lowering the dates of the Megiddo strata in view of the results of the Samaria sequence, with minor changes in light of the addition of the ‘new’ stratum (VA/IVB) to the discussion, was adopted by
Kenyon (1957; 1964). However, her basic assumption, that Samaria was not settled before the construction of the Omride city, is not acceptable today. The collared rim jars found among the pottery from periods I-II, point to a possibility that there was pre-Omride settlement activity at the site (Finkelstein 1990; Stager 1990). Moreover, as mentioned above, the stratigraphy of Samaria is extremely problematic, so the relationship between the architecture and the pottery in most cases is chaotic (e.g. Tappy 1992). All this makes Kenyon’s chronological approach erroneous, and it should be noted here that later she renounced her own view (Kenyon 1971, 69; and see below). According to her original view, after Stratum VB was destroyed by Shishak, there was a settlement gap at Megiddo for several years, and the next Stratum VA/IVB, is dated accordingly to 880-850 BCE (Kenyon 1964). The resulting chronological correlation is: Megiddo VA/IVB = Samaria III = Hazor IX = Abu Hawam III.

Coldstream chose the second, ‘Samarian’, of these two chronological approaches, since it suited the variety of Geometric styles better. To support his choice, he also cited sites from north Syria such as Al Mina, as a comparative source for dating the pendent-semicolon skyphos fragment from Abu Hawam. He used Taylor’s (1959) dating of Al Mina despite the fact that Taylor herself used Kenyon’s Low Chronology (Taylor 1959, 85, n. 1) in order to date the Cypriot and local pottery from Al Mina, and following that to establish its chronological sequence. Coldstream (1968, 313) notes this, but it does not stop him from using Taylor’s dating from Al Mina as support for his thesis.

Based on the above review, we can conclusively say that Finkelstein’s Low Chronology does not entail lowering the date of the Middle/Late Protogeometric lebes from Tel Hadar and Late Protogeometric sherds from Tel Dor, since they are dated by the Desborough-Coldstream chronology, in turn based on the Low Chronology of Crowfoot-Kenyon, which seems to correspond to ‘Finkelstein’s correction’.

Nonetheless, one obviously cannot use dating of Greek Protogeometric and Geometric pottery to support Finkelstein’s Lower Chronology, as the dating of this pottery is based on the mistaken conclusions of Crowfoot and Kenyon from Samaria (Finkelstein 1990; Tappy 1992).

A brief acquaintance with the foundations of the absolute chronology of the Iron Age, in both the Aegean and Syro-Palestinian worlds, reveals a striking misunderstanding stemming from the ignorance of each side about what happens on the other. The examples of circularity are so numerous that there is no possibility to mention all of them. For instance, in his recent article regarding Greek imports from Tyre, Coldstream claims that Bikai’s excavation yielded ‘...a well-stratified sounding within the settlement with continuous occupation from the 14th until the 8th century. In a 10th-century level there was already a small quantity of Greek Protogeometric pottery resembling the finds at Lefkandi...’ (Coldstream 1998, 353). However, Bikai’s dates for Tyre’s strata were not independent: ‘...For the Mycenaean material, we are completely dependent on Arne Furumark’s Mycenaean Pottery. For the later Greek material, we have relied on Vincent Desborough’s Protogeometric Pottery, and J.N. Coldstream’s Greek Geometric Pottery...’ (Bikai 1978, 64). Another typical round of circularity, where the dates (late-seventh century BCE) established for a Levantine site by means of Greek pottery were utilized to reinforce the Greek sequence, was recently shown in the case of Middle Wild Goat style pottery from Mezad Hashayahu, the small coastal fortress near Ashdod (Waldbaum and Magness 1997, 25).

The site which could demonstrate most of all an absence of general consensus is Al Mina, which was recently identified as Ah-ta-[a] (Zadok 1996). According to Kearsley’s (1989, 101-104; 142-145) new typology, the pendent-semicolon skyphoi fragments from Al Mina belonging to her ‘Type 6’, should be dated no earlier than 750 BCE. Based on this new typological classification, she dates Strata X-VIII at Al Mina to c. 750–700 BCE (Kearsley 1995, 68), implying there is no proof of Greek presence at Al Mina before 750 BCE. This new approach has been accepted by some (e.g. Snodgrass 1994), but has been subject to severe criticism by those in favor of the accepted Greek chronology (e.g. Popham and Lemos 1992; Papadopoulos 1998, 365–367). The accepted date for Al Mina, Strata X–VIII, was for many years c. 825-720 BCE, after Taylor (1959). Taylor, as already noted, when dating these strata and the pendent-semicolon skyphoi fragments within them, based her claims on Crowfoot-Kenyon’s chronology alone, a chronology which, as we have seen, corresponds with Finkelstein’s Low Chronology. Kirsley’s chronology would shift our dating another 75 years later than Finkelstein’s Low Chronology, which would be impossible by any Levantine system. This example demonstrates how uncertain is the game of ‘Low and High’ within one region, without seeing the general picture.

Moreover, most striking is the phenomenon that during the last three decades the Aegean world is following Kenyon’s Low Chronology despite the
fact that Kenyon herself revised her view (Kenyon 1971, 69) and, influenced by Yadin, supported the Solomonic date of the monuments (gates) at Megiddo VA/IVB, Hazor X-IX and Gezer.

On the other hand, some Syro-Palestinian archaeologists are still using the standard chronology of Greek imports to help date local material (for critique, see Waldbaum and Magnes 1997, 25), while others (Kochavi 1996; Gilboa and Sharon 1997) calling for a revision of this chronology, ignore that such an attempt was already undertaken by Saltz (1978). However, her basic assumption, that there are "two truly secure points de repère for the Geometric series, i.e., contexts whose dates are unequivocal" (Saltz 1978, 281), which are 926 BCE for the end of Abu Hawam III and 720 BCE for the end of Hamath, seems incorrect in the present state of research (at least in the case of Abu Hawam). The renewed excavations at Abu Hawam provide additional information (see above) that does not permit tying the end of Stratum III to Shishak's campaign. Moreover, Saltz's effort to create a harmony between the Solomonic date of Megiddo VA/IVB and Greek Geometric sequence leads to a much too long Middle Geometric period, 75 years more than in the accepted Coldstream chronology.

It looks then, after several decades of research, as though the best clue towards a reliable absolute chronology of the Aegean 'Dark Age' is still derived from the series of twelve objectively-definable Aegean pottery styles. The chronological framework, which spans some 500 years, includes: earlier and later Late Helladic IIIC, Submycenaean, Early, Middle and Late Protogeometric, Early Geometric I and II, Middle Geometric I and II, and (covering the early stages of colonization) Late Geometric I and II (Snodgrass 1991, 246). At this stage, this framework cannot be significantly changed one way or another, despite its inaccuracies.

Conclusions

Three basic points emerge:
1. fragments of Greek Geometric pottery found at Abu Hawam, Megiddo and Samaria were either exposed in uncertain stratigraphic contexts (Abu Hawam) or are unstratified (Megiddo, Samaria), and cannot serve as a solid foundation for the absolute chronology of the Iron Age in Greece.
2. the dating of the strata in which the pottery was found, or is believed to have been found, is controversial. Coldstream, in setting the absolute chronology of Greek Geometric pottery, chose to use the Crowfoot-Kenyon Low Chronology. This chronology, based on mistaken conclusions regarding Samaria, corresponds to "Finkelstein's correction" (at least at Megiddo), even though Finkelstein (1995; 1996a) arrived at it from a different approach.
3. in the present state of research, there are no plausible absolute dates in the chronological sequence of the Greek Iron Age earlier than the second half of the eighth century BCE (Snodgrass 1991; Hannestad 1996; Morris 1996). The earlier absolute Greek Iron Age dates basically depend on reasonable but, still hypothetical assumptions founded on proposed developments of pottery styles. It may be concluded that, paradoxically, the Protogeometric and Geometric Greek pottery finds do not support "Finkelstein's correction", but rather that Finkelstein's Low Chronology provides, for the first time, a basis for the absolute chronology of that pottery, as defined by Desborough and Coldstream. Moreover, the critics of traditional Greek absolute chronology as it was established by Desborough and Coldstream, and represented chiefly by the classical scholars, will now have to respond to Finkelstein's reasoning.

Turning to Palestine, should we accept that the Tel Hadar and Tel Dor finds will lead to a revision of the absolute chronology of Iron Age Greece? It seems that these finds do not add new data regarding absolute Greek chronology, since the contexts in which they were found, and the correlative strata in other Palestinian sites, were dated either arbitrarily (based mainly upon biblical testimony concerning Solomon and the attribution of Megiddo VA/IVB to his reign; cf. Finkelstein 1996a; 1998a) or on the basis of the same Greek or Cypriot imported finds.

Nonetheless, the essential question here is whether dispute is necessary. The excavators of Tel Hadar and Tel Dor themselves date Phase 8b to the tenth century, if to the first half of that century, but still quite close to Coldstream's dating. In other words all sides to this chronological discussion are much closer to a common denominator, than would seem at first sight.

The ceramic assemblage from Phase 8b of Tel Dor is unmistakably similar to Megiddo VIA, and following 'Finkelstein's correction' should date to the second half of the tenth century (he dates the end of Megiddo VIA to Shishak). Tel Hadar IV is also parallel to these strata. The excavators of Tel Hadar are willing to date its end to 980 BCE at the latest (Beck and Yadin forthcoming). Moreover, Coldstream (1998, 359) states that A. Mazar is also willing to date the end of Tel Hadar IV "not later than 980 BCE", as he dates Megiddo VIA "as low as c. 980 BCE" (Mazar 1999, 41, n. 41). It should be
kept in mind that in following the traditional view, such a dating still means an eleventh-century cultural horizon. However, this precise dating is obviously based on the acceptance as facts of David’s campaigns, whose authenticity and historical reliability is unsubstantiated (unlike Shishak’s campaign, to which the end of certain strata might be tied). Such a statement looks like a declaration unsupported by either extra-biblical or even biblical evidence, since there is no mention of campaigns by David in the Land of Geshur in the Bible. If the ‘Davidic anchor’ (980 BCE) loses its significance and the end of Tel Hadar IV, for instance, could then be moved, the main remaining point is that all the opposing scholars already place their dates for the end of the said strata somewhere in the tenth century BCE, as summarized below:

<table>
<thead>
<tr>
<th>‘Traditional’ Israeli scholars</th>
<th>Classical scholars</th>
<th>Finkelstein’s Low Chronology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are willing to date the said strata as late as 980 BCE</td>
<td>Date the Greek finds from these strata to the mid-tenth century BCE.</td>
<td>Dates these strata to the second half of the tenth century BCE.</td>
</tr>
</tbody>
</table>

As can readily be seen, the differences are no longer so pronounced, since all scholars agree on the tenth century BCE. It looks as if the disagreement can be resolved by suggesting that the lifetime of the said strata was of a different length at each site. A slow development and a long range of various pottery types attested during Iron Age II (Mazar 1997, 159; Ben-Tor and Ben-Ami 1998, 30), provide an additional corroboration for that assumption. In other words, whereas Phase 8b of Dor or Stratum IV of Tel Hadar could have ended sometime in the first half to mid-tenth century BCE, Megiddo VIA may have continued to exist until its destruction towards the third quarter of the same century, whether by Shishak or not. The differences, although stressed by traditional scholars, now seem minor, and can be explained by the differences in the length of existence of the relevant strata.

Notes
1 According to Finkelstein’s Low Chronology “...strata which were previously dated to the 11th century would now be dated to the 10th century... Strata which were dated to the 10th century should now be placed in the 9th century BCE... Strata which were dated to the 8th and 7th centuries BCE would not be affected...” (Finkelstein 1999b, 39).
2 I follow Coldstream’s (1998, 357–359) designation of that vessel as a lebes, while Kopcke calls it a bowl krater.
3 Sites in which Late Geometric fragments were recovered are not relevant to this study. This period, as it is well dated by the Assyrian campaigns, is also the latest absolute chronological anchor according to Finkelstein (1996), so that they will add nothing to our discussion.
4 It should be noted here that Kearsley’s new dating brings us back to Woolley’s original dating for Al Mina, Strata X–IX, which according to him should be set between 750–700 BCE (Woolley 1938, 16).
5 Hamath’s Late Geometric fragments are not relevant for our study (above, note 3), as it deals with the well-dated late eighth century BCE strata. It should be noted, however, that Francis and Vickers’ (1985) approach shows that the destruction of Hamath by Sargon II in 720 BCE can be used as a terminus ante quem only for the manufacture of Middle Geometric, and much less Late Geometric pottery (however, e.g. Cook 1989, 164).

Acknowledgments
I am grateful to Professor Israel Finkelstein, Mr Oren Tal and especially Professor Benjamin Sass, all from Tel Aviv University, for their valuable comments on the manuscript of this article. However, responsibility for the ideas expressed herein is mine alone. My special thanks to Professor M. Kochavi, director of the Tel Hadar excavations, and his assistant E. Yadin, both editors of the forthcoming Tell Hadar. I. The Early Iron Age Pillared Building Complex, for their permission to read the unpublished manuscripts from this final report.

Bibliography


—— (1964) Megiddo, Hazor, Samaria and Chronology. BIAL 4, 143–156.


Maisler, B. (1951) The Stratification of Tel Abu Hawam on the Bay of Acre. BASOR 124, 21–25.


