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ABSTRACT

A hydrodynamic nonhydrostatic anelastic numerical model of an axisymmetric convective cloud is described
in which the microphysical processes are treated in detail for different species of hydrometeors: drops, ice
crystals, graupel, and snow particles. The size distribution function for each type of particle is divided into 34
spectral bins. In each spectral category two physical moments of the distribution function (number and mass
concentration) are independently calculated using the method of moments. The following physical processes
are computed: nucleation of drops and ice crystals, freezing of drops, diffusional growth/evaporation of drops
and ice particles, collisional coalescence of drops and ice particles, binary breakup of drops, melting of ice
particles, and sedimentation. The model describes the different stages of cloud development, the formation of
ice, its growth by deposition and riming, the formation of graupel, and the precipitation stage. Analysis of the
distribution functions for the different species provides insight into the different microphysical processes active
in rain formation in mixed clouds. As an illustration of the capability of the model, the simulation of a mixed-

phase continental cloud is presented.

1. Introduction

Numerical models of clouds are useful tools for
studying the complex processes of rain formation.
While models with parameterized schemes of micro-
physical processes can efficiently simulate the dynamic
fields and other general properties of the clouds, the
study of rain formation and its sensitivity to changes in
cloud condensation nuclei (CCN) and ice nuclei (IN)
spectra requires a detailed treatment of the microphys-
ical processes.

The microphysical processes in warm clouds are
fairly well understood, and several models are available
that simulate the growth of such clouds (e.g., Tzivion
et al. 1994; Kogan 1991). Models of cold clouds must
handle the more complex microphysics of the ice
phase. These complexities stem from the large number
of stochastic equations that require simultaneous solu-
tion, the mathematical problems involved in obtaining
these solutions, and the scarcity of experimental data
on a large number of parameters related to physical
processes involving ice particles in clouds. For exam-
ple, collision efficiencies are known only for a very
limited range of particle sizes and shapes. It is not sur-
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prising, therefore, that there are only a few models with
explicit ice microphysics: Cotton (1972) (Lagrangian
model), Danielsen et al. (1972), Scott and Hobbs
(1977), Nelson (1979), and Tzur and Levin (1981),
which includes electrification processes (1.5D); the 2D
model by Young (1974a,b), with prescribed dynamics;
Takahashi (1976), axisymmetric; Hall (1980), 2D;
Khvorostyanov et al. (1989), 2D; and Alheit et al.
(1990), 1D (which includes chemical processes).
The last four publications are the most up to date and
relevant to the model described here. Takahashi’s axi-
symmetric model of a hailstorm cloud (1976) includes
a large number of microphysical processes as well as
an interesting scheme for treating the changing shapes
of the ice crystals, but their mathematical formulation
is highly simplistic in light of present knowledge.
Hall’s model (1980) concerns primarily the forma-
tion of graupel particles by riming of platelike ice par-
ticles that originated from activated IN and grow by
diffusion of water vapor. The ice spectrum is assumed
to be represented by a single distribution function
where the ice particle type and bulk density are pre-
scribed functions of particle category. The ice particle
spectrum is divided into three regions: the first region
(50-400 pm) corresponds to ice crystals with bulk
density of 0.4 gcm™; the second region (400—600
pm) is a transition region with linearly increasing bulk
density; and the third region (600—8410 pm, bulk den-
sity of 0.8 g cm™) is for graupels. This classification
and the density distribution differ significantly from the
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approach adopted here, as will be explained later. The
ice phase processes presented in Hall focus on graupel
formation from ice crystals produced by nucleation;
they ignore the creation of snowflakes by aggregation
or the presence of relatively large ice crystals that do
not become graupel. Further drawbacks of Hall’s
model are the inability to produce small graupel, the
lack of consideration given to drops freezing, and the
fact that the collisions between ice particles and drops
are not treated as a stochastic process.

Khvorostyanov et al.’s model (1987, 1989) includes
distribution functions for water drops and ice particles.
It was used for numerical simulations of seeding, but
while the supersaturation field is relatively well treated,
the nonstochastic treatment of the microphysical pro-
cesses could lead to unrealistic results.

The model of Alheit et al. (1990) can be considered
an improvement or refinement of Hall’s model, in 1D,
and is based on Flossmann et al.’s model (1985) for
warm clouds. Here, the distribution function of ice par-
ticles and graupel are considered separately. Even
though the interactions between all the species are con-
sidered in more detail, their formulation is not fully
stochastic. Parameters of the ice shape are included,
and the diffusional growth scheme is refined. Snow for-
mation (aggregates of ice) and the melting process are
not considered in the model. Great effort was made to
treat the interactions with aerosols, both inside the par-
ticles and interstitial.

The present work describes an axisymmetrical non-
hydrostatic anelastic model of a convective cloud with
a detailed treatment of the microphysical processes.
This model is based on the warm cloud model pre-
sented in Tzivion et al. (1994) modified to include ice
processes. The added microphysical processes are nu-
cleation of IN, drop freezing, diffusional growth (and
evaporation) in a mixed-phase environment, ice—ice
and drop-ice coagulation, and melting and sedimen-
tation of ice particles. Three types of ice particles are
considered: ice crystals, graupel, and snow particles.
Equations are formulated and solved for all the micro-
physical processes included. The numerical method
used in the mathematical treatment of these processes
is the method of multimoments, developed at Tel Aviv
University (Tzivion et al. 1987, 1989; Feingold et al.
1988). This method provides the accuracy required for
the numerical study of rain formation processes.

The wide scope of this work necessitated dividing it
into two parts. This paper describes the numerical
model and presents the results for one type of conti-
nental cloud.

2. The cloud model

The axisymmetrical nonhydrostatic model of a con-
vective cloud with detailed microphysics is an updated
version of the one put forth by Tzivion et al. (1994,
hereafter TRIL) modified to include cold processes. The
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dynamic components are described briefly [ for a full
description see Tzivion et al. (1984), Reisin et al.
(1988), Feingold et al. (1991), and TRL], while the
microphysical processes are covered in detail.

a. The dynamic model

The system of equations describing the formation and
evolution of an axisymmetric nonhydrostatic anelastic
convective cloud over a homogeneous boundary surface
is basically the same as presented in TRL. We solved
equations of motions for the vertical and radial velocity
(w and u, respectively ), equations for the virtual potential
temperature perturbation (6,) and the specific vapor per-
turbation (g), and a diagnostic equation for the pressure
perturbation. The equations for specific mass and number
of drops were modified to include processes that involve
ice, like freezing and melting. Equations for the specific
mass and number of the different ice species were added,
and since the nucleation of drops was modified, a new
equation for the CCN particles was formulated. Defini-
tions of all symbols can be found in appendix A.

The equations for the different substances in the
model are as follows:

oM,, .
=% = F,(M,,) - D(M,,)

ot
() (%)
6t nucl at cond/evap
(4. ()
6t coll/breakup 6t melting

oM, oM,
- | —=k + [ — 1
( ot )freezing ( ot )sedim ( )
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i ( 6t )coll < 6t >mclting ¥ (1 6):5)
oM, oM
() () o
( 6t freezing 6t sedim
ON, Yo 6Neen,
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—F— =F, (Naclice) - D(Nac ice) + Z <—_k> .
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The dynamic equations for the category mass con-
centration M,, for water are shown in Eq. (1) and for
ice particles in Eq. (2). Here, x represents the species
of ice particles in the model: ice crystals (i), graupel
(g), or snow particles (s) (described later). The terms
appearing at the end of Egs. (1) and (2) denote the
contributions of the microphysical processes. The Kro-
enecker delta in Eq. (2) is used for selecting the species
that participate in the process. Similar equations are
formulated for the category number concentration of
the water and ice species (N,, and N,,, respectively).
Equation (3) represents the concertration of available
CCN particles in category k. The last term is for the
number of newly activated CCN particles as deter-
mined by the nucleation process. Equation (4) is for
the concentration of activated ice particles by nuclea-
tion on IN.

In the above equations, D(¢) and F,(¢) are the ad-
vective and turbulent diffusion operators as defined in
TRL. For the turbulence coefficient we used a semi-
empiric approach based on Monin and Yaglom (1967).

Computation time was reduced by using movable
side and upper boundaries as follows:

t o
ot 2

H(1) = H,(—’>a,
tch

where R(t) is the lateral boundary, L, is the size of the
domain in the radial direction (6000 m in this work),
H(t) is the upper boundary, and H, is the size of the
domain in the vertical direction (9000 m in this study).
The parameter 7., is the characteristic time of the sim-
ulation (abcut 1 h), and « is a constant parameter that
depends on the rate of convective development (usu-
ally around 0.2), such that the results are the same as
those obtained with fixed boundaries.

All equations were solved using an explicit for-
ward time difference scheme. Spatial derivatives
were formulated in conservative form using a sec-
ond-order scheme according to Bryan (1966), which
avoids nonlinear instabilities. For positive-definite
variables like number and mass concentrations, a
first- or second-order positive-definite hybrid scheme
was used, similar to that of Hall (1980). The nu-
merical procedures and the coupling of the micro-
physics and dynamics are similar to Ogura and
Takahashi (1973) and Soong (1974).

In all simulations the grid size was set to 150 m in
the radial direction and 300 m in the vertical, and the
dynamic time step was 5 s. Open boundaries conditions
were assumed for all the variables.

and

(5)

b. The microphysical model

The temporal changes in the particles size distribu-
tion function n(m, z, r, t) with respect to mass m at
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location (z, ) and time ¢ due to microphysical pro-
cesses can be written as

on,(m,z,r,t) |dén,(m,z,r,t)
ot ot nuct

én,(m,z,r,t)]
+ At A S St S
[ ot

én,(m,z,r,t)]
+ ikt A Skl Bk A A
[ ot

4 [6ny(m, Z, 1, 1) N [6ny(m, z, r, t)]
6t sedim at freezing

6ny(m9 25 r’ t)
i l: 6t ]melling ’ (6)

where n,(m, z, r, t) is the size distribution function of
the species y: water drops, ice crystals, graupel, or
snow particles.

Figure 1 is a schematic representation of the different
microphysical processes considered in the model.

Ice crystals were created by nucleation of IN or by
freezing of drops smaller than 100 um in radius. We
assumed that ice crystals are mostly nucleated in the
temperature range —10° to —20°C, where planar-type
crystals are formed (Alheit et al. 1990). The ice crys-
tals were assumed to be oblate spheroids. Snow parti-
cles formed by aggregation of ice crystals and were
considered to be spherical. Graupel particles were
spherical and were formed by freezing of drops with
radii larger than 100 pm and/or by different processes
of particles coagulation, as will be explained later. The
density of the graupel was assumed to be 0.4 g cm™*;
hail formation was not considered. The ice crystal den-
sity varied from 0.9 g cm™ for the smallest particles
down to 0.45 g cm™ for the biggest. The density for
the snow particles was fixed at 0.2 g cm ™.

The particles spectrum was divided into 34 bins (x,,
k =1, ---,34), with mass doubling in each bin:

Jcond/evap, depos/sublim

A coll/breakup, ice interac

(7)

The initial mass was x; = 1.598 X 10" g, correspond-
ing to drops with a diameter of 3.125 pm. The maxi-
mum mass was x;s = 1.7468 X 10~' g, which corre-
sponds to drops 8063 ym in diameter.

The multimoments method was used in all mathe-
matical formulations. This method, based on Tzivion
(1980) and Tzivion et al. (1987), solves for two or
more physical moments of the particle distribution
function while maintaining the balance between the dif-
ferent moments. To obtain a set of moment equations
for each bin for each species, the operator f:‘“ m’dm
is applied to both sides of Eq. (6). In the present case
we solve for the two first moments of the category dis-
tribution function, N,, and M, , the number and mass

Yk
concentration of species y in the kth bin, respectively:

Xpst = 2.
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FiG. 1. Schematic representation of the microphysical processes considered in the model. The dashed lines indicate processes that include
only interactions with particles of the same kind. Solid lines connect interacting species, and arrows point in the direction of the result.

N, = f n, (m, t)ydm, (8)

Xk

Xk+1
M, =

Xk

mn, (m, t)dm. )
Here, y represents drops (w), ice crystals (i), graupel
(g), or snow (s) particles. The dependence on z and r
is implicit in the above equations. As Tzivion et al.
(1987) showed, the category distribution function n,,
is prescribed only when the integration is over an in-
complete category interval. In such cases the distribu-
tion function is approximated using a linear function,
positive within the category. A nondimensional param-
eter that relates different moments is used to close the
system of the category moment equations. The two-
moment approach gives a relatively accurate and effi-
cient method to solve equations of microphysical pro-
cesses in clouds. In comparison to one-moment nu-
merical methods (e.g., Bleck 1970), the average mass
in a category (m, = M,/N,) is not constrained to remain
constant but can change in time according to the num-
ber and mass concentration in the category.

The time step for all the microphysical processes,
apart from diffusional growth or evaporation processes,
was 5 s.

1) NUCLEATION OF WATER DROPS

The number of drops that can be activated at a certain
supersaturation is determined according to a CCN ac-
tivation spectra in the form (Twomey 1959)

No = NoS3, (10)

where N, is the number concentration of drops that
can be activated at a certain supersaturation S,,(%)
(with respect to water) and N, and a are empirical pa-
rameters (different for continental and maritime
clouds).

To account for the fact that CCN of different sizes
are activated at different supersaturations, we divided
the number concentration of the CCN particles into six
discrete categories as a function of the critical super-
saturation according to

NCCNk =N0kgk(swk), k= 19 T, 69 (11)

where #.(S.,,) is some function of the supersaturation.
For supersaturations lower than 1%, this function was
equal to the usual S5, as in Eq. (10). CCN activation
spectra are usually measured for supersaturations lower
than 1%, extrapolating these spectra to higher super-
saturation might produce very high concentrations of
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activated drops. Therefore, in order to constrain the in-
crease of Nccn, with the supersaturation, we assumed
that for high supersaturations %, = exp[(S,, — 1)/10].
In this approach we were inspired by Flossmann
(1991), who showed that the number of CCN active
at a certain supersaturation increases very little for su-
persaturations higher than 1%. At each time step, N,
is calculated according to Eq. (10) and compared with
the available CCN spectra Nccy,. The number of new
drops activated is given by the minimum between
(E’f'sw"<sw NCCNk) and Nact-

Finally, the CCN spectrum is updated based on the
number of drops actually nucleated. CCN are de-
pleted according to their activation efficiency: the
most efficient ones, those that nucleate first, get de-
pleted first. In the next time step the dynamic Eq. (3)
is applied.

Newborn drops are distributed according to a pre-
determined function. We considered two such func-
tions: a complete gamma function and an exponential
function. The distribution in the former is in the form

f(r) = Arfe 57, (12)

where § and vy are parameters. Parameters A and B are
functions of 8, y, and 7 (the average radius of the nu-
cleated drops distribution), and the normalization is
carried out according to the number of nucleated drops.
For maritime clouds we used 8 = 2, y = 1, and 7
=11 pm (a broad spectrum) and for moderate maritime
clouds § = 6, ¥ = 4, and ¥ = 5 um (a narrower spec-
trum).

Even when using the parameters for narrow spectra,
the drop spectrum produced by the complete gamma
function has a long tail containing a few large drops.
Such a spectrum is inappropriate for simulating ex-
treme continental clouds. In those cases we used an
exponential function in the form

fry=Ae™""", (13)

where 7 is the average radius of the distribution. The
coefficient A is found by normalization of f(r). For
both functions we assumed the average mass of the
nucleated drops to be 1.5x;.

In cases where the complete gamma function was
used, the average radius of the distribution was consid-
ered to be a function of the supersaturation—the higher
the supersaturation, the smaller the average radius—
according to

F = Foax exp(—S,/85). (14)

For maritime clouds we used 7., = 11 pm and §
= 7.2 and for the continental clouds 7., = 5 um and
S = 8.2 (where S is in %). The values of S were de-
termined so that r would be larger than the minimal
radii of the drop spectra.

The total mass of the nucleated drops is limited by the
water vapor made available by the vapor field. If there
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was not enough vapor to nucleate all the CCN that could
be activated at the particular supersaturation, the mass and
concentration of the nucleated drops were reduced and
renormalized. Consequently, the activated drops were
converted back to CCN, starting with the smallest ones
and continuing until the mass limitation was reached. The
available mass is calculated according to (Soong 1974)

st = — ASu(®)

= 15
AJ[P(1), T(1)] ()

where,

AP, T()] =1 + ff"—"—

" (16)

AS, (1) is the specific humidity surplus with respect to
water defined as the difference between the existing
specific humidity and the specific humidity at satura-
tion [see Eq. (B1)], and ¢, is the saturation specific
humidity with respect to water.

The specific vapor perturbation and the supersatu-
ration were recalculated after the depletion of water
vapor by nucleation. The temperature was also updated
following the release of latent heat.

2) NUCLEATION OF ICE PARTICLES

We parameterized the ice nucleation process by con-
sidering activation spectra of IN that depend on both
the temperature and supersaturation with respect to ice,
as given by Meyers et al. (1992). Accordingly, the
number of ice crystals per liter nucleated at a certain
temperature and supersaturation with respect to ice is

N, = exp[—2.8 + 0.262(T, — T)]
+ exp(—0.639 + 0.1296S,), (17)

where & is the category of the initial size of the nucle-
ated ice crystal (assumed to be 5 ym). The first term
corresponds to the number of ice crystals predicted due
to the contact freezing mechanism. Since aerosols scav-
enging was not modeled, it is implicitly assumed that
all contact nuclei active at a certain temperature were
immediately scavenged. Without a scavenging model,
this term provides an upper bound to the number of ice
crystals activated by contact nucleation. The second
term accounts for the nucleation by deposition or con-
densation freezing. We assumed contact freezing nu-
cleation to be active at temperatures colder than —2°C
and deposition or condensation-freezing nucleation at
temperatures colder than —5°C.

At each time step N, is calculated according to Eq.
(17) and compared with the previous number of acti-
vated ice particles N,qice. If N,oice is greater than N,
no nucleation occurs; otherwise, (N — Nyice) is the
actual number of new ice crystals created. This pro-
cedure is similar to that applied by Clark (1974) for
nucleation of drops. Subsequently, N, . is updated,
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and in the next time step the dynamic equat1on (4) is
applied.

Because of the difficulties in quantitatively charac-
terizing the Hallet—Mossop mechanism (Hallet and
Mossop 1974) for secondary ice production, in terms
of drop sizes, graupel sizes, temperature, and splinter
sizes, we decided not to consider this process in the
present model. This is a deficiency of the model that
will be corrected in the future as more data becomes
available. With this assumption we can expect the num-
ber of ice particles created at temperature > —10°C to
be somewhat underestimated, especially in maritime
clouds. This deficiency is partly alleviated by taking
into account processes such as nucleation by contact,
condensation, and freezing, as well as the dependence
of nucleation on supersaturation. In fact, our predicted
ice concentrations were relatively high, especially at
the warmer temperatures.

The available water vapor limitation is also applied
here, similar to the case for nucleation of drops. The
specific vapor perturbation and the supersaturation are
updated appropriately.

3) DROP FREEZING

In this model graupel and ice crystals can be created
by drop freezing. According to Bigg (1953), the num-
ber of frozen drops per unit time depends on the num-
ber of drops, their mass, and the supercooling:

dNi(m,t) m _ _

ar N,(m, 1) . A exp[B(T,
where N is the number of frozen drops w1th mass .
The parameters A and B are equal to 10~* cm™* s ™' and
0.66 deg ™', respectively, as those used by Orville and
Kopp (1977). Accordingly, the number of frozen drops
and their mass in category k during At (z, = to + At)
is given by

)}, (18)

Ny, = N,,(t) { 1- exp[— ﬂlexp(EAT)At]}
(19)
and
Mfk = karﬁwk. (20)

In our model, frozen drops with radii greater than
100 pm are transferred to graupel or they are assigned
to ice crystals (Alheit et al. 1990). At the end of each
time step the temperature is recalculated according to
the amount of latent heat released in the process.

4) DIFFUSIONAL GROWTH AND EVAPORATION OF
DROPS AND ICE PARTICLES

The solution of the simultaneous diffusional growth
(or evaporation) of drops and ice particles is based on
Tzivion et al.’s (1989) solution for evaporation of wa-
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ter drops. The stochastic equation for condensation/
evaporation of drops and/or for the deposition/subli-
mation of ice particles is of the form

on,(m,t)
ot

cond/evap, sublim/depos

oo () |
== nim,t) » (21
6m ' dt cond/evap, depos/sublim

where y = w, i, g, s (drops, ice particles, graupel, and
snow, respectively). The rate of change of mass for a
single particle is given by

dt cond/evap, sublim/depos

= Coul P(2), T(D1AS,i ()m'?

where we have neglected curvature and solute effects.

Here, AS,,; (the specific humidity surplus with re-
spect to water and ice, respectively); P, T (pressure
and temperature, respectively); and n, are also func-
tions of (z, r). Where C,, (P, T) are known functions
of P and T for water (w) and ice particles (x = g, i,
5), as given by Pruppacher and Klett (1978):

3 1/3
C.(P,T)= <47rp )

(22)

47,
% L /L e RT (23)
1 W[k,,T (R.,T B 1) " Dvesa,‘w]
and
* £
CAP, T) = — Z:C" Jo 1 @
w|ir (1) pa )
The ventilation factor for drops is given by
1.00 + 0.108x%, x = Ng’NiZ< 14
e {0.78 +0308y x=14
(25)
and for ice barticles by
1.00 + 0.14x%, x =N{PNE2 < 1.0
w {0.86 +028x: x =10,
(26}

both after Pruppacher and Klett (1978).

In Eq. (24), C¥ is the shape factor of the ice parti- -
cles (oblate spheroid for ice crystals, spheroid for grau-
pel and snow), expressed as a coefficient of m'’*. The
Reynolds number (N, ) for the ice crystals is defined in
terms of the characteristic length L*, which is the ratio
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of the total surface area of the particle to the perimeter
of the area projected normal to the flow direction. The
relationship between the thickness and the diameter of
the unrimed ice crystals is calculated based on Auer
and Veal (1970). The other parameters are defined in
appendix A.

The analytical solution of Eq. (21) for a single time
step At is given by (Tzivion et al. 1989)

1 2 172
ny(m, 1+ At) = — [(mm -3 Tw/x) ]

) an
X ny[<m2’3 - §Twlx) , t] .27

We assume that C,,(P, T) and C,(P, T) remain con-
stant during At and that

1+ At

Cwlx(P, T) ASW,,-(t)dt.

t

Twix = (28)

The moments N, and M,, in each category can be
calculated at time ¢ + At according to Egs. (8) and
(9), respectively:

N, (t + Ar) = f n,(m,ydm  (29)

44

%

Zk+1 2 372
M}’k(t + At) = f [m2/3 + § Tw/x] nyk(mv t)dm,

(30)
where
2 372 5 3
A= I:-xl%/:; - 5 7-wlx] s Ler1 & lix%-/gl - 5 Tw/x] .
(31)

In order to calculate r,,., we have to solve the
integral of AS,, and AS; for one time step. The ex-
pressions for the integrals of the supersaturations are
given by integration of Eqs. (B27) and (B28) in ap-
pendix B:

" asundr = asuar— (=2 ir.as
, w = w RW+R,' w w
{1 = exp[— (R, + R)Ar]})
+P,-AS,~]{1 (R. + R)At }
(32)
and
14 At
{1 = expl=(R, + R)A}
+R,-AS,~]{1 (R. + R)At },
(33)

where R, ; and P, are defined in appendix B.

REISIN ET AL.

503

From these last two equations we can see that when
drops and ice particles grow (or evaporate) simulta-
neously the supersaturations with respect to water and
to ice depend on the concentration and average mass
of the drops and ice particles present. As a special case,
when the temperature is warmer than 0°C or when no
ice is present at T < 0°C, R; and P, are zero, and Eq.
(32) becomes the original equation for f AS, dt, as ap-
pears in Tzivion et al. (1989).

During condensation, AS,, (¢ + At) can change its sign
within one time step. During diffusional growth, the su-
persaturations with respect to water and to ice steadily
decrease until water saturation is reached, at which point
ice particles continue to grow by deposition and water
vapor pressure continues to decrease. At the same time,
water drops. begin to evaporate because the water vapor
pressure is subsaturated with respect to water (ice parti-
cles grow by the Bergeron—Findeisen process). Thus,
within one time step there is a switch from condensation
to evaporation of the water drops. Therefore, in case AS,,
> 0, we calculate At¥ (the time required for the specific
humidity surplus with respect to water to change its sign
and become negative) from Eq. (B29) (see appendix B);
if Ar¥ < Ar (and positive), we split the calculation
within one time step: At} is used to calculate the growth
of drops and ice particles, and At — At} is used for the
evaporation of the drops and the growth of the ice parti-
cles. A similar process may occur when sublimation of
ice can switch over to deposition. The time step At used
for these processes is 2.5 s.

Since in the model we did not follow the number,
size, or type of the nuclei (CCN or IN) inside the hy-
drometeors, we have no way of knowing what kind of
particles are released after evaporation. Subsequently,
the model does not consider the recycling of CCN or
IN. In separate tests conducted with a warm cloud
(only CCN) we found that the recycling of CCN has
very little influence on the rain formation processes in
the type of convective clouds simulated here.

5) MELTING OF ICE PARTICLES

Melting is a difficult process to treat accurately in a
numerical model because water and ice can coexist in
the same particle. However, this process cannot be ig-
nored since it influences a number of important vari-
ables, by cooling the air, producing downdrafts, af-
fecting the fall speed of the particles by changing their
density, changing the particle size distribution by shed-
ding melted water from the ice particles, and affecting
the collision efficiencies of the particles. Usually, melt-
ing is crudely parameterized by assuming that ice in-
stantaneously melts at the 0°C isotherm (Khvoros-
tyanov et al. 1989) or some distance below. In this last
case the melting distance is calculated based on the
time required for the complete melting of the particle
and on its velocity (Takahashi 1976). Recently, Walko
et al. (1995) introduced in the Colorado State Univer-
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sity Regional Atmospheric Model System a thermo-
dynamic parameter used to diagnose the degree of
melting of the ice particles. This formulation, however,
is not included in the present model.

Melting of ice particles is treated in our model in a
way similar to evaporation. The stochastic equation for

melting is
onm, 1) — =2 im0 (22 :
" Oom dat j
melting melting
(34)

ot
where n,(m, t) represents the distribution function for
one of the ice species and

ld
(- m) = I(P, T)m'?.
melting

@ (35)

As given by Rassmussen and Heymsfield (1987),
I(P, T) is a function of pressure and tempera-

ture:
.
671’2 1/3 Ka _
(“—) 2(To—T),

i Li
Nge < 6 X 10°
I(P,T)= \ 6m2\!/?
(55) " fmemiecr, =),

pi

iw

Np. = 6 X 10°,
(36)

where K, is the thermal diffusivity; Ny, and Np, are the
Reynolds and Prandtl numbers, respectively; f, is the
ventilation factor given by

fo = 0.78 + 0.308N > NK2?; 37)

and x is 0.74 if N, = 2 X 10* or x = 0.57 + 9
X 107°Ng., otherwise.

By assuming that the temperature T remains constant
during one time step, the analytical solution to Eq. (35)
becomes similar to Eq. (27), (I(P, T) < 0):

1 o 2 : /2
nx(m,t+At)==F m" +§I(P, T)At

372
X nx{ [mz’3 + %I(P, T)At] , t} . (38)

Equations for the moments in the category are similar
to Egs. (29)-(31), where 7 = I(P, T)At.

After calculating the mass of ice that melted during
one time step, we shed this mass to form two drops of
equal mass [inspired by the description in Rasmussen
and Heymsfield (1987)]. If the mass of these created
drops is smaller than the lower limit of the first cate-
gory, we still put them into the first category but nor-
malize the number concentration to ensure mass con-
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servation. We recognize that the parameterization de-
scribing the redistribution of the shedded drops from
the melted ice particles is crude. But unfortunately,
there are no consistent and reliable experimental data
that could be used. In addition, in the model the size
distribution of the shedded drops depends on the inte-
gration time step, because the mass of the melted ice
also depends on the same time. Fortunately, melting
becomes important when big hydrometeors are already
present, so that rain formation is not seriously affected
by this parameterization.

6) DROP—DROP, ICE—ICE, ICE—DROP INTERACTIONS
AND BREAKUP OF DROPS

The model considers collisional coagulation between
the different species, as well as collisional breakup of
drops. These interactions can lead to the transformation
from one particle type to another. We made the follow-
ing assumptions.

1) Snow particles are formed and grow by aggre-
gation of ice crystals.

2) Ice crystals can grow by riming with drops
smaller than themselves as long as the overall rimed
mass is less than the mass of the ice crystal itself (or a
certain fraction of it); otherwise, the ice crystal be-
comes a graupel particle.

3) The interactions between graupel and other par-
ticles always produce graupel.

4) Graupel is also created by drops that collide with

snow particles and ice crystals smaller than themselves.

A summary of the different particle interactions is
presented in Table 1. Using the stochastic collision
equation, gain and loss terms are formulated according
to the interactions indicated in Table 1, and a set of

TABLE 1. Summary of ice—ice and ice—drop interactions. The gain
and loss columns are for a specific category k.

Gain Loss
Drops drops + drops drops + drops
drops + ice
drops + snow
drops + graupel
Ice ice + drops (m; > m,) ice + ice
ice + drops
ice + snow
. ice + graupel
Snow ice + ice snow + snow
snow + snow snow + drops
snow + ice snow + ice
snow + drops (m, > m,,) snow + graupel
Graupel graupel + graupel graupel + graupel

graupel + snow

graupel + ice

graupel + drops

snow + drops (m,, > m,)
ice + drops (m,, > m,)

graupel + drops
graupel + ice
graupel + snow
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four equations is obtained for the four distribution func-
tions of the different species (see appendix C). These
equations are transformed into moment equations,
yielding a set of equations for the specific mass and
number of the different particles. Using the method of
multimoments, these equations can be solved based on
the solution presented by Tzivion et al. (1987) and
Feingold et al. (1988). The complication here is that,
due to the interaction of particles of different type, par-
ticles may lose their identity and become members of
a different species (e.g., a big drop collides with a small
graupel and becomes a big graupel). For this reason,
the equations for the moments of the different species
must be separated into exact gain and loss terms to
ensure overall mass conservation. An example of the
algorithm for this process is shown in appendix C.

The kernel of Low and List (1982a,b) was used for
raindrops larger than 0.6 mm. In the region 0.1-0.6
mm, the coalescence efficiencies of Ochs et al. (1986)
were employed as collection efficiencies (assuming
that the collision efficiencies in this range are close to
unity ). The work of Ochs et al. covers the range 0.1—
0.3 mm, but due to lack of better data, we assume that
their results can be extended to 0.6 mm. For smaller
droplets the collision efficiencies of Long (1974) were
adapted.

The collision efficiencies between graupel and drops
were calculated according to Hall (1980) and Rasmus-
sen and Heymsfield (1985). The available experimen-
tal and theoretical data on the collision efficiencies be-
tween ice crystals and drops are rather scarce. For ice
crystals (plates) colliding with drops we used the col-
lision efficiencies given by Martin et al. (1982) and for
large supercooled drops colliding with planar ice crys-
tals we used the coefficients calculated by Lew et al.
(1985). The data for collision efficiencies as given by
Martin et al. (1982) do not cover the full range of ice
particles and drop sizes required by the model. The data
can be mathematically extrapolated for the whole
range, resulting in unrealistically very low efficiencies
for large ice particles colliding with smaller drops.
Chen (1992) suggested a different approach to fill the
gaps in the data. The collision efficiencies reach a min-
imum for similar terminal velocities of the colliding ice
particle and drop, after which the coefficients grow be-
cause the difference in terminal velocities changes sign
and increases. One can consider that the efficiencies
behave in a similar way to those of large drops colliding
with smaller ice crystals, as given by Lew et al. (1985).
These two different approaches produce very different
results for the kernel of the interactions. The simple
extrapolation produced unrealisticly low rates of rim-
ing. This was especially true for large ice crystals that
continued to grow by deposition but not by riming,
preventing them from becoming graupel. Rain was not
produced in continental clouds (for CCN concentra-
tions higher than 900 cm™ at 1% supersaturation) or
it began only after almost 2 h of cloud simulation. Con-
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sequently, the collision efficiencies were corrected to
those proposed by Chen (1992). Coalescence efficien-
cies for interactions between ice—ice, ice—snow, ice—
graupel, snow—snow, snow-graupel, and graupel—

_ graupel were used in accordance with Wang and Chang

(1993), in which the dependence on temperature was
considered.
7) SEDIMENTATION OF DROPS AND ICE PARTICLES
The equation for sedimentation is given by

on(m,z,r,t) 0 ‘
at - 62 [nx(m7 2, 7T, t)vx(m’ Z)]
(39)

The fall velocity of drops is given by

pa(2)

where i, is the average mass in category k, (a, B) are
drop mass-dependent parameters according to Beard
(1976), and p, is the air density.

The terminal fall velocities for the ice particles are
calculated according to Bohm’s (1989) formulation:

_ 04
vw(m,z)=vwk(z)=amfk[&£z"—m] . (40)

Ren [ w\'?
= - 41
vX(m’ Z) = vXk(Z) 2pa(Z) <Axk> ’ ( )
where
Re = 85[(1 + 0.1519xV%)12 - 112 (42)
and
8mgp. { A \"*
= _—"ofd T % . 43
x= e (2 (43)

In Eq. (43), A¥ is the effective projected area pre-
sented to the flow by an ice particle of type x with mass
my, and A, is the circumscribed area defined as the area
of the smallest circle or ellipse that completely contains
A}; n is the kinematic viscosity.

From Egs. (39), (8), and (9), we get advection-type
equations for M, and N, . We solve them using the
positive-definite advection scheme of Smolarkiewicz
(1983) in order to minimize numerical diffusion.

3. Results

We present here the results obtained for a test case
on a continental cloud.

The initial conditions were given by a theoretical
profile of temperature and relative humidity as shown
in Fig. 2 (dewpoint is plotted instead of relative hu-
midity). The temperature and pressure at the surface
were 16°C and 1007 hPa. For initialization, a pulse of
heat that produced a 2°C perturbation was applied for
one time step at # = 0 at a height of 600 m, 150 m off
the axis.
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FIG. 2. Vertical profiles of temperature and dewpoint.

The nucleated drops were distributed according to
an exponential function with average radii of 3 ym.
The parameters of the activation spectra were N,
= 900 cm* and a = 0.8, characteristic of continental
clouds. The model was run-until the maximum rain rate
decreased below 1 mm h™' (80 min).

Ten minutes after model initialization a cloud began

to form. The vertical velocity at cloud axis rapidly in-
creased and reached a maximum of 14 m s~ at 3000-m
height, 22 min from cloud formation (Fig. 3). At that
time the liquid water content (LWC) also reached its
maximum value of 3.8 g kg™ at 4200-m height. The
ice crystal mass content at this stage was less than 0.03
g kg~', and the graupel mass content was negligible.
In Fig. 3, contours of the drop, graupel, and ice crystal
mass content are displayed on the background of the
wind field, at the time (32 min )‘of maximum dynamic
development. The cloud base was at 1200 m at 5°C,
and the cloud top at 4800 m (defined as the place where
the relative humidity decreased below 100% ); the tem-
perature was —19°C, and the 0°C isotherm was located
at around 1800 m (700 m above cloud base).
Following this stage, the growth of ice accelerated,
and intense riming began. Figure 4 presents the con-
tours of the drop, graupel, and ice mass content during
the mature stage, 40 min from model initiation, when
the graupel mass content exceeded the ice mass content
and drizzle began. The updrafts at the cloud axis were
still vigorous (11.5 m s™'), but downdrafts began at
the cloud edge. At this stage the maximum graupel and

JOURNAL OF THE ATMOSPHERIC SCIENCES

V_ox.. 53, No. 3

AL B 0 L LML L N N B BB BN AR

R
"""""""" MaxW: 1424 m s’ "
Time: 32 min b

ewo - - « « « « ¢

g

Height (m)

0 1000 3000

2000
Radial Distance (m)

FiG. 3. Contours of equal mass content (g kg™') for drops, graupel
and ice crystals, and wind vectors (m s~') 32 min from model initi-
ation (22 min from cloud formation) at the stage of maximum dy-
namic development. The horizontal dashed lines are isotherms.

ice mass content were located about 1 km off the cloud
axis, while the maximum LWC was right at cloud axis.

The decay stage -of the cloud is depicted in Fig. 5.
Fifty-two min from model initiation, rain reached its
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FiG. 4. Contours of equal mass content (g kg™") for drops, graupel
and ice crystals, and wind vectors (m s~') 40 min from model initi-
ation (30 min from cloud formation) during the mature stage of the
cloud. The horizontal dashed lines are isotherms.
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maximum intensity: 24 mm h™' at cloud axis and 26
mm h ' 300 m off the axis. The downdrafts at cloud
axis were also at their maximum: —15.4 m s~'. While
the graupel mass content reached its maximum value
of almost 1 gkg™', the LWC decreased significantly
to 0.61 g kg~', a decrease that stemmed mainly from
riming, collection by graupel, and rain washout. The
drastic reduction in water content resulted in a decrease
in the riming process and a slowdown of mass growth
of the ice crystals.

Figure 6 shows that as the cloud approached the
stage of complete dissipation (72 min from model ini-
tialization) it remained almost completely glaciated,
with ice mass loading of 0.6 g kg~', a smaller amount
of graupel (0.3 gkg™'), and a very small pocket of
LWC close to cloud top. A small amount of water from
the melting of ice particles formed below 2000 m. At
this stage, rain intensity rapidly decreased to below 2
mmh™'.

Ice crystals appeared as soon as the cloud top
reached the —5°C level, =15 min from model initia-
tion. Figure 7 shows the contours of ice crystals and
graupel number concentration at four different times
(as in Figs. 3—-6). At the stage of maximum develop-
ment, ice crystal concentration reached its maximum
value of 16 L', at a height of ~4000 m (~16°C), at
a time when graupel concentration was less than 0.01
L~'. During the mature stage, the graupel concentra-
tion rapidly increased to 0.6 L™" at 40 min. This max-
imum was located directly below the maximum of the
ice crystals concentration, ~2 km off the cloud axis, at
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FiG. 5. Contours of equal mass content (g kg™') for drops, graupel
and ice crystals, and wind vectors (m s™') 52 min from model initi-
ation (42 min from cloud formation) during the decay stage of the
cloud. The horizontal dashed lines are isotherms.
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FIG. 6. Contours of equal mass content (g kg™") for drops, graupel
and ice crystals, and wind vectors (m s™') 72 min from model initi-
ation (62 min from cloud formation) during the final dissipation of
the cloud. The horizontal dashed lines are isotherms.

a temperature of —10°C. A maximum graupel concen-
tration of 1 L' was obtained during the decay stage
(52 min) at 1800-m height (very close to the 0°C iso-
therm), ~1000 m off the cloud axis. The ice crystal
concentration decreased to half its maximum, 8 L',
Close to the final dissipation stage (72 min) graupel
descended to the lower parts of the cloud.

At the end of the simulation, the accumulated rain at
cloud axis was 4.6 mm and reached a maximum of 5.1
mm at 300 m off the axis, beyond which the rain
sharply decreased to almost negligible amounts at 1 km
off the axis. The rain began 30 min after cloud for-
mation and rapidly increased in intensity; the major
fraction of the rain fell between 4858 min from cloud
initiation.

Figure 8 illustrates the total mass in the cloud for
the different particle types as a function of time, nor-
malized with respect to maximum LWC. The total
LWC in the cloud reached its maximum value 36 min
from model initialization, at which time the total mass
of the ice crystals was 1% that of the drops and the
graupel mass was less than 0.3%. At the same time,
the total mass loading (water + ice crystals + graupel
+ snow) of the cloud reached its maximum. After this
time the amount of water and ice mass that evaporated
or precipitated exceeded the amount of mass conden-
sated on drops or ice particles inside the cloud. The
graupel mass rapidly increased as a result of graupel
production by riming and drops freezing. Twenty-four
minutes later, most of the cloud mass (30% of the
maximum LWC) was in the form of graupel, while
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the drops mass content composed only 20%, and the

rain, the total mass of the ice crystals became predom-

inant and constituted 25% of the maximum LWC, the
ice crystal mass about 12%. After the period of heavy drops and graupel mass content were significantly de-
pleted (no more than 0.7%), and the snow mass stead-
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F1G. 8. Percent of the total mass for each species normalized with
respect the maximum LWC, as a function of time.

ily increased but never reached even 0.1% of the max-
imum LWC.

Analysis of the distribution functions

Distribution functions for the mass and number
concentrations of the drops are shown in Fig. 9 at
150 m from cloud axis, 3000-m height (—10°C), and
at seven different times during the mature and decay
stages of the cloud. In terms of number density, the
spectrum remained rather narrow, and drops larger
than 100 pm in diameter were not produced in sig-
nificant concentrations. The mass distributions did
reveal, however, that a bimodality developed through
the collision—coalescence process (Bleck 1970; Tzi-
vion et al. 1987), especially at 3000 m. As was al-
ready pointed out, the concentrations of these large
drops were very low compared to the total number
concentration of the drops. Similar plots but at the
1200-m level are shown in Fig. 10. Here, the small
drops were depleted as soon as rain began and big
drops appeared. It should be noted that big drops al-
ready appeared at 36 min, 1350 m off the cloud axis
(not shown), confirming that the rain spread from
the outer parts of the cloud toward the axis, as men-
tioned before. The different peaks seen in the rain-
drops range at 1200 m were partly created by the
shedded water from the melting of ice particles.

The distribution functions for the ice particles are
shown in Fig. 11 at 150 m from cloud axis, 4200-m
height (—17°C), at the same times as Fig. 9. The
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peak at the smaller sizes (~10 um), especially at the
earlier times, was related to the recent nucleation on
IN. Later on when most IN were depleted, this peak
vanished. The other peaks in the number concentra-
tion spectra that appear at higher elevations resulted
from the ascent of ice particles that were nucleated
below and accumulated mass in the updraft. Some of
the ice was due to the contribution from frozen small
drops. From both mass and number distributions it
can be seen that during the stage of intense riming
(36-52 min) ice crystals did not exceed the 1000-
pm diameter. This is because at these sizes many of
the ice crystals were converted to graupel. When the
number of drops was depleted, riming became inef-
fective and graupel production stopped (~52 min),
enabling ice crystals to continue to grow by vapor
deposition. At 1200-m height (not shown) a distinct
spectrum of melting particles was observed, down to
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F1G. 9. Mass (top) and number (bottom) concentration distribution
functions for drops at 150 m from cloud axis, 3000-m height
(= —10°C), and at different times (in min).
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very small sizes corresponding to particles that did
not completely melit.

The graupel spectra, shown in Fig. 12 for the same lo-
cation and times as Fig. 11, show that particles appeared
at sizes where the ice crystals abruptly terminated, indi-
cating that graupel particles were mainly produced by rim-
ing of ice crystals. As can be seen, graupel reached very
big sizes. The general shape of the distribution obtained
for the graupel at 1200 m (not shown) was somewhat
similar to that obtained for the ice particles, except that the
sizes of the graupel particles were much greater. This led
to the graupel mass being greater by more than one order
of magnitude than the ice mass.

Snow particle distributions are not shown since their
number and mass concentrations were several orders of
magnitude lower than those of ice crystals or graupel.
Snow particles did not play a significant role in the
formation of rain in the convective cloud simulated in
this case.
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4. Summary and conclusions

An axisymmetric cloud model with detailed micro-
physics for both warm and cold processes was pre-
sented. The model is unique for many reasons.

1) All processes are formulated using the method of
moments, and two physical moments of the distribution
functions are calculated: number and mass concentration.

2) The processes of diffusional growth, collision—
coalescence, collisional breakup, and melting are
solved with stochastic equations.

3) The diffusional growth in the mixed phase (va-
por—water—ice) is calculated simultaneously for drops
and ice particles, which means that the supersaturation
with respect to both ice and water can be solved with
relatively high accuracy.
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Fig. 11. Mass (top) and number (bottom) concentration distribu-
tion functions for ice crystals at 150 m from cloud axis, 4200-m
height (~ —17°C), and at different times (in min).
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tion functions for graupels at 150 m from cloud axis, 4200-m height
(~ —17°C), and at different times (in min).

4) The collisional coalescence between ice—ice and
ice—drops is formulated such that the overall mass is
conserved and the changes in number concentrations
are explicitly calculated independent from the mass
concentration (in contrast to the one-moment methods).

5) The scheme for drop nucleation is inexpensive in
computing time and provides a good parameterization
by considering a distribution function for the activation
of CCN as a function of supersaturation.

The simulation of a continental cloud demonstrated
the ability of the model to simulate rain formation pro-
cesses in convective clouds. Drop growth by conden-
sation and coagulation, ice initiation by nucleation or
drop freezing, riming and subsequent production of
graupel were efficiently simulated. The effects of melt-
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ing of ice particles on the precipitation and sedimen-
tation of other hydrometeors were also considered.
Analysis of mass and number concentration distribu-
tion functions provides an important insight into the
microphysical processes involved in rain formation.

One of the important things that came out of the present
simulation is that at the time of rain formation, even though
ice particles grow very rapidly by diffusion, their low con-
centrations do not reduce the humidity to below water sat-
uration and, therefore, do not lead to drop evaporation, in
contrast to that predicted by the Bergeron—Findeisen
mechanism (Cotton and Anthes 1989).

Part IT of this work will compare the results of sim-
ulations carried out with different initial spectra of
drops and ice particles. The main processes involved
in rain formation in maritime and continental clouds
will be inferred from the results.
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APPENDIX A
Definitions of Symbols Used in the Model
All units are in mks, unless otherwise stated.

A,B functions of the parameters
and average radius of the
distribution function of
newborn drops

parameters used in the formula
for drop freezing

known functions of pressure

and temperature

A,B

Aw(P, T), Ai (Pv T)
C.(P,T); Ci(P, T)

Ak effective projected area pre-
sented to the flow by an ice
particle of type x and mass m,

A, area of the smallest circle or
ellipse that completely con-
tains A X

B(x,y) breakup kernel between drops
with masses x and y

c specific heat at constant pressure

C¥,L* shape factor and characteristic
length for the ice particles,
respectively

C, constant

Cop(x,y) collection kernel between par-
ticles of type a and b

Ci.i approximation of the collec-

tion kernel for categories k
and i
D advection operator
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D,

€sarwy Csati
E(x,y)
Jows Soi
£

f(r)

%

GN(a.b),k; GM , 1y

GN, GM

H,R

J’ JCCN

K(x,y)
m
iy, Xy

my

L9 Lui’ Liw

LN py s LM gk
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molecular diffusion coefficient

vapor pressure at saturation
with respect to water and
ice, respectively

collection efficiency for parti-
cles with mass x and y

ventilation factor for drops and
ice, respectively

ventilation factor for ice melt-
ing

distribution function of the
newborn drops

turbulence operator

a function of the supersatura-
tion in category k

magnitude of acceleration of
gravity

gain terms at category k due to
interaction between parti-
cles of type a and b for the
specific number and mass,
respectively

gain terms for the specific
number and mass, respec-
tively

upper and lateral boundary, re-
spectively

number of categories for the
cloud particles and the
CCN, respectively

index for the number of the
category

coefficient of thermal conduc-
tivity of air

category number of the initial
size of the nucleated ice
crystal

coefficient of thermal diffusivity

gravitational geometric collec-
tion kernel for particles with
masses x and y

mass

mass of the beginning of cat-
egory k ’

average mass in category k

latent heat of condensation,
sublimation, and melting,
respectively

loss terms at category k due to
interaction between parti-
cles of type a and b for the
specific number and mass,
respectively

LN, LM

M,
M

M, M M,

M,

k

ni’ gi

ni(ma z, r, t)

n,m,z,r,t)

n(m,z,r,t)
n.(m,z,r,t)
N

kaa M

N,., N

8k? Sk
Ncen,

Ny

Nacl ice

Nt

No, Ny,
NSC’ NRe’ NPr

Dx

Pw/i s Rw/i

M,
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loss terms for the specific
number and mass, respec-
tively

specific mass content in cate-
gory k

moment j of the distribution
function in category k

specific mass content in cate-
gory k for drops, ice, grau-
pel, and snow, respectively

specific mass of frozen drops
in category k

in appendix C, the mass distri-
bution function for drops
and graupel at category i,
respectively

ice size distribution function
with respect to mass m, at
location (z, r) and time ¢

graupel size distribution func-
tion with respect to mass m,
at location (z, r) and time
t

snow size distribution function
with respect to mass m, at
location (z, r) and time ¢

drop size distribution function
with respect to mass m, at
location (z, r) and time ¢

specific number in category k

specific number in category k
for drops, ice, graupel,
and snow, respectively

specific number of CCN in
category k

specific number of frozen
drops in category k

specific number of activated

© ice nuclei

specific number of activated
drops at a certain supersat-
uration

empirical parameters

Schmidt, Reynolds, and
Prandtl numbers, respec-
tively

ratio between the mass in cat-
egory k + 1 and the mass in
k

functions of P, T and the dis-
tribution functions of the
particles, used in the diffu-
sional growth process
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P(x:m,y)

9y
qs,w 5 qs,i

a, B,y
(8! 8t )

AS,,, AS;

At
AT

Po

pa(2)

REISIN

distribution function of drop
fragments x resulting from a
collision between m and y

specific humidity

saturation specific humidity
with respect to water and
ice, respectively

radial and vertical coordinates,
respectively

radius of particle of type x
(drops, ice crystal, snow, or
graupel )

average radius

maximum average radius and
average supersaturation, re-
spectively, used for estab-
lishing the average radius of
the newborn drops

universal gas constant

specific gas constant for water
vapor

supersaturation with respect to
water and ice, respectively
(in %)

air temperature

time

characteristic time of the sim-
ulation

radial and vertical velocity
components, respectively

terminal velocity for particles
of type x and in category k,
respectively

represents one of the ice spe-
cies (ice crystals, graupel,
Or Snow)

represents one of the cloud
species (drops, ice crystals,
graupel, or snow)

parameters

rate of change of parameter ¢
due to microphysical pro-
Cess xXxx

specific humidity surplus with
respect to water and to ice,
respectively [see definitions
in Egs. (B1) and (B2)}]

time step

subfreezing temperature

kinematic viscosity

density of the unperturbed at-
mosphere

density of air at height z
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Ty Tws Ti functions used in the diffusional
growth and melting processes
& nondimensional parameters
APPENDIX B

Simultaneous Growth of Drops and Ice by Diffusion

The specific humidity surpluses with respect to water
and to ice are defined as

AS () =q, — G5 (B1)
and
ASx(t) = qv — gs.i» (B2)

respectively.
The rate of change of the specific vapor and the tem-
perature due to diffusional growth is given by

dq. _ _[ (oM. om,
[ 5r)- 2 (%)) e

or_L L (M4
Bt"q<8t)+c 2 (m)' (B4)

P x=ig.s

and

Taking the time derivative of Eq. (B1) and inserting
Eqgs. (B2) and (B3), we get an expression for the rate
of change of the specific humidity surplus:

IAS,, Bqu 0q; 8qu 0q,.,, 0T

(M) (M) _0g.
T Na ) 2\ o oT
JLi g (M.
cl7x=i,g,s at
- s \ | ( OM,
- [“ ( 7)) (%)
L, ( 0q,,, oM,
-2 (%)] 2 (%)
x=ig,s
Similarly, for ice,
oAs, _ [, L(94.\] (M.
o ¢, \ oT ot
_ Li(9g.: oM.
[ 2 (%)) 2. (%) o

In order to get an expression for the rate of change of
the mass (OM/30¢), we integrate Eq. (21) over the en-
tire spectrum:

X

(B5)
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( 8My)
at cond/evap,depos/sublim
* dm
= t
J; n,(m, )( &

= Cuu(P, T)ASw,ij; m'n,(m, )ydm. (B7)

dm

)cond/evap,depos/ sublim

Replacing this last expression in Egs. (B5) and (B6),
we get a set of two partially coupled differential equa-
tions of the form

BA; (D) | R,AS,() + PAS, (1) =0 (BS)
and
a—Ag;(—’:f + RAS,(f) + P,AS,(1) = 0. (B9)
The different functions are defined as follows:
R,=A, (P, T)YC,(P,T) J:o m'n,(m, t)dm,
' (B10)

R =Bi(P,T) ¥, C.P, T)f m'n(m, t)dm,
- (B11)
P.=A/(P,T)C,(P,T) f: m'n,(m, t)dm,
(B12)

P, =B,(P,T) Y C.P, T)f m'*n.(m, t)dm,

x=i,g.5
(B13)
where
AP, T()] =1+ L% (g1a)
¢, dT ’
Ldg,;
P =1+ — B1
AP, T(H] =1 c dT’ (B15)
L, dq;.,
B[P =1+——, B1
[P(1), T(1)] =1 c, dT (B16)
L, dg,,
' = B
B;[P(t), T(H)] =1+ — . ar ( .17)
The integral [ m'*n(m, t)dm is approximated over

the discrete spectrum according to Tzivion et al.
(1989):

f mn(m, dm = Ep 3 AN, (BIS)

k=1
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where fl,g is a nondimensional parameter very close
to 1.
From Eq. (B8)-and (B9) we can write

2AaSz( ) + (R, +R) GA.;:(t)
+ (R,R, — P,P,)AS,(t) =0, (B19)
with a solution
AS, (1) = ce™™ + e ™, (B20)
where
m,={—(R,+R)*[(R, +R)?
-~ 4(R,R; — P,P,)]1"*}/2. (B21)

Putting Eq. (B20) into (B9), we get an equation for
AS;(t) = c16e™™ + 0,67, (B22)

where

m — R, m, — R,

The coefficients ¢, and ¢, can be found by setting initial
conditions at t = ¢,:

_AS,(10)6, —

c AS;(10) and
b 5, — 6,
AS; (20) — AS,(10)0,
= 5 — 6, . (B24)

We solve the equation for one time step (¢
— t + At) and we assume that during that time
R,.; and P,; remain constant. Using Eqgs. (B10) -

(B 16), the discriminant in Eq. (B21) can be
written '
(R,R, —P,P)~0 (B25)
Therefore,
m =0 and m,=—-(R,+ R). (B26)

Finally, the solution for AS, (¢ + At) is

[R,AS,(2) + PiAS(1)]
(R, + R:)

X [1 — exp~®+ROATY (B27)
and similarly for AS; (¢ + At) is

[R:AS, (1) + P, AS.(1)]
(R, + R;)

AS,(t + Ar) = AS,(1) —

AS;(t + At) = AS; (¢) —

—(RW+R,-)A1]

(B28)

When AS,, or AS; change sign during one time step,
as explained in section 2, we find the appropriate A¢*

X [1 —exp
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by solving for t when Egs. (B27) and (B28) are equal
to zero. Thus, we get

Apk = 1 n[l + (RW/P,-)(ASW/AS,-)]
" (R,+R) 1 — (R;/P;)(AS,/AS;)
(B29)
and
Ar¥ = 1 n[ 1+ (Ri/PW)(ASi/ASw)]
' (R, + R) 1 — (R,/P(AS;IAS,) |
(B30)

on,(m,z,r,t)
ot h

X X

y*=w,igs

YiY2=w,i8.5

o

X P(m;x,y)dy —n,(m,z,r, t) f
1]

where y is for w, i, g, or s. The Kroenecker delta is
used to select the interactions that produce a gain term
for the species y. The first term on the right side of Eq.
(C1) is for the gain interactions in the number of par-
ticles of mass m by the coalescence of all masses x and
m — x. The second one is for the loss interactions be-
tween species y with itself and with the other species.
The two last terms are according to Feingold et al.’s
(1988) formulation for the collisional breakup of water
drops. The third term is the gain in the number of drops
of mass m created by the collisional breakup of all
masses x and y (x + y = m), and the last term is the
number of drops of mass m lost through collision and
subsequent breakup of drops of mass m and y.

The collection kernel between particles of type a and
bis C,,(x,y), and B(x, y) is the breakup kernel. Both
are assumed to be independent of (z, ) and are defined
by

Ca,b(x’ }’) = Ka,b(x7 y)Ea,b(x, )’)
B(xa )’) = Kw,w(xy y)[l - Ew.w(xv )’)]

Further, K, ,(x, y) is the gravitational geometric col-
lection kernel for particles of type a and b with masses
x and y, respectively, and E, ,(x, y) is the collection
(collision + coalescence) efficiency for particles a and
b with masses x and y, respectively. For drops, we as-
sume that collection and breakup are mutually exclu-
sive. Cases of bounce are not considered since they do
not change the spectrum. The distribution function of
drop fragments of mass x resulting from a collision
between m and y is P(x; m, y).

(C2)
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APPENDIX C

The Stochastic Collection Equation for Two
or More Interacting Species

A set of four coupled stochastic equations
can be formulated for the four distribution func-
tions of the different species. The gain and
loss terms are annotated according to the re-
sult of the specific interaction as described in
Table 1:

mi/2
> b f n,(m—x,z,r,n,(x,z,r,t)C,,,,(m — x,x)dx — n,(m, z, r, t)
4]

f ny(x,z, r, 1)C, +(m, x)dx + 6,,,[1‘ n,(x,z,r, t)dxf n,(y,z, r, )B(x,y)
0 0

n,(y,z,r,t)B(m,y)
m+y

dy fm ny(x;m,y)dx:l , (CD)
0

As explained in section 2, the equations for the
moments of the distribution function are divided into
gain and loss terms according to the different inter-
actions between the particles. As an example, we
consider collision—coalescence between drops and
graupel. Since all the interactions between drops and
graupel produce graupel, the number and mass con-
centrations in category k for the drops is schemati-
cally written as

N, =GN, — LNum, — LN(ng,  (C3)
M, = GM ), = LM ), — LMy, (C4)
and for the graupel as
N;, = GN(ge), + GNgony, + GN (o),
— LNy, — LN, (C5)
M, = GM ., + GM >y, + GM(,>),
— LM ., — LM, (C6)

The ““GN’’ and ‘‘GM’’ terms represent gain terms
for the number and mass concentrations, respectively,
and the ““LN”’ and “‘LM’’ are the loss terms. Each of
these terms describes a certain type of interaction that
can be physically explained. In the following, an ex-

. planation for each of these terms is given. Here, n, rep-
resents the distribution function for the drops at cate-
gory k, and g, is for the distribution function of graupel
at category .
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k=2 fxip

GNmy, = > ni(x, t)dxf M- (m, 1) Ci2\
i=1

X; my—x

1™
X (m, x)dm + EJ ne_i(x, )dx

iy
Xf ne(m, t)C¥ ey (m, x)dm. (C7)
g

This is the gain term for the number concentration of
- the drops due to interactions between the drops them-
selves. The first term is for the drops that enter £ as a
result of interactions between the tail of k — 1 and lower
categories. The second term is for drops in k£ — 1 that
coalesce and enter k; the factor 1/, is because for two
drops that coalesce in k — 1, one enters k.

k—1

LNpy, = Z er n;(x, t)dx

=1 "X

(3]
m(m, t)Cel

My —x

1 Xit |

X (m, x)dm + Y,

i=k %

n;(x, H)dx

X f n(m, ) Cii(x, m)dm. (C8)

This is the loss term for the number concentration
of the drops due to interactions between the drops
themselves. The first term is for the drops that leave
k as a result of interactions between the tail of k and
lower categories. The second term is for drops that
leave k due to coalescence with drops at higher cat-
egories.

1

Wan=3 | &0 0d

i=1 Y X
:<f m(m, t)CHE(x,m)dm. (C9)

This is the loss term for the number concentration of
the drops due to interactions between drops and grau-
pel. It represents the drops in & that coalesce with grau-
pel and leave the category, since all the interactions
between drops and graupel produce graupel.

k-2 x4 my
GM .y, = 3, ,. n; (x, t)dxf (m+ x)n_,

i=1 VX my—x

X (m,t) Ci" (m, x)dm + f ne_1(x, t)dx

X f mny_(m, 1) Cly 1 (m, x)dm
my.| .

k=1 pxiy

+ ¥ xn; (x, t)dx
i=1

Xi

X J[ n(m, t)Ci(m, x)dm. (C10)
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This is the gain term for the mass concentration of the
drops, and the first two terms are analogous to Eq.
(C7). The third term is for drops in the beginning of k
that interact with smaller drops and add mass x to the
category.

k=1 fxy

IM ., = D n;(x, t)dx
i=1

X

Xf mn,(m, t)Cyi(m, x)dm

Mgy — X

Xi+ 1

I
+ Y n; (x, t)ydx

i=k V%
X J. mny(m, )CHE(x, m)dm. (Cl11)

This equation is similar to Eq. (C8) except that
it represents the loss term of the mass concentra-
tion of drops due to their interaction with other
drops. '

1 Xi+ 1

LM .z, = 2

i=1

8 (x, t)dx

M|
Xf mn(m, t)CH¢(x, m)dm. (C12)

This is the loss term for the mass concentration of the
drops due to interactions between drops and graupel
and it is analogous to Eq. (C9).

Xi+1

k-2
GN(gomy, = 2, n;(x, t)dx
i=1

Xi

iy
X f 8i—1(m, t)cifl.i(m,x)dm
my—x

1 [™
+§f nk_](x, t)dx

Xf gk-1(m, )C{ 4y (m, x)dm.  (C13)

This is the gain term for the number concentration
of graupel due to interactions between graupel and
drops, when the graupel are bigger than the drops.
The first term is for interactions between graupel in
the tail of kK — 1 and drops in lower categories. The
second term is for graupel in k& — 1 that coalesce
with drops in k& — 1 and enter k; the factor 1/3 is
because of symmetry.

k=1 iy

LNy, = 2 n;(x, t)dx
i=1

Xi

M|
X f g(m, 1)Cii (m, x)dm
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i X4
+ Y n; (x, Hdx
i=k Vi
Mg+ 1
X I 2(m, CE(x, m)dm. (C14)
my

This is the loss term for the number concentration of
the graupel due to interactions between graupel and
drops. The first term is for graupel that leave k as a
result of interactions between the tail of k and lower
categories of drops. The second term is for graupel in
k that coalesce with drops from higher categories.

k—2

GN(nsgy, = 2
i=1

Xi+t

& (x, t)dx

X

X f 1 (m, 1) CLE (m, x)dm
myp—x

k—1

+ %

Xi 41

gi (x’ t)dx

X

my+ 1 —x
X f m(m, t)Cpf(m, x)dm
my

1 ™
+ Ef Gr—1(x, t)dx
mi—

my,
X f n_(m, )Cit 4y (m, x)dm. (C15)
my—1

This is the gain term for the number concentration of grau-
pel due to interactions between drops and graupel when
the drops are bigger than the graupel. The first term is for
interactions between drops in the tail of X — 1 and graupel
in lower categories. The second term is for drops at the
beginning of k that interact with graupel at lower categories
and enter & of the graupel. The third term is for drops in k
— 1 that coalesce with graupel in k — 1 and enter k; the
factor 1/3 is because of symmetry.

k=2

GM(8>")I< = 2
i=1

Xi+}

n(x, t)dx
"

Xf (m + x)gi1(m, )C{Zy ;(m, x)dm
mg=—x

+ f nk_,(x, t)dx

g
X f mgk—l(ma t)Ci‘—nl,k—l(m’x)dm
m—1

ET AL. 517

k=1

+ 2
=1

' xn; (x, t)dx

X

X f g(m, Csi(m, x)dm. (Cl6)

This is the gain term for the mass concentration
of the graupel due to interactions between grau-
pel and drops, in the case of the graupel is big-
ger than the drops. The first term is for mass
(m + x) that enters k as a result of interac-
tions between the tail of the graupel k — 1
(with mass m) and lower categories of drops
(with mass x). The second term is for graupel
in k — 1 and drops in & — 1 that coalesce
and enter k, adding mass m. The third term
is for graupel in the beginning of k that inter-
act with drops from lower categories and add
mass x.

k—1

LM(g,n)k = z
i=1

Xi+1

n;(x, t)dx

Xi

Mt |
X f mg,(m, 1)C{i (m, x)dm
Mpp| =X

Xi+1

I
+ Y n;(x, t)dx

i=k = X

Mg+ g
Xf mg(m, )Cii (x, m)dm. (C17)

This is the loss term for the mass concen-
tration of the graupel due to interactions be-
tween graupel and drops and it is analogous to
Eq. (C14).

k-2

GM(">8)k = 2
i=1

Xit(

8i(x, t)dx

X I (m + x)me_ (m, )C;(m, x)dm
+ f gk—l(x7 t)dx
myy

g ‘
X f mny,_,(m, t)Cp% —(m, x)dm
my—1

k—1

+ 2
i=1

Xit 1

(m+ x)g:(x, t)dx

Xi

et | = X
X f m(m, )Ci§(m,x)dm. (C18)
my
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This equation is similar to (C15) except it repre-
sents the gain term for the mass concentration of

graupel particles due to their interactions with larger

drops:

Equations (C7), (C8), (C10), and (C11) can be
used to calculate the terms GN(.), LN,
GM,,),, and LM, , respectively, in Eq. (C5) by
replacing all the n with g (subscripts, superscripts,
and otherwise).

In a similar way, we formulate the expressions for
the interactions with the other species (ice crystals and
Snow ).
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