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Impredicativity

Commenting on impredicative developments of real-analysis:

[..] a field of possibilities open into infinity has
been mistaken for a closed realm of things existing in
themselves. [Weyl, 1949]
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Impredicativity

A definition is impredicative if it generalizes over a totality which
includes the very object being defined.

The set of all sets which are not members of themselves
Impredicative because a set is being defined in terms of the
collection of all sets of which it is a member.
This impredicativity induces a vicious circle – Russell’s paradox.

The least-upper bound of a given ordered set X
Impredicative as it is defined in terms of the set of the upper
bounds of X, of which the lub is a member.
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The Coq Type System



The Coq Type System

The Coq system is designed to develop mathematical
proofs, and especially to write formal specifications,
programs and to verify that programs are correct with
respect to their specifications. [..]

Using the so-
called Curry-Howard isomorphism, programs, properties
and proofs are formalized in the same language called
Calculus of Inductive Constructions, that is a λ-calculus
with a rich type system. [..] The very heart of the Coq
system is the type checking algorithm that checks the
correctness of proofs, in other words that checks that a
program complies to its specification.

[Coq Reference Manual]

The theory underlying Coq is quite complicated
We will progress in stages towards it
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λ-calculus

Recall the λ-calculus – captures the idea of functions by rewriting
E[ (λx.M)N ] 7→β E[ M{N/x} ]

For 1 := (λf .λx.fx) and t := λa.λb.a we have

1t 7→β λx.tx 7→β λx.λb.x =α t

For Ω := λx.xx we have ΩΩ 7→β ΩΩ (does not terminate)

Note the non-determinism of 7→β :

Ω1t 7→β (11)t Ω1t 7→β Ωλx.tx
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Typing Information

1. Type systems are usually concerned with extending the
λ-calculus with more terms and “type information”

2. Typing information is best thought of as specification

In the simply-typed λ-calculus (that we will see later)

M : (σ → τ)→ σ

means that M demands its input satisfy the spec σ → τ
& in return guarantees the output will satisfy the spec σ
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Grasping Types

Note that it is required neither that we should be able to
generate somehow all objects of a given type nor that
we should so to say know them all individually. It is
only a question of understanding what it means to be an
arbitrary object of the type in question.

[Martin-Löf, 1998]
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Pure Type Systems

1. Pure type systems (PTS) were independently introduced by
Stefano Berardi (1988) and Jan Terlouw (1989)

2. Generalize many di�erent type systems (as we shall see)
3. Book recommendation: [Nederpelt and Geuvers, 2014]

A presentation of an important subset of PTSs called the
λ-cube [Barendregt, 1991]

4. Coq is not a PTS, but a large chunk of it almost is and it
serves as a good starting point

Pure type systems deal with a single judgement form Γ ` M : A
that is to be read:

“In the context Γ, there is an object M of type A.”
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Pure Type Systems Determined by

Every PTS is determined by:
1. a collection S of sorts, sometimes called universes
2. a collection A of pairs of sorts called axioms
3. a collection R of triples of sorts called rules

Syntax
Fix some set of variables V . Then:

s, s1, s2 ::= S
x, y, z,P,Q,R, S, T ::= V
A,B, C,D,M,N ::= S|V|MN|λV : A.M|ΠV : A.M
Γ,∆ ::= ε|Γ,V : A (where ε is the empty string)

Π and λ bind variables & we identify terms up to renaming of
bound variables (i.e. α-equivalence)
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PTS (sort) (var)

An axiom (s1 : s2) whenever 〈s1, s2〉 is in A. There are no other
axioms – contexts are built up during the derivation.

(s1 : s2) ` s1 : s2

The (var) rule corresponds to the axiom scheme of Gentzen
single-conclusion systems, but it has an assumption because a
type must be so-called “well-formed” in the previous context.

Γ ` A : s(var) x : _ /∈ Γ
Γ, x : A ` x : A

(? : �)
? : �(var) P : ? ` P : ?(var) P : ?, x : P ` x : P
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PTS (weak)

Using (weak) one can extend the context while retaining the
state, but again the context must be “well-formed” to extend it.

Γ ` M : B Γ ` A : s(weak) x : _ /∈ Γ
Γ, x : A ` M : B

...
P : ? ` P : ?

...
P : ? ` ? : �(weak) P : ?,Q : ? ` P : ?
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PTS (form)

A formation rules s1 →s s2 whenever 〈s1, s2, s〉 is in R. Tells us
what kind of functional dependencies are allowed.

Γ ` A : s1 Γ, x : A ` B : s2(s1 →s s2)
Γ ` Πx : A.B : s

Set-Theoretic Intuition for Dependent Functions

Πx : A.B(x) ∼= {f : A→
⋃
x∈A

B(x) | ∀a ∈ A.f (a) ∈ B(a)}

Conventions
A→ B instead of Πx : A.B when x does not appear free in B
We write s1 → s2 for s1 →s2 s2
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PTS (form)

Γ ` A : s1 Γ, x : A ` B : s2(s1 →s s2)
Γ ` Πx : A.B : s

...
P : ? ` P : ?

...
P : ? ` P : ?

...
P : ?, x : P ` ? : �

(?→ �) P : ? ` P→ ? : �(weak) P : ?, S : P→ ? ` P : ?

...
P : ?, S : P→ ? ` P : ?

...
P : ?, S : P→ ?, x : P ` Sx : ?

(?→ �) P : ?, S : P→ ? ` Πx : P.Sx : ?
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PTS (abst)

The (abst) rule is for introducing functions. Note that the
function type must be “well-formed” to use it.

Γ ` Πx : A.B : s Γ, x : A ` M : B
(abst)

Γ ` λx : A.M : Πx : A.B

Let Γ ≡ P : ?, S : P→ ?.

...
Γ ` Πx : P.Sx→ Sx : ?

...
Γ, x : P ` λy : Sx.y : Sx→ Sx

(abst)
Γ ` λx : P.λy : Sx.y : Πx : P.Sx→ Sx

Convention
Arrow associates right: A→ B→ C → D is A→ (B→ (C → D))
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PTS (appl)

The (appl) rule is for eliminating functions.

Γ ` M : Πx : A.B Γ ` N : A(appl)
Γ ` MN : B{N/x}

Let Γ ≡ P : ?, S : P→ ?, z : P.

...
Γ ` λx : P.λy : Sx.y : Πx : P.Sx→ Sx

...
Γ ` z : P

(appl)
Γ ` (λx : P.λy : Sx.y)z : Sz→ Sz

Convention
Application associates left: ABCD is ((AB)C)D
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PTS (conv)

The (conv) rule is needed to kick-o� computation inside types.

Γ ` M : A Γ ` B : s(conv) A =β B
Γ ` M : B

Let Γ ≡ P : ?, x : (λQ : ?.Q→ Q)P.

...
Γ ` x : (λQ : ?.Q→ Q)P

...
Γ ` P→ P : ?

Γ ` x : P→ P
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Simply Typed λ-calculus

S = {?,�} A = {(? : �)}
R = {(?→ ?)}

1. Can encode natural numbers:

T : ? ` λf : T → T.λn : T.f (f (n))︸ ︷︷ ︸
2

: (T → T)→ T → T

2. T1 : ?, . . . Tn : ? ` M : A i� A is a tautology of minimal logic (i.e.
classical logic with just→)

3. Not to be confused with Simple Type Theory, which is based
on STLC but is richer
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System F

S = {?,�} A = {(? : �)}
R = {(?→ ?), (�→ ?)}

1. Can encode polymorphic functions:

` λT : ?.λx : T.x︸ ︷︷ ︸
id

: ΠT : ?.T → T

Can be applied to anything of type ?, including its own type!
2. Can encode various inductive types:

T : ? ` ΠQ : ?.Q→ (T → Q→ Q)→ Q︸ ︷︷ ︸
List T

: ?

3. Impredicative because there are ?’s that are defined by
quantifying over all ?’s.
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System F

4. The impredicativity is apparently harmless. Arguably
justified because of Parametricity – the ?’s quantified cannot
be inspected and case split upon (see Abstraction Thm).

5. System F captures the impredicative core present in Coq.
6. An extension of R by (�→ �) called Fω can encode type

families: ` λT : ?. List T : ?→ ?.

[Girard, 1989]
An arithmetic function can be represented in System F if and only
if it can be proved total in second order Peano Arithmetic.

[Reynolds, 1983] Abstraction Theorem
There is a semantic interpretation that shows that functions in
system F take related inputs to related outputs.
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Dependent Types (λP)

S = {?,�} A = {(? : �)}
R = {(?→ ?), (?→ �)}

1. Can encode propositions as types that depends on terms:

T : ?,Q : T → T → ? ` (Πx : T.Πy : T.Qxy)→ Πx : T.Qxx︸ ︷︷ ︸
H

: ?

T : ?,Q : T → T → ? ` λz : (Πx : T.Πy : T.Qxy).λx : T.zxx : H

2. Here we get a much broader so-called
Curry-Howard isomorphism
AKA propositions-as-types
AKA proofs-as-programs
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Calculus of Constructions (λC)

S = {?,�} A = {(? : �)}
R = {(?→ ?), (?→ �), (�→ ?), (�→ �)}
The calculus of construction (λC ) combines Fω with λP.

` λT : ?.λP : T → ?.ΠQ : ?.(Πx : T.P→ Q)→ Q︸ ︷︷ ︸
∃

: ?

` λT : ?.λx : T.λy : T.ΠP : ?.Px→ Py︸ ︷︷ ︸
=

: ΠT : ?.T → T → ?
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Naïve TT

S = {?} A = {(? : ?)}
R = {(?→ ?)}

1. Matrin-Löf’s original formulation included these rules
2. Collapses ? and � from λC
3. The bad kind of impredicativity: inconsistent, i.e. every type

in inhabited, in particular ΠT : ?.T
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System U−

S = {?,�,4} A = {(? : �), (� : 4)}
R = {(?→ ?), (�→ ?), (�→ �), (4→ �)}

1. Also impredicative, this time at a not-the-lowest level
2. Seems less suspicious that ? : ? because there is no

circularity in terms of the axioms, but still, it is inconsistent
[Girard, 1972]

On this problem and suggested solution:

This seems actually to show that the predicativity and
non-predicativity are not contradictory concepts: simply,
the level of proposition may be non-predicative and the
level of type must be predicative. [Coquand, 1986]
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Nice Properties that PTSs Enjoy

Thinning (refined Weakening)
If Γ ` A : B and ∆ ⊇ Γ is well-formed (∆ ` _), then ∆ ` A : B.

Permutation (refined Exchange)
If Γ ` A : B and ∆ is a well-formed permutation of Γ, then
∆ ` A : B.

Condensing
If Γ, x : C,∆ ` A : B and x is not free in ∆,A,B then Γ ` A : B.

Substitution (refined Cut)
If Γ, x : C,∆ ` A : B and Γ ` D : C, then
Γ,∆{D/x} ` A{D/x} : B{D/x}.
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Type Correctness
If Γ ` M : A then A ∈ S or Γ ` A : s for some s ∈ S .

Type Preservation
If Γ ` M : A and M =β N then Γ ` N : A.

Confluence
If Γ ` M : A and M 7→∗β R and M 7→∗β S then they can converge to
some N, i.e. R 7→∗β N and S 7→∗β N.

Decidable Type Checking
Strong Normalization implies decidability of Γ ` A : B.

Defn. Strong Normalization
If Γ ` M : A then every sequence of 7→β from M eventually
terminates with an irreducible term.
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Coq Type System

i ranges over N+.
S = {Prop, Typei} A = {(Prop : Type1), (Typei : Typei+1)}
R = {(Prop→ Prop), (Typei → Prop), (Typei → Typei)}

The (conv) rule is strengthened:

Γ ` M : A Γ ` B : s(conv) A ≤ B
Γ ` M : B

The ≤ relation is transitive and closed under
1. =β

2. Prop ≤ Type1 ≤ Type2 . . . (Cumulativity)
3. If A =β M and B ≤ N then Πx : A.B ≤ Πx : M.N
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More Stuff in Coq Type System

Things in CIC we’ve ignored:
1. Global environments, definitions, and δ reductions
2. Let expressions and ζ reductions
3. η expansions
4. The sort Set of small types
5. The sort Sprop of strict-propositions (experimental feature)
6. (Co)Inductive types and ι reductions
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Proof Irrelevance

1. The impredicativity of Prop is closely related to the concept
of proof irrelevance – any two proofs of the same Prop are
equal:

ΠP : Prop.Πx, y : P.x =P y

2. Coq cannot prove this theorem; however, it is provable
assuming excluded-middle:

ΠP : Prop.P ∨ ¬P
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Program Extraction

1. Proof irrelevance is a means to control information flow
2. If data is declared irrelevant, it can be ignored when

extracting a program
3. Using irrelevance is somewhat a design decision

[Bauer, 2014]
Reveal the remainder Πn : N.Σk : N.Σb : {0, 1}.n = 2k + b
Hide the remainder Πn : N.Σk : N.∃b : {0, 1}.n = 2k + b
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Live Demonstration

1. Inductive types (because formal treatment is exhausting)
2. Equality: Leibniz vs. Inductive
3. Impredicativity is related to Proof Irrelevance
4. Proof Irrelevance is useful in program extraction
5. Stratification of Type enables data abstractions
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Justifying Impredicativity

If the collection is not closed, as is ? in Coq, what can justify its
impredicativity?
In [Longo et al., 1992] the innocuous C axiom is added to their
formulation of system F:

Axiom C
If Γ ` M : Πx : ?.C and x does not appear free in B, then for all
Γ ` A,B : ? it holds that MA = MB.

Then the Genericity theorem is proven for the resulting system:

Genericity Theorem
In the system Fc, let Γ ` M,N : Πx : ?.C. If there exists Γ ` A : ?
such that MA = NA, then M = N.

So the terms must only be equal at a particular instance to be
equal everywhere.
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Justifying Impredicativity

The logical ramifications are detailed in a later paper:
Consider [..] a proposition [..] such as ∀xP(x), where x
ranges on some intended collection of individuals. [..] the
proof does not depend on the specific [individual] chosen,
but only on the assumption that x is [an individual from
the range]. In type-theoretic terms, a sound proof would
only depend on the type of x, not on its value. [..]
Herbrand called this kind of “uniform” proofs prototype.

[Longo, 2000]

In that paper a much earlier one is quoted:
If we reject the belief that it is necessary to run through
individual cases and rather make it clear to ourselves that
the complete verification of a statement means nothing
more than its logical validity for an arbitrary property, we
will come to the conclusion that impredicative definitions
are logically admissible. [Carnap, 1931]

It does not seem that anyone checked whether such a result
obtains in Coq’s system as well.
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The End
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