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Abstract: The genome is exposed daily to many deleterious factors. Ubiquitination is a mechanism
that regulates several crucial cellular functions, allowing cells to react upon various stimuli in order
to preserve their homeostasis. Ubiquitin ligases act as specific regulators and actively participate
among others in the DNA damage response (DDR) network. UBE4B is a newly identified member of
E3 ubiquitin ligases that appears to be overexpressed in several human neoplasms. The aim of this
review is to provide insights into the role of UBE4B ubiquitin ligase in DDR and its association with
p53 expression, shedding light particularly on the molecular mechanisms of carcinogenesis.
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1. Introduction

Ubiquitination is a mechanism that regulates several cellular functions, such as growth, DNA
repair, transcriptional regulation, intracellular signaling, autophagy, cell cycle, and programmed cell
death [1–6]. Consequently, ubiquitination allows cells to react upon various stimuli aiming to preserve
their homeostasis [7].

The mammalian ubiquitin (Ub) chain assembly factor, or ubiquitination factor E4B (UBE4B/UFD2a),
belongs to E3 ubiquitin ligases and is located in the chromosome 1p [8–10]. Accumulating evidence
implicates UBE4B in DNA double-strand break (DSB) repair and as a regulator of p53, a key effector
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of the DNA damage response and repair (DDR/R) pathway. In the current manuscript, we provide
an overview on the roles of UBE4B/UFD2a in normal cellular function and its implication in human
disorders such as cancer development.

2. Ubiquitination and Ubiquitin Proteasome System

Protein homeostasis is fundamental in normal cellular function and cell survival [11]. Ubiquitin
Proteasome System (UPS) is the major pathway for the physiological turnover of short-lived intracellular
proteins [12,13]. Thus, the UPS plays an important role in maintaining the protein homeostasis network
via selective elimination of damaged or misfolded proteins. Impaired function of UPS is implicated in
the physiological aging process and also in several age-related disorders, such as neurodegenerative
diseases and cancer, which are characterized by increased accumulation of oxidized proteins and
protein aggregates [11,14].

A key factor in UPS is ubiquitin, a small but essential protein of 76 residues (7.7 kDa), with a
five-stranded antiparallel beta-sheet traversed by a single helix, and it owes its name to the fact that it
is ubiquitously found in all eukaryotic cells. The C-terminal carboxylate group of G76 of ubiquitin
seems to play a crucial role in the multistep process of ubiquitination [5].

Degradation of proteins through UPS requires two major successive steps, the covalent attachment
of multiple molecules of ubiquitin to the target protein and the degradation of ubiquitinated proteins
by the 26S proteasome [15–17]. Lysine residues on the target protein are closely associated with
conjugation of the ubiquitin moieties through a covalent link [18]. The formation of a poly-ubiquitin
chain includes the addition of at least four ubiquitin molecules that sequentially conjugate on the K48
residue of each ubiquitin molecule and are necessary for the target protein to be recognized by the 26S
proteasome [5,19,20].

Three classes of enzymes are consecutively required for the polymerization of ubiquitin as a
signaling label on a substrate, the E1s, E2s and E3s [19,21,22]. The first step of ubiquitination involves
the activation of ubiquitin by the formation of a covalent bond with ubiquitin-activating enzymes, E1.
During the second step, E1s deliver the activated ubiquitin molecule to the E2 ubiquitin-conjugating
enzymes, where they are conjugated by a thioester bond. Finally, E3 ubiquitin-protein ligases catalyze
the transfer of ubiquitin from E2s to a lysine residue in the protein substrate [23–25]. Ubiquitin E3
ligases can be classified in three main types depending on the presence of characteristic domains
and on the mechanism of ubiquitin transfer to the protein substrate. These comprise the HECT E3s
(Homologous to E6-AP Carboxyl Terminus), RING E3s (Really Interesting New Gene) and the RBR E3s
(RING-between RING-RING) [26,27].

E3 ligases have been found to act by either promoting cancer progression or suppressing it,
depending on the cellular environment [28]. The E3 ubiquitin ligase BRCA1 is a well-established
tumor-suppressor protein usually found mutated in breast cancer [29]. Another well studied E3 ligase
is RNF168, which is thought to orchestrate DSBs repair, favoring the Non-Homologous End Joining
(NHEJ) mechanism through the regulation of 53BP1 [30]. Overexpression of this ligase in various
cancer cell lines has been shown to be essential for the retention of 53BP1 foci on chromatin upon a
proteotoxic crisis due to proteasome inhibition. The latter phenomenon results in redirecting DSBs
repair from the Homologous Recombination pathway to NHEJ, emergence of genomic instability and
tumor progression [31].

An additional well-studied category of ubiquitin ligases is the class of E4s, which play multiple
roles. Their action is either complementary to E3s, particularly the RING E3s, by enhancing the length
of polyubiquitin chains, or under certain circumstances simulating the function of E3 ligases [32,33]. A
specific feature of RING E3s is the presence of a zinc-binding domain or a U-box domain. Both E3s and
E4s containing U-box domains can function either as monomers or homodimers [26,27].

The mammalian Ub chain assembly factor, or ubiquitination factor E4B (UBE4B/UFD2a), belongs
to E3 ubiquitin ligases, contains a conserved U-box catalytic domain of about 70 amino acids, and
functions as a monomeric protein [8–10]. The aforementioned domain retains the same fold as the
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RING catalytic domain without bearing the zinc groups and mediates the interaction of this factor
with the ubiquitin-charged E2 enzyme to promote the attachment of a poly-ubiquitin chain on a
selected target of UBE4B, based on its E3 and E4 ligase activity [8–10,26]. Actually, UBE4B and its
isoform UBE4A belong to a new class of ubiquitination enzymes representing the U-box-containing
RING family of ubiquitin ligases [34]. UBE4A is able to facilitate the recruitment of proteins related
to the homologous recombination repair pathway [35]. Both UBE4A and UBE4B are required in the
degradation of certain types of substrates through a Ub fusion degradation pathway, designated as
UFD, in the same way as the yeast orthologue UFD2 [36–38]. Furthermore, both the mammalian UFD2a
and the yeast UFD2 proteins bind to the Ub moieties of preformed conjugates, catalyzing the elongation
of the polyubiquitin chain [36–38]. The yeast UFD1, UFD2, UFD3, UFD4, and UFD5 homologues are
among the most important genes that are involved in the UFD pathway [36]. Ub-mediated proteolysis
is considered essential for normal growth. It is implicated in various biological processes, such
as cell differentiation, response in stress stimuli, cell cycle control, regulation of transcription, and
programmed cell death [1–6].

UBE4B ligase coordinates DNA double-strand break repair and apoptosis induction in
Caenorhabditis elegans [39]. UBE4B forms focal accumulations after DSB’s induction upon Ionizing
Radiation (IR) which is independent of its ligase activity. Thus, UBE4B seems to play a key role as part
of a bona fide cellular network which facilitates the communication between DNA repair and apoptotic
response [39]. Notably, unpublished data from our team showed the nuclear presence of UBE4B
foci also in HCT116 (human colorectal carcinoma cell line) and co-localization with DSBs following
Doxorubicin administration (Figure 1).
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Figure 1. Foci UBE4B formation following DNA damage. UBE4B foci accumulate in the nucleus (blue
arrow) compared to untreated cells (diffuse pattern) in HCT116 cells treated with 0.5 µM Doxorubicin.
The staining is more intense and an extensive co-localization (orange granules) among UBE4B and
γH2AX (purple arrow) is distinguished compared to untreated cells. Scale bar: 50 µM.

According to recent studies, UBE4B physically interacts with wild type p53 [40]. The stability
of p53 is determined by the RING domain E3 ubiquitin ligases Mdm2, Pirh2 and COP1 [41,42].
Particularly, Mouse Double Minute 2 (MDM2) is often overexpressed in various types of cancer, inducing
proteasome-mediated degradation of p53, thus endorsing cell survival and proliferation [43–45]. UBE4B
also interacts with MDM2 and is essential for MDM2-mediated p53 poly-ubiquitination and degradation.
Therefore, an increased UBE4B activity may be considered as an oncogenic feature, by inhibiting the
activity of p53 in cancer cells and promoting tumorigenesis [46]. The increased UBE4B levels in various
tumors supports this notion as described in the following section. Notably, studies have demonstrated
that the regulatory role of UBE4B is not restricted only to p53 but includes also its family members,
namely p63 and p73, as further described in the next section [9,47].
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3. UBE4B and p53 Family Members

The stability of p53 is primarily controlled by MDM2, which targets p53, leading to proteasomal
degradation. The U-box catalytic domain of UBE4B is closely related to the RING-finger domain
of MDM2 and is responsible for its E3 activity. These two enzymes are considered to be significant
regulators of p53 through the ubiquitination process [48–50]. Loss of MDM2 leads to an activation of
p53 that is lethal during embryogenesis. The pathways that allow stress-induced inhibition of MDM2
are essential to activate the cell growth suppressive activity of p53 [51]. Failures in the pathways that
control MDM2 switch-off have been linked to cancer development [52,53].

In certain cases, MDM2 does not have the ability to functionally silence p53 on its own. The latter
property is usually associated with higher levels of Mdm2 and takes place inside the nucleus [54,55].
In this aspect, there is important evidence that UBE4B can promote the poly-ubiquitination of p53 in a
synergistic manner with MDM2, inhibiting cell apoptosis and promoting tumorigenesis [38,46,54,56].
Actually, UBE4B interacts directly with MDM2 and this interaction reduces the half-life of p53
via proteasome-mediated degradation, leading to repression of p53-dependent transactivation and
apoptosis [46]. Moreover, in the presence of DSBs, UBE4B is able to negatively regulate the protein
levels of two phosphorylated active forms of p53 namely phospho-p53 (Ser15) and phospho-p53
(Ser392) independently of MDM2. This action is mainly performed within the nucleus [57].

Apart from its well-studied tumor-suppressor activity, p53 is also an important factor in
the development of the nervous system [58]. P53 overexpression has been reported in many
neurodegenerative conditions, including Parkinson’s, Huntington’s and Alzheimer’s diseases,
seizure-induced excitotoxic damage, middle cerebral artery occlusion, traumatic brain injury, and
peripheral nerve injury [47,59]. Through its regulatory action on the p53 family proteins, UBE4B can
act as a key factor in the development of the nervous system and might possibly comprise a relevant
druggable target (see below) in various neurodegenerative diseases [47]. Interestingly, UBE4B has been
found to poly-ubiquitinate an abnormal form of ataxin-3 which is responsible for the development of
Machado-Joseph disease, thereby marking it for degradation by the ubiquitin-proteasome pathway [60].
Ataxin-3 is implicated in DNA damage repair and plays a crucial role in neuronal development [61].

The protein p63 has been identified as a homolog of the tumor suppressor protein p53 and it has
an important implication in tumor development by regulating apoptosis, while it is also capable of
inducing cell cycle arrest and cellular senescence [62]. Both p63 and p53 target similar pro-apoptotic
proteins. This is exemplified among others by their common ability to increase the expression of
Bax, an essential factor for activation of the mitochondrial apoptotic pathway [63]. Moreover, the
presence of p63 has been suggested as an indispensable requirement for the pro-apoptotic activity
of p53 [64]. This has been strengthened by previous findings that cells deficient for both p63 and
p73, exhibit significant resistance to neuronal apoptosis despite the presence of functional p53 [47].
Is UBE4B specifically regulating the ubiquitination on p63, promoting p63′s proteasomal-mediated
degradation? In this case, however, the mechanism is more complex. Only one isoform has been found
to be regulated by UBE4B, namely ∆Np63α, whereas the TA isoform was not linked to UBE4B [65].
∆Np63α, the dominant negative isoform of the p63 family, is an essential survival factor. UBE4B binds
to ∆Np63α isoform and stabilizes it. This stabilization is achieved via the inhibition of ubiquitination
of the latter [65]. The fact that UBE4B has no relation to any of the β isoforms of either p63 or p73
might also explain the specificity of this ligase [47].

Another human p53-related protein is p73 [66]. It is usually activated after DNA damage in
a way that is distinct from that of p53 [67]. When overproduced, it can activate the transcription
of p53-responsive genes and inhibit cell growth in a p53-like manner by inducing apoptosis [68,69].
In particular, p73 transactivates a large number of p53 target genes such as p21 and Bax [67,69].
Interestingly, it has been shown that p53 is able to induce cell cycle arrest in the absence of p73 but
not apoptosis [70]. Unlike p53, p73 encodes for different isoforms [71,72]. UBE4B has been shown
to bind to p73α but not to p73β isoform. UBE4B can also induce p73α proteasomal degradation,
independently of ubiquitin-conjugation [9]. Additionally, p73α binds to MDM2 without being targeted
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for degradation. Through this interaction, the function of p73 as an apoptotic factor is suppressed due
to its sequestration, and thus, its inability to cooperate with its transcriptional co-factor p300/CBP [73].

In summary, p53 turnover is regulated by both MDM2 and UBE4B in a cancer cell.
Mono-ubiquitination of p53 on single or multiple sites is usually followed by a poly-ubiquitination
of these sites through UBE4B. The elongated ubiquitin chain renders the modified p53 molecule
recognizable by the proteasome. This process reduces the protein expression levels and transcriptional
activity of p53 in the cytoplasm and in the nucleus, respectively (Figure 2a,b). Based on the proposed
model of oncogene-induced cancer development [74], p53 is a key effector of the DDR and therefore
UBE4B can be considered as an oncogene due to the down-regulation of p53. Moreover, some reports
indicate the contribution of UBE4B towards cancer cell survival upon DNA damage induced by factors
such as chemical agents or IR. This is also linked with the well-studied interaction between UBE4B
and p53 family members [9,57,65]. A recent study not only supports this notion but also focuses on
the role of mir-1301 as a novel negative regulator of UBE4B. Actually, this micro-RNA potentially
halts cancer cell migration and metastasis via stabilization of p53 [75]. Despite the growing amount of
evidence which implicate UBE4B in cancer development, the precise regulation of UBE4B over p53
and how this could drive cancer progression requires further investigation. Moreover, according to
recent findings, UBE4B interacts physically with p73a isoform in various cancer cell lines, hindering
the tumor-suppressor activity of p73a by promoting its proteasomal degradation (Figure 2c). This
potential tumorigenic role of UBE4B has been confirmed in head, neck and lung cancer cell lines. In
addition, it seems that UBE4B weakens ubiquitination of ∆Np63a (Figure 2d). On the other hand, a
potential interaction of UBE4B with other p53 family members such as p73β, ∆Np73 and p63β isoforms
has not yet been confirmed and whether these isoforms are indeed influenced by this ligase remains to
be elucidated (Figure 2e).
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Figure 2. Interactions between UBE4B and p53 family members. (a,b) Turnover of p53 is regulated
by both the MDM2 and the U-box type E3/E4 ubiquitin ligase UBE4B. Mono-ubiquitination or
mono-ubiquitination of p53 at multiple MDM2 sites is usually followed by a poly-ubiquitination of
these sites mediated by UBE4B. The elongated ubiquitin chain targets the modified p53 molecule to the
proteasome. This sequel occurs both in the cytoplasm and the nucleus, reducing not only the protein
levels of p53 but also its transcriptional activity. (c) Ectopically expressed UBE4B ligase in various cancer
cell lines interacts physically with p73a isoform and hinders the tumor-suppressor activity of the latter
by promoting its proteasomal degradation in an ubiquitination-independent manner. (d) Evidence
regarding UBE4B’s tumorigenic role has been reported in head and neck along with lung cancer cell
lines. It appears that UBE4B protects ∆Np63a from ubiquitination, resulting in its stabilization. (e) The
potential role of UBE4B on regulating other p53 family isoforms such as p73β, ∆Np73 and p63β is
unknown and merits elucidation.
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4. UBE4B Ubiquitin Ligase in Human Pathology

The ubiquitin ligases can maintain cellular viability and homeostasis [76,77]. The deletion of
UBE4B in vivo is likely to lead to early embryonic death, due to the induction of apoptosis in the heart,
an organ where it is exclusively expressed during this developmental stage [55,78]. Intriguingly, UBE4B
is involved in a limited number of pathological conditions, which mostly represent neuropathies and
cancer, whereas alterations either in the UBE4B gene or in the protein have been frequently found in
various types of cancer (see Table 1).

Table 1. UBE4B in human pathology.

Data from Cellular, Animal Models and Tissues

Pathological
Condition Cause Role of UBE4B Possible Alteration

(s) of UBE4B
Type of

Organism
Type of
Tissue Reference

Machado-Joseph
disease/Spinocerebellar
ataxia type 3 (SCA3)

increased CAG
repeat tract in

ATXN3

Ectopically
overexpressed

UBE4B
poly-ubiquitinates

ataxin-3 resulting in
the degradation of

the latter

−

Human cancer
cell lines and

SCA3
Drosophila

model

− [60]

Scleroderma_
Autoimmune

disease
−

Autoantigen in 10%
of patients,

regulation of mitotic
progression

Phosphorylated
during mitosis as a

result its
conformation changes
dramatically and the
protein doesn’t work
properly leading to

mitotic abnormalities

Human cancer
cell lines − [79]

Inclusion body
myopathy with
Paget disease of

bone and
frontotemporal

dementia (IBMPFD)

Mutant VCP

Interaction of
mutated p97 with
UBE4B weakens

while its interaction
with ataxin-3

becomes intensified

−
Human cancer

cell lines Muscular [80]

Neuroblastoma
(NBL)

MYCN
amplification and
chromosome 1p

deletions

−

Deletion of the UBE4B
gene/one base

substitution in exon 9
observed in stage 3

tumor (dysfunctional
protein)/low

expression protein in
high stage tumors

with poor prognosis

NBL cell line

NBL frozen
tissues,

peripheral
blood

[10,81]

Oral Squamous Cell
Carcinoma (OSCC)

Multiple genetic
events involving

inactivation of
tumor suppressor

genes

−
Deletion of the UBE4B

gene −
Tissues from

OSCC patients [82]

Ependymoma,
Medulloblastoma

Multiple genetic
events

Negative regulation
of p53 by UBE4B

Protein is frequently
upregulated due to

the mRNA
overexpression,

attributed to gene
amplification

Human brain
cancer cell
lines and

mouse model

Human tissues
derived from
brain tumors

[46]

Breast Cancer Multiple genetic
events

Negative regulation
of p53 by UBE4B

Protein
overexpression

Human breast
cancer cell
lines and

mouse model

Human tissues
derived from
breast cancer

patients

[38]

Hepatocellular
Carcinoma (HCC)

Multiple genetic
events

Negative regulation
of p53 by UBE4B

Overexpression of
protein and mRNA

levels

Human HCC
cell lines

Human tissues
derived from
HCC patients

[56]
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4.1. UBE4B and Neurodegenerative Diseases

Normally, UBE4B is a factor regulating the development of the nervous system and can be a target
molecule in neurodegenerative disease treatments [47]. UBE4B has been found to be associated with
the poly-ubiquitination of an abnormal form of ataxin-3, which has been shown to be responsible for
the development of Machado-Joseph disease (MJD) [60]. MJD is one of approximately 30 recognized,
dominantly inherited forms of ataxia [61], which is generally characterized by a lack of muscle control
or coordination. The neuroprotective role of UBE4B has also been shown by its mouse orthologue
Ube4b/Ufd2a in Wallerian degeneration process [47]. The latter occurs upon an injurious stimulus
and leads to axonal death [83]. However, a chimeric mutation between the genetic locus of Ube4b
and nicotinamide mononucleotide adenylyl transferase 1 (Nmnat1), observed in mice, has been found
to delay the Wallerian degeneration [83]. In addition, in the inclusion body myopathy with Paget
disease of bone and frontotemporal dementia (IBMPFD), p97 chaperon is mutated and the interaction
of this mutant protein with the UBE4B ligase is defective compared to its interaction with ataxin-3
which is enhanced. Consequently, the abnormal aggregates composed of p97 and ataxin-3 account
for the neurodegenerative manifestations of this proteinopathy [80]. Overall, it appears that UBE4B
has a beneficial impact on the function of the nervous system. Intriguingly, it is rarely affected in
neurodegenerative diseases, suggesting that other interacting molecular partners dictate its malfunction
in these pathological conditions.

4.2. UBE4B and Cancer

UBE4B has been found either overexpressed or suppressed in diverse types of human
cancer [10,38,46,56,81,82]. It is noteworthy that a 500-kb genetic locus in the small arm of chromosome 1
is frequently mutated in neuroblastoma (NBL) cases [10,81]. Deletion of this region within 1p36.2-3 has
been linked with the inactivation of tumor suppressors including the UBE4B ligase [10,81]. Moreover,
a variety of single nucleotide polymorphisms (SNPs) have been described within the coding region
of the UBE4B gene, but they do not seem to affect NBL development [10,81]. Among them, only the
c.1439 + 1G > C SNP was found to affect a splice donor site mutation of exon 9 and was associated with a
poor outcome of stage 3 patients [10,81]. Three potential regions within 1p36.1-3 susceptible to deletions
have been linked with Oral Squamous Cell Carcinoma progression [82]. On the other hand, brain
tumors such as medulloblastoma and ependymoma exhibit elevated protein levels of UBE4B which
are often attributed to increased levels of mRNA, whereas sometimes augmentation of mRNA levels is
related to gene amplification [46]. Interestingly, the observed loss of p53 function in brain tumors could
be due to the negative regulation from UBE4B, leading p53 to an MDM2-mediated degradation through
the proteasome [46]. UBE4B protein has also been reported to be overexpressed in breast cancer tissues,
while both protein and mRNA levels are increased in hepatocellular carcinomas [38,56]. Preliminary
unpublished data from our group also clearly indicate increased levels of this ligase in Non-Small Cell
Lung Cancer (NSCLC) tissues compared to their normal counterparts (Figure 3a,c). This difference in
expression is observed regardless of the genetic status of p53 (either wild type or mutated) (Figure 3a).
However, UBE4B seems to be expressed at higher levels in a wt-p53 environment in contrast to cases
with mutant p53 (Figure 3a,b). Upon monitoring of UBE4B expression in colon cancerous tissues, we
found the same expression pattern detected in lung cancer, which is the upregulation of UBE4B ligase
in malignant areas relative to the normal ones.

It is worth noting that the expression of UBE4B gradually increased during precancerous colorectal
lesions, with its highest levels being present in high grade dysplasia (Figure 4). This is an interesting
and novel finding because it constitutes an evidence for the implication of UBE4B in carcinogenesis
from its early stages. This finding may be related to its role as a negative regulator of wtp53, but this
merits further exploration.
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Figure 3. Immunohistochemistry (IHC) and Western Blot (WB) analysis of UBE4B expression in lung
tissue samples. (a) Representative images of UBE4B IHC in normal versus lung tumor tissues with
either wild type or mutant p53. Regardless of p53 status, UBE4B is overexpressed in tumor samples
compared with normal ones. Mutant p53 tumor samples show less-intense UBE4B staining than in
the corresponding wild type p53 tumor samples. Scale bar: 50 µm. (b) Statistical analysis of UBE4B
IHC expression in lung carcinomas with wt-p53 (38 cases) and mut-p53 (70 cases). Wt-p53 tumor cases
show a higher ratio of intense versus weak UBE4B staining (0.925) compared with mut-p53 tumor
cases (0.6). (c) Representative immunoblots of two pairs (normal versus tumor) of lung tissue samples
where UBE4B is increased in tumors with respect to their normal counterparts. HeLa cells were used as
positive control.
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hyperplasia and low to moderate dysplasia, UBE4B seems to be overexpressed sporadically in some
nuclei of tubular glands of Lieberkühn (black arrows). In high grade dysplasia, the intensity of staining
is higher (red arrow). Scale bar: 50 µm.
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Only a few studies have reported oncogenic behavior of UBE4B, which relies on its forced
overexpression in cancer cell lines and animal models, leading to larger tumors compared to cancer
cells bearing solely the endogenous gene. This is achieved through the interaction of the ligase with
wtp53, decreasing the apoptotic and transcriptional activity of the latter [38,46,56]. Our above in-situ
findings from human clinical samples support that UBE4B is a potentially significant regulator of cancer
progression. The sporadic overexpression of UBE4B in pre-cancerous lesions of human colon tissues,
even from the phase of hyperplasia, reinforces this hypothesis. Nevertheless, additional research in
this field is needed in order to draw a safe conclusion.

Recently, certain studies suggested a possible relationship of UBE4B with DNA damage occurrence.
Particularly, it has been shown that gamma irradiation, a known DSB inducer, leads to increased UBE4B
protein levels in various human cancer cell lines. This is followed by a boosted poly-ubiquitination of
wtp53 that is necessary for its proteasomal degradation [57].

Notably, Du et al. observed that the levels of UBE4B in the nucleus are significantly decreased
in response to DNA damage upon IR, while MDM2 expression is increased. In this case, the affinity
between UBE4B and MDM2 is greatly decreased following DNA damage [57]. Up to now, MDM2
was considered as the main E3 factor required for cooperating with UBE4B in order to degrade wtp53
under normal conditions [38,46,56]. However, it has been shown that this is not the case upon a stress
stimulus (e.g., DSBs), since UBE4B has been found to be overexpressed at different time points relative
to the MDM2 E3 ligase, possibly ubiquitinating wtp53 independently from MDM2 [57].

These findings suggest differential ways on how phosphorylated p53 may be regulated in response
to DNA damage [57]. Our preliminary in-situ data on the UBE4B expression levels during early and
late stages of carcinogenesis possibly may reflect this effect. Therefore, these results could also be
considered as tenable indications, which would enable and encourage further investigation of the role
of UBE4B in molecular carcinogenesis.

5. Druggability Analysis

The important array of functions of UBE4B highlights its significance as a potential drug target.
To theoretically evaluate the protein druggability, three diverse technologies were utilized, namely the
Sitemap mapping algorithm [84]; CavityPlus, a web server for binding site detection and druggability
prediction [85]; and fpocket, a protein cavity detection web platform [86]. A homology model of
human UBE4B was generated, implementing the structure of Saccharomyces cerevisiae ubiquitin ligase
Ufd2p (similarity: 29.9%; positives: 49.7%; pdb entry: 2qiz) as a template. Human UBE4B (O95155)
sequence was obtained from the Uniprot database [87]. The UniProt Consortium 2019) and Schrödinger
Prime multiple sequence viewer tool were used to construct a structure-based alignment. Manual
adjustments of the template [88] alignment were performed to remove helical gaps and to correct other
helical alignment errors generated during the alignment procedure. The constructed homology model
was used for further evaluation and druggability analysis simulation.

Druggability data were collected and compared. Interestingly, the above algorithms yielded
overlapping results for certain protein sites, as shown in Figure 5, indicating high probability of
druggable protein cavities existence. Specifically, the protein cavity depicted in Figure 5a appeared
among the top ranks in all programs (Sitemap-SiteScore: 1.007; D-score: 1.045; threshold for druggable
sites: 0.80; CavityPlus-DrugScore: 920.00; Druggable; fpocket-PocketScore: 10.04), while cavities
illustrated in Figure 5b,d, scored high on Sitemap and CavityPlus (SiteScore: 1.007; D-score: 1.045;
threshold for druggable sites: 0.80; DrugScore: 4689; Druggable) and Sitemap and fpocket (SiteScore:
1.010; D-score: 1.043; PocketScore: 10.13) respectively. It is also noteworthy that the top-scored cavity
by the Sitemap algorithm (SiteScore: 1.293; D-score: 1.368), demonstrated in Figure 5c, is adjacent to
the C757 residue, which corresponds to C385 in Ufd2p, whose C385Y mutation was found to disrupt
in-vivo binding to Cdc48 [89] an ATPase with essential regulatory functions. Additional important
residues of Ufd2p candidates for binding to Cdc48p are R844 and E855 [90], which correspond to R1191
and E1202 in UBE4B, respectively, and are colored black in Figure 5.
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Figure 5. A three-dimensional structural homology model of human UBE4B, derived from comparative
modelling with Ufd2p. The protein is shown in a “ribbon” representation, with a U-box domain colored
pink. Important residues, found to be involved with Cdc48 binding [85,86], are depicted in a “ball
and stick” representation, colored black. Selected a-helixes are colored yellow for viewing reference.
Druggability analysis (likelihood of ligands binds tightly) [79–81] results are also illustrated in (a–d):
Sitemap as small red spheres, fpocket as large blue spheres and CavityPlus as green surfaces. Only
high-ranked cavities with particularly promising druggabilities were collected and compared from each
program. All three algorithms converged with respect to the protein cavity shown in (a), whereas two
out of the three suggested a promising druggability of cavities shown in (b,d). The highest druggability
score (SiteScore: 1.293; D-score: 1.368; threshold for druggable sites: > 0.80) with Sitemap was observed
for cavity shown in (c), which is adjacent to C757 residue.

The homology model of human UBE4B provided adequate structural insight, thus affording
opportunities for further structural exploitation of each druggable cavity in order to design potent,
high-selectivity inhibitors. These sites can be used in virtual screening of large compound collections
that may be used to advance the identification of molecules with potential UBE4B-inhibitory properties.

6. Conclusions and Future Perspectives

Ubiquitin ligases play a crucial role in the maintenance of cellular viability and homeostasis [76,77].
In some case they can act as oncogenes, promoting cancer progression when their degradation process
is deregulated, while in other cases, ubiquitin ligases can behave as tumor suppressors.

UBE4B ligase activity has been demonstrated to be involved in cell cycle arrest during
DDR [46,57,91–93]. Moreover, by regulating the extent of protein ubiquitination at DNA damaged
sites, it contributes indirectly to the DDR. Nonetheless, the involvement of UBE4B in the DNA repair
mechanisms has been shown mainly in lower eukaryotes like yeasts and worms, leaving an open
window for further investigations [94–96].

Overall, although UBE4B is linked to different diseases and particular to cancer, the exact
mechanism which is associated with the role of this molecule in the development of a cancer cell is
still not clearly understood. Nevertheless, clinical data support an oncogenic activity based on the
observed UBE4B overexpression in several neoplasms, such as in lung, colorectal, and head and neck
squamous cell carcinoma [46,97], providing an opportunity to therapeutically target this molecule.
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