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Cellular responses to DNA damage are crucial for

maintaining homeostasis and preventing the develop-

ment of cancer. Our understanding of the DNA-damage

response has evolved: whereas previously the focuswas

on DNA repair, we now appreciate that the response to

DNA lesions involves a complex, highly branched

signaling network. Defects in this response lead to

severely debilitating, cancer-predisposing ‘genomic

instability syndromes’. Double strand breaks (DSBs) in

DNA are potent triggers of the DNA-damage response,

which is why they are used to study this pathway. The

chief transducer of the DSB signal is the nuclear protein

kinase ataxia-telangiectasia mutated (ATM). Genetic,

biochemical and structural studies have recently pro-

vided insights into the ATM-mediated DSB response,

reshaping our view of this signaling pathway while

raising new questions.

The DNA-damage response: repair and signaling

DNA damage is a serious threat to cellular homeostasis
because it compromises one of its cornerstones – namely,
the stability and integrity of the cellular genome.
Sequence alterations in DNA arise from normal genomic
transactions, spontaneous chemical changes in DNA
constituents, replication errors, and endogenous and
exogenous agents that inflict damage on the DNA. The
greatest challenge to genome stability comes from these
last agents, which induce various types of DNA lesion [1].
If not repaired, some of these lesions are extremely
cytotoxic, whereas others are mutagenic with conse-
quences ranging from malfunction of the cell to its
malignant transformation [1,2].

DNA damage initiates various repair mechanisms that
recognize and repair specific DNA lesions. It has recently
become clear, however, that there is more to the DNA-
damage response than simply DNA repair; indeed, it is
actually a complex signaling network [3–6] that encom-
passes many additional processes. Genetic defects in
crucial parts of this network lead to a group of human
genetic disorders that are collectively called ‘genomic
instability syndromes’ [7–10]. These diseases are charac-
terized by degeneration of specific tissues, sensitivity to
particular DNA damaging agents, chromosomal instabil-
ity and a marked predisposition to cancer. Attempts to
understand the molecular basis of these diseases have led
Corresponding author: Shiloh, Y. (yossih@post.tau.ac.il).
Available online 13 June 2006

www.sciencedirect.com 0968-0004/$ - see front matter Q 2006 Elsevier Ltd. All rights reserved
to the identification of various components of the DNA-
damage response [9,11–18]. Of the many kinds of DNA
lesion, double-strand breaks (DSBs) are particularly
effective in triggering the DNA-damage response, and
the study of genomic instability syndromes that are
caused by defective response to DSBs [9] has been very
rewarding in terms of understanding this pathway.

The extremely cytotoxic DSB is induced by ionizing
radiation, radiomimetic chemicals and oxygen radicals
formed in the course of normal metabolism, and can also
follow replication fork stalling. DSBs are also part of
normal genomic transactions, such as meiotic recombina-
tion and the maturation of the immune system genes via
V(D)J recombination [19]. Importantly, it has been recently
shown that uncapped telomeres in senescent cells attract
the same damage-response proteins that are recruited to
DSBs (see later) and evoke an unregulated DNA-damage
response [20,21]. In healthy cells, functional telomeres are
recognized as DSBs in the G2 phase of the cell cycle and
consequently partially activate the DNA-damage response
[22]. An ongoing DSB response has been also observed in
precancerous cells [23] and tumor tissues [24].

Eukaryotic cells use two main mechanisms to repair
DSBs: nonhomologous end-joining (NHEJ), an error-prone
ligation mechanism that acts throughout the cell cycle [25];
and a high-fidelity process based on homologous recombi-
nation between sister chromatids, which is functional in
the late S and G2 phases of the cell cycle [26]. The overall
cellular response to DSBs, however, goes far beyond repair.
This complex signaling network works swiftly to affect
numerous cellular systems [3–5]. One of its hallmarks is
the activation of cell-cycle checkpoints, which temporarily
halt the cell cycle while the damage is assessed and
repaired [27]. The sudden arrest of the cell cycle involves
marked alterations in numerous physiological processes.
Indeed, DSBs lead to profound changes in basic cellular
processes such as gene expression [28,29], and protein
synthesis, degradation and trafficking. These changes
mean that the DNA-damage signal must be conveyed
swiftly and precisely to numerous pathways across the cell.
Here, I summarize recent work that has provided new
insights into the different tiers of this process.
The DSB response: a three-tiered signaling cascade

From sensors to transducers

Mounting evidence indicates that dissemination of the
DNA-damage alarm is based on a signal transduction
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mechanism that begins with ‘sensor’ proteins that sense
the damage and/or chromatin alterations that occur after
damage induction. These sensors transmit a signal to
‘transducers’, which in turn convey the signal to numerous
downstream ‘effectors’ involved in specific pathways [3–5].

A well-studied sensor in mammalian cells is the Mre11–
Rad50–Nbs1 (MRN) complex. This complex, comprising
the nuclease Mre11, the structural maintenance of
chromosomes protein Rad50 and the protein Nbs1, is
rapidly recruited to DSB sites, where it tethers and
processes the broken ends [30,31]. It has become apparent
that, in addition to its DNA processing activities, the MRN
complex controls the early steps in transduction of the
DNA-damage signal (see later). Additional factors in
the sensor tier of the DSB response are recruited to the
damaged sites, where they create rapidly expanding
nuclear foci and take part in signaling damage to the
transducers. These factors include the multifunctional
tumor suppressor protein BRCA1 [32], the p53-binding
protein 53BP1 [33] and mediator of DNA-damage
checkpoint protein 1 (MDC1) [34], all of which typically
contain a phosphoprotein-binding BRCA1-terminal
(BRCT) domain [35,36].

The primary transducer of the DSB alarm is the
nuclear protein kinase ataxia-telangiectasia mutated
(ATM) [3,17]. In response to DSB induction, ATM is
rapidly activated and phosphorylates various substrates,
each of which is a key factor in a damage-response
pathway. The clinical phenotype associated with loss of
ATM activity is that of a prominent genomic instability
syndrome – ataxia telangiectasia (A-T). This syndrome is
characterized by neuronal degeneration, which primarily
affects the cerebellum and leads to severe neuromotor
dysfunction, immunodeficiency, chromosomal fragility, a
marked predisposition to lymphoreticular malignancies,
and extreme sensitivity to ionizing radiation and other
DSB-inducing agents [37,38]. Cultured cells from individ-
uals affected with A-T show a broad defect in responding to
DSBs that spans almost all of the known branches of this
response network.

ATM belongs to a conserved family of proteins termed
the ‘PI3K-like protein kinases’ (PIKKs), most of which
possess a serine/threonine kinase activity and all of which,
as their name indicates, contain a domain with motifs that
are typical of the lipid kinase phosphatidylinositol
3-kinase (PI3K) [39]. At present, the mammalian
members of this family include five protein kinases:
ATM, ataxia-telangiectasia- and Rad3-related (ATR),
hSMG-1, mTOR (also known as FRAP) and the catalytic
subunit of the DNA-dependent protein kinase (DNA-PK).
Another member of the PIKK family is TRRAP, a protein
component of histone acetyltransferase complexes that
does not possess protein kinase activity [3,39]. The PIKK
protein kinases, which are conserved from yeast to
mammals, respond to various stresses by phosphorylating
substrates in the appropriate pathways.

Four mammalian PIKKs are involved in the DNA-
damage response: DNA-PK, which has a role in the NHEJ
repair pathway [40]; ATM; ATR; and hSMG-1. Whereas
ATM and DNA-PK primarily respond to DSBs, ATR
mainly transduces the signal emanating from UV damage
www.sciencedirect.com
and stalled replication forks [39,41], but it also responds to
DSBs, albeit later and with slower kinetics. The hSMG-1
kinase responds to both UV damage and DSBs [42].
Whereas ATM and ATR share substrates in the DSB
response, they show selective substrate specificities in
response to different genotoxic stresses and DSB
inducers [43].

ATM and ATR: distinct and cooperative roles

ATR has a role in damage surveillance at the DNA
replication fork and might be directly involved in
regulating replication progression [41,44]. It is probably
this essential function that leads to an embryonic lethal
phenotype in Atr knockout mice [45] and possibly in
humans. Hypomorphic mutations in human ATR give rise
to a severe disease, termed ATR–Seckel syndrome, that is
characterized by intrauterine growth retardation, dwarf-
ism, microcephaly, mental retardation and marked defects
in various cellular DNA-damage responses [46,47]. Being
a hypomorphic phenotype, ATR–Seckel syndrome demon-
strates the crucial role of ATR and shows that it has no
functional redundancy.

The functional relationships between ATM and ATR in
the DSB response have turned out to be more complex
than was previously thought. It is generally assumed that
after the rapid activation of ATM in response to DSB
induction and the subsequent phosphorylation of its
numerous substrates, ATR is independently triggered
and maintains phosphorylation of some of these sub-
strates. This functional redundancy is observed in A-T
cells, which are devoid of ATM activity but can mount a
belated, moderate DSB response that could be ascribed to
ATR. Thus, ATM and ATR have been thought to act in
parallel, independently of each other.

Recent observations indicate, however, that during the
S and G2 phases of the cell cycle, the response of ATR to
DSBs that are not part of the replication process is
dependent on ATM: the latter protein is required for ATR
to bind to the single-stranded ends formed at DSB sites,
probably by Mre11-mediated resection [48–51]. Binding of
ATR to these sites is mediated by an interaction between
the ATR accessory protein ATRIP and replication protein
A, which coats the single-stranded ends. ATR binding to
DSBs is evident as nuclear foci and is important for
efficient phosphorylation of its substrates [52]. By
contrast, the response of ATR to UV lesions and stalled
replication forks occurs independently of ATM. These
observations place ATM upstream of ATR in some phases
of the cell cycle, in addition to their functional redundancy
(Figure 1).

ATM activation and early steps in the DNA-damage

response

Dormant kinase becomes active

It has long been known that the kinase activity of ATM is
enhanced by DSBs [53,54]. In a seminal study, Bakkenist
and Kastan [55] showed that in unprovoked cells ATM is
present as inert dimers or multimers that, after DNA
damage, release highly active ATM monomers. During
this process, ATM undergoes intermolecular autopho-
sphorylation on Ser1981 [55]. Activated ATM has been
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Figure 1. Separate and overlapping roles of ATM and ATR in responses to genotoxic stress. The protein kinases ATM and ATR activate response networks after genotoxic
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recently shown to undergo additional phosphorylation
events (M. Lavin, the 2005 Ataxia Telangiectasia Work-
shop, Belgirate, Italy) and acetylation mediated by the
Tip60 acetylase [56,57]. Two protein phosphatases have
been reported to be involved in damage-induced modifi-
cation of ATM: dynamic interaction of ATM with the
phosphatase PP2A suggests that PP2A-mediated dephos-
phorylation inhibits ATM activation [58]; by contrast, the
serine/threonine phosphatase PP5 has been reported to
contribute to activation of ATM [59]. The current
repertoire of activating modifications of ATM is probably
far from complete, and the activation process might
involve interactions of ATM with even more proteins.

Another important facet of ATM dynamics after DNA
damage is the recruitment of ATM to the damaged sites.
The first study of this phenomenon demonstrated damage-
induced, tight binding of part of the ATM present in the
cell to DSB sites, which receded with kinetics similar to
that of DSB repair [60]. Chromatin-bound ATM was found
to be autophosphorylated and thereby activated [61].
Importantly, many substrates of ATM are phosphorylated
at the DSB sites by the chromatin-bound ATM [17,62]. An
important substrate of ATM and probably other PIKKs in
the vicinity of the damaged site is histone H2AX, a
member of a subfamily of histone H2A [63]. Phosphory-
lated H2AX (gH2AX) has an important role in anchoring
damage-response proteins to the damaged sites (see later).

A central issue in the DNA-damage response is to
understand the early sequence of events that take place
between DSB formation and transducer activation. It
turns out that the key factors at this stage are sensor
www.sciencedirect.com
proteins such as the MRN complex, 53BP1 and MDC1,
which are the first recruits to the sites of DNA damage.
Sensors are also activators

The early stage of the DSB response is characterized by
the rapid formation of nuclear foci at the DSB sites that
represent huge conglomerates of recruited damage-
response proteins. Elegant imaging technology in live
mammalian and yeast cells has elucidated the temporal
order in which the early damage-response proteins are
recruited to the damaged sites [64]: the MRN complex is
the first to bind to these sites [65–67]; MDC1, whose
binding to chromatin requires phosphorylation of histone
H2AX [65], follows; and next comes 53BP1 [68]. Although
not the first to be recruited, MDC1 is required for
sustained binding of MRN and 53BP1 to the damaged
chromatin [65,68]. These observations document one of
the hallmarks of this process: namely, stabilization and
augmentation of protein conglomerates at the damaged
sites through repeated protein–protein interactions and
recruitment of additional molecules.

By applying meticulous imaging analysis, Bekker-
Jensen et al. [69] have demonstrated internal spatial
organization in the nuclear foci at DSB sites and have
shown that specific subcompartments are occupied by
different classes of proteins. Thus, ATM is present in DSB-
flanking chromatin together with MDC1, MRN, 53BP1
and BRCA1. Single-stranded DNA ends delineate a
different subcompartment, in which ATR and ATRIP are
present together with replication protein A, other portions
of MRN and BRCA1, and additional damage-response
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proteins. This fine spatial organization of what previously
seemed to be uniform nuclear foci reflects the specific
functions of the building blocks of these foci.

How, then, do these proteins mediate the next step in
the DNA-damage signaling cascade – namely, activation of
the transducers? Early evidence that transducer acti-
vation is dependent on the sensor proteins was provided
by Uziel et al. [61], who showed that activation of ATM and
its recruitment to damaged sites requires a functional
MRN complex. Their study was based on another genomic
instability syndrome, ‘A-T-like disease’, which is similar to
A-T, but has a later onset and slower progression [70]. The
defective protein in A-T-like disease is the MRN com-
ponent Mre11 [71].

The similarity of the two phenotypes might be
explained by the fact that Mre11 is required for damage-
induced ATM activation. The study of Uziel et al. [61]
confirmed this hypothesis and showed that full activation
of ATM, particularly after treatment of the cells with low
doses of DSB-inducing agents, requires the nuclease
activity of Mre11 [61]. A whole series of studies have
since documented the dependence of ATM activation on
MRN and the physical interaction between these two
proteins in yeast, mouse, Xenopus and human cells
[50,61,72–86]. Genetic analysis in mice has shown the
importance of MRN for activation of an ATM-mediated
apoptotic pathway [87]. Other studies have reported that
activation of ATM also requires functional 53BP1 [88,89],
and that ATM recruitment and sustained interaction with
damaged DNA requires MDC1 [67,88,89].

These results initially created a conceptual difficulty,
because Nbs1 (an MRN component), MDC1 and 53BP1
were known to be phosphorylated in an ATM-dependent
manner and thus had been placed downstream of ATM in
the DNA-damage response cascade [17]. The new data
placed these proteins upstream of ATM and made them
activators in addition to sensors. Thus, rather than being
a simple hierarchy of ‘sensors upstream of transducers’,
the initial phase of the DNA-damage response is now
viewed as a cyclic process that amplifies the damage signal
by repeated interactions among these proteins [6,67,90].
Evidence in favor of this model is accumulating. The
signal amplification process depends on interaction of
the sensors and activators with damaged chromatin on the
one hand and with ATM on the other.

How are the sensors and activators anchored at the
chromatin? Structure analysis has shown that 53BP1
binds to methylated Lys79 of histone H3, which becomes
exposed at the break sites [91]. MDC1 has been found to
bind through its BRCT domain to the phosphorylated tail
of gH2AX [92,93]. How, then, do these proteins interact
with ATM?

A protein complex containing activated ATM, MRN and
damaged DNA has been isolated from Xenopus egg
extracts [75]. Furthermore, Lee and Paull [76,77] have
shown that MRN is essential for activation of ATM in vitro
and have demonstrated that MRN binds tightly to both
DNA and ATM, further implicating MRN in the recruit-
ment of ATM to damaged DNA. The MRN component that
binds ATM has been recently identified as a C-terminal
domain of the Nbs1 protein [82,83]. The physical
www.sciencedirect.com
interaction among ATM, MRN and the damaged DNA is
thus required for activation of ATM.

Recent work by Dupré et al. [86] has demonstrated that
in Xenopus egg extracts ATM is activated in two steps,
both of which require MRN. The first involves the
recruitment of dimeric ATM to DSBs and the formation
of monomers that are not yet autophosphorylated and
active; the second leads to the actual conversion of these
monomers to active, autophosphorylated kinase
molecules. Of note, this model implies that activation of
ATM requires physical contact of the ATM–MRN
complexes with DSB ends. Bakkenist and Kastan [55],
working with mammalian cells, have suggested that
activation of ATM could be triggered by changes in
chromatin conformation that accompany DSB formation
or even chromatin alterations that are not associated with
DSBs at all. The latter possibility could explain the swift
activation of the whole cellular content of ATM by very few
breaks in the DNA. Whether DSBs are a prerequisite for
activation of ATM in mammalian cells, and the role of
chromatin alterations and other signals in ATM activation
are likely to remain key issues in ATM research.

MRN is not the only factor involved in attracting ATM
to the damaged sites. Recent work by J. Chen and
colleagues [67] has shown that while the BRCT domain
of MDC1 holds on to gH2AX [93], another protein–protein
interaction domain of MDC1 (the FHA domain) binds to
ATM. Given that ATM phosphorylates H2AX, J. Chen and
colleagues have proposed a cycle in which an MDC1–ATM
pair is recruited, and H2AX is phosphorylated and
subsequently binds MDC1, thereby stabilizing the attach-
ment of MDC1–ATM to the DSB site. ATM then
phosphorylates additional H2AX molecules in the vicinity,
setting the scene to bind more MDC1 molecules. This
cyclic process could be the driving force behind the
observed expansion of H2AX phosphorylation over mega-
bases of DNA flanking DSBs [69] and the consequent
formation of an expanding platform for the recruitment of
additional damage-response proteins (Figure 2).

One of the remaining questions is whether the
recruitment of ATM to DSB sites must indeed precede
its activation and is absolutely required for it. Conflicting
data obtained in mammalian and Xenopus egg extract
systems [77,82,83,86] preclude a definite answer at this
point. The rapid pace at which the whole cellular content
of ATM in mammalian cells becomes activated after the
induction of low levels of DSBs [55] seems to argue against
the ‘recruitment first’ model [86]. Further studies of the
physical nature of the signal that actually activates the
dormant ATM dimers should clarify this point.

Downstream of ATM: an ever-expanding network

The list of reported ATM substrates is far from complete,
and many ATM-dependent responses are likely to involve
ATM targets that are currently unknown. Nevertheless,
the study of these pathways has revealed the diversity of
the ATM-dependent response to DSBs (Figure 3).

In addition to the versatility of ATM as a protein kinase
with numerous substrates, the ATM signaling network
contains protein kinases that are themselves capable of
targeting several downstream effectors simultaneously
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and, as such, controlling subsets of pathways (e.g. Chk1
and Chk2). An important aspect of ATM-mediated
signaling is its ability as a transducer to target the same
endpoint by using different pathways; for example, the
cell-cycle checkpoints are each governed by several ATM-
mediated pathways. Furthermore, the same ATM effector
can be approached by several different ATM-dependent
mechanisms. A prominent example is ATM-mediated
activation and stabilization of the p53 protein, an
important mediator of cell-cycle checkpoints on the
one hand and damage-induced apoptosis on the other.
ATM mediates this process by controlling various
www.sciencedirect.com
posttranslational modifications of p53 itself [94] and at
the same time phosphorylating Mdm2, a ubiquitin ligase
of p53, thereby targeting p53 for degradation [3,17,95]. A
new ATM target – the p53 inhibitor Mdmx – has been
recently identified in the p53 control loop; this inhibitor
also undergoes several ATM- and Chk2-dependent phos-
phorylation events that enhance its degradation [96–99].
The existence of additional ATM targets in this pathway is
not unlikely.

A major response to DNA damage is represented by
marked alterations in gene expression patterns [28],
which are largely dependent on ATM when the underlying
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Figure 3. Current view of the ATM-regulated network. This signaling map was created with a computerized tool established in our laboratory called ‘Showcase for ATM

Related Pathways (SHARP), a curated knowledge base for signaling pathways induced by DNA damage (http://www.cs.tau.ac.il/wsharp). SHARP has been designed to assist

researchers in integrating, visualizing and interpreting pre-existing and new information on the ever-growing ATM-mediated network. Themap contains three types of node:

purple nodes represent single proteins (denoted by the official HUGO-approved symbol of their encoding gene); yellow nodes represent protein families (e.g. the BH3 family);

green nodes represent protein complexes (e.g. the MCM complex). The map also contains two types of edge: blue edges denote regulatory relations (arrow indicates

activation, ‘T’ indicates inhibition, and an open circle indicates interactions whose regulatory effect is unclear); green edges denote containment relations among protein

families or protein complexes and their members (e.g. MCM2 is contained in theMCM complex). Red and green dots within a node indicate that not all of the regulations and

associations stored in the SHARP database for this particular node are shown in the map, but can be viewed by clicking on this node when it is presented on a computer

screen. This map contains all information published on ATM as of 15 April 2006, and data presented at the recent International Workshop on Ataxia-Telangiectasia, ATM and

the DNA-damage Response (Belgirate, Italy, 2005) [111]. Modified, with permission, from Ref. [111].
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lesion is a DSB [29,100,101]. The relays that mediate the
signal downstream from ATM to gene promoters are
specific transcription factors. A combination of microarray
and computational analysis has recently supported earlier
evidence that two of the key molecules involved are the
p53 protein and the transcription factor NF-kB
[29,100,101]. Interestingly, in lymphoid cells p53 mediates
the apoptotic response to DNA damage, whereas NF-kB
activates genes associated with cellular survival
[100,101]. The functional link between ATM and NF-kB
has been found by Wu et al. [102] to be the NF-kB essential
modulator (NEMO). NF-kB is held inactive in the
cytoplasm by its inhibitor, IkB, until an appropriate
stimulus leads to activation of the IkB kinase (IKK)
complex, which phosphorylates IkB and thus marks it for
proteasome-mediated degradation. NF-kB is subsequently
liberated to enter the nucleus and to act on its downstream
target genes. NEMO (also called IKKg) is the regulatory
subunit of the IKK complex. Wu et al. [102] have shown
that, after DNA damage, ATM-mediated phosphorylation
of NEMO in the nucleus leads to its ubiquitin-dependent
nuclear export and subsequent activation of cytoplasmic
IKK, eventually leading to stimulation of NF-kB.
www.sciencedirect.com
Another transcription factor that has been recently
found to be a direct target of ATM is the Ca2C/cAMP
response element binding protein (CREB), which is
involved in various cellular growth pathways [103]. In
this study, genotoxic-stress-induced phosphorylation of
CREB by ATM was found to lead to inactivation of CREB,
and a mutant protein that could not be phosphorylated by
ATM showed enhanced activity that was resistant to DNA
damage [103]. Interestingly, ATM is involved in phos-
phorylation of CREB not only after DSB induction but
also, together with ATR, in response to UV damage [104].

One of the long-standing obstacles to understanding
the A-T phenotype has been to explain the extreme
radiosensitivity of A-T cells. Such sensitivity to the
cytotoxic effect of ionizing radiation and radiomimetic
chemicals is expected to result from defective DSB repair,
but attempts to show such a defect in A-T cells have
traditionally led to ambiguous results. Thus, it is
commonly thought that such a defect might affect only a
few DSBs, which would be difficult to identify in A-T cells
with routine methods. Jeggo, Lobrich and co-workers
[105,106] have provided evidence for this hypothesis,
attributing the repair of these few DSBs to a new pathway
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mediated by ATM and a novel substrate – the nuclease
Artemis. They suggest that Artemis, previously known to
resolve hairpin end intermediates in V(D)J recombina-
tion, is involved in the NHEJ repair pathway. After its
phosphorylation by ATM, it engages in processing the
ends of some DSBs in preparation for ligation, and its lack
of phosphorylation might interfere with this process.
During (VD)J recombination, the activity of Artemis is
regulated by DNA-PK rather than by ATM. These
observations have established a long-awaited direct link
between ATM and a DSB repair pathway.

One of the main lines of research attempts to under-
stand how cells make the crucial choice between activation
of the survival response and apoptosis in the face of heavy
DNA damage. A recently identified ATM target – the BID
protein, a member of the ‘BH3-only’ pro-apoptotic member
of the BCL-2 family – has thrown light on this choice.
ATM-mediated phosphorylation of BID has an anti-
apoptotic role in the damage response and is also involved
in the S-phase checkpoint [107,108]. This change in role
after ATM-mediated phosphorylation might be typical of
other ATM effectors. Thus, activating transcription factor
2 (ATF2), which is known to be involved in the JNK/p38
stress response, has been found to be phosphorylated by
ATM at DSB sites and is required to mount an efficient
DNA-damage response. The role of ATF2 in the DNA-
damage response is completely uncoupled from its well-
documented function as a transcription factor [109].
Concluding remarks and future directions

Investigations into the cellular response to DSBs continue
to provide the most comprehensive view of how cells
respond to DNA damage, in addition to detailed mechan-
istic insights into this elaborate response. Each of the
three tiers of this signaling system provides many
research directions. In particular, several questions
remain open about the nature of the initial signal sent
from DSBs to the MRN complex, which seems to be the
first molecule to rush to the damaged sites and to start the
response signaling cascade.

How does MRN recognize the damage, and how does it
initially bind to it? What is the nature of the signal that
activates ATM and breaks up the inert ATM dimers?
Where in the nucleus does this process take place? What
role does the recruitment of ATM to damaged sites play in
the activation of this protein? Similarly, what mechanistic
roles do the posttranslational modifications of ATM play in
its activation?

Elucidating the many targets of ATM and its down-
stream signaling pathways is a continuous endeavor. But
understanding the DNA-damage response will certainly
have a big impact on the search for new treatments for A-T
and other genomic instability syndromes [110]. It might
have even more far-ranging ramifications on our under-
standing of key biological processes such as coping with
environmental hazards, aging, cancer formation and
tumor responses to therapy. Thus, research in this field
is expected to maintain its position at the forefront of
biomedical research in the foreseeable future.
www.sciencedirect.com
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