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1 INTRODUCTION

1.1 Structures

Plates and shells are characterized by (i) their midsurface
S, (ii) their thickness d . The plate or shell character is that
d is small compared to the dimensions of S. In this respect,
we qualify such structures as thin domains. In the case of
plates, S is a domain of the plane, whereas in the case of
shells, S is a surface embedded in the three-dimensional
space. Of course, plates are shells with zero curvature.
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Nevertheless, considering plates as a particular class of
shells in not so obvious: They have always been treated
separately, for the reason that plates are simpler. We think,
and hopefully demonstrate in this chapter, that eventually,
considering plates as shells sheds some light in the shell
theory.

Other classes of thin domains do exist, such as rods,
where two dimensions are small compared to the third one.
We will not address them and quote, for example, (Nazarov,
1999; Irago and Viaño, 1999). Real engineering structures
are often the union (or junction) of plates, rods, shells, and
so on. See Ciarlet (1988, 1997) and also Kozlov, Maz’ya
and Movchan (1999) and Agratov and Nazarov (2000). We
restrict our analysis to an isolated plate or shell. We assume
moreover that the midsurface S is smooth, orientable, and
has a smooth boundary ∂S. The shell character includes
the fact that the principal curvatures have the same order
of magnitude as the dimensions of S. See Anicic and Léger
(1999) for a situation where a region with strong curvature
(like 1/d) is considered. The opposite situation is when the
curvatures have the order of d: We are then in the presence
of shallow shells according to the terminology of Ciarlet
and Paumier (1986).

1.2 Domains and coordinates

In connection with our references, it is easier for us to
consider d as the half-thickness of the structure. We denote
our plate or shell by �d . We keep the reference to the half-
thickness in the notation because we are going to perform
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an asymptotic analysis for which we embed our structure
in a whole family of structures (�ε)ε, where the parameter
ε tends to 0.

We denote the Cartesian coordinates of R
3 by x =

(x1, x2, x3), a tangential system of coordinates on S by
x� = (xα)α=1,2, a normal coordinate to S by x3, with the
convention that the midsurface is parametrized by the
equation x3 = 0. In the case of plates (xα) are Cartesian
coordinates in R

2 and the domain �d has the tensor product
form

�d = S × (−d, d)

In the case of shells, x� = (xα)α=1,2 denotes a local
coordinate system on S, depending on the choice of a
local chart in an atlas, and x3 is the coordinate along
a smooth unit normal field n to S in R

3. Such a nor-
mal coordinate system (also called S-coordinate system)
(x�, x3) yields a smooth diffeomorphism between �d and
S × (−d, d). The lateral boundary �d of �d is char-
acterized by x� ∈ ∂S and x3 ∈ (−d, d) in coordinates
(x�, x3).

1.3 Displacement, strain, stress, and elastic
energy

The displacement of the structure (deformation from the
stress-free configuration) is denoted by u, its Cartesian
coordinates by (u1, u2, u3), and its surface and transverse
parts by u� = (uα) and u3 respectively. The transverse part
u3 is always an intrinsic function and the surface part u�
defines a two-dimensional 1-form field on S, depending on
x3. The components (uα) of u� depend on the choice of the
local coordinate system x�.

We choose to work in the framework of small deforma-
tions (see Ciarlet (1997, 2000)) for more general nonlinear
models e.g. the von Kármán model). Thus, we use the strain
tensor (linearized from the Green–St Venant strain tensor)
e = (eij ) given in Cartesian coordinates by

eij (u) = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)

Unless stated otherwise, we assume the simplest possible
behavior for the material of our structure, that is, an
isotropic material. Thus, the elasticity tensor A = (Aijkl)

takes the form

Aijkl = λδijδkl + µ(δikδj l + δilδjk)

with λ and µ the Lamé constants of the material and
δij the Kronecker symbol. We use Einstein’s summation

convention, and sum over double indices if they appear
as subscripts and superscripts (which is nothing but the
contraction of tensors), for example, σij eij ≡ �3

i,j=1σ
ij eij .

The constitutive equation is given by Hooke’s law σ =
Ae(u) linking the stress tensor σ to the strain tensor e(u).
Thus

σii = λ(e11 + e22 + e33) + 2µeii , i = 1, 2, 3

σij = 2µeij for i �= j
(1)

The elastic bilinear form on a domain � is given by

a(u, u′) =
∫

�

σ(u) : e(u′) dx =
∫

�

σij (u) eij (u
′) dx (2)

and the elastic energy of a displacement u is (1/2)a(u, u).
The strain–energy norm of u is denoted by ‖u‖

E(�)
and

defined as (
∑

ij

∫
�
|eij (u)|2 dx)1/2.

1.4 Families of problems

We will address two types of problems on our thin domain
�d : (i) Find the displacement u solution to the equilib-
rium equation div σ(u) = f for a given load f, (ii) Find
the (smallest) vibration eigen-modes (�, u) of the struc-
ture. For simplicity of exposition, we assume in gen-
eral that the structure is clamped (this condition is also
called ‘condition of place’) along its lateral boundary �d

and will comment on other choices for lateral bound-
ary conditions. On the remaining part of the boundary
∂�d \ �d (‘top’ and ‘bottom’) traction free condition is
assumed.

In order to investigate the influence of the thickness
on the solutions and the discretization methods, we con-
sider our (fixed physical) problem in �d as part of a
whole family of problems, depending on one parameter
ε ∈ (0, ε0], the thickness. The definition of �ε is obvi-
ous by the formulae given in Section 1.2 (in fact, if
the curvatures of S are ‘small’, we may decide that �d

fits better in a family of shallow shells, see Section 4.4
later). For problem (i), we choose the same right hand
side f for all values of ε, which precisely means that
we fix a smooth field f on �ε0 and take fε := f|�ε for
each ε.

Both problems (i) and (ii) can be set in variational form
(principle of virtual work). Our three-dimensional varia-
tional space is the subspace V (�ε) of the Sobolev space
H 1(�ε)3 characterized by the clamping condition u|�ε = 0,
and the bilinear form a (2) on � = �ε, denoted by aε. The
variational formulations are
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Find uε ∈ V (�ε) such that

aε(uε, u′) =
∫

�ε

fε · u′ dx, ∀u′ ∈ V (�ε) (3)

for the problem with external load, and

Find uε ∈ V (�ε) , uε �= 0, and �ε ∈ R such that

aε(uε, u′) = �ε

∫
�ε

uε · u′ dx, ∀u′ ∈ V (�ε) (4)

for the eigen-mode problem. In engineering practice, one is
interested in the natural frequencies, ωε = √

�ε. Of course,
when considering our structure �d , we are eventually only
interested in ε = d . Taking the whole family ε ∈ (0, ε0]
into account allows the investigation of the dependency
with respect to the small parameter ε, in order to know
if valid simplified models are available and how they can
be discretized by finite elements.

1.5 Computational obstacles

Our aim is to study the possible discretizations for a
reliable and efficient computation of the solutions ud of
problem (3) or (4) in our thin structure �d . An option
could be to consider �d as a three-dimensional body and
use 3-D finite elements. In the standard version of finite
elements (h-version), individual elements should not be
stretched or distorted, which implies that all dimensions
should be bounded by d . Even so, several layers of elements
through the thickness may be necessary. Moreover the
a priori error estimates may suffer from the behavior of
the Korn inequality on �d (the factor appearing in the Korn
inequality behaves like d−1 for plates and partially clamped
shells; see Ciarlet, Lods and Miara (1996) and Dauge and
Faou (2004)).

An ideal alternative would simply be to get rid of the
thickness variable and compute the solution of an ‘equiva-
lent’ problem on the midsurface S. This is the aim of the
shell theory. Many investigations were undertaken around
1960–1970, and the main achievement is (still) the Koiter
model, which is a multidegree 3 × 3 elliptic system on S

of half-orders (1, 1, 2) with a singular dependence in d .
But, as written in Koiter and Simmonds (1973), ‘Shell the-
ory attempts the impossible: to provide a two-dimensional
representation of an intrinsically three-dimensional phe-
nomenon’. Nevertheless, obtaining converging error esti-
mates between the 3-D solution ud and a reconstructed 3-D
displacement Uzd from the deformation pattern zd solution
of the Koiter model seems possible.

However, due to its fourth order part, the Koiter model
cannot be discretized by standard C0 finite elements. The

Naghdi model, involving five unknowns on S, seems more
suitable. Yet, endless difficulties arise in the form of various
locking effects, due to the singularly perturbed character of
the problem.

With the twofold aim of improving the precision of
the models and their approximability by finite elements,
the idea of hierarchical models becomes natural: Roughly,
it consists of an Ansatz of polynomial behavior in the
thickness variable, with bounds on the degrees of the three
components of the 3-D displacement. The introduction of
such models in variational form is due to Vogelius and
Babuška (1981c) and Szabó and Sahrmann (1988). Earlier
beginnings in that direction can be found in Vekua (1955,
1965). The hierarchy (increasing the transverse degrees)
of models obtained in that way can be discretized by the
p-version of finite elements.

1.6 Plan of the chapter

In order to assess the validity of hierarchical models, we
will compare them with asymptotic expansions of solutions
uε when they are available: These expansions exhibit two
or three different scales and boundary layer regions, which
can or cannot be properly described by hierarchical models.

We first address plates because much more is known for
plates than for general shells. In Section 2, we describe the
two-scale expansion of the solutions of (3) and (4): This
expansion contains (i) a regular part each term of which is
polynomial in the thickness variable x3, (ii) a part mainly
supported in a boundary layer around the lateral boundary
�ε. In Section 3, we introduce the hierarchical models
as Galerkin projections on semidiscrete subspaces V q(�ε)

of V (�ε) defined by assuming a polynomial behavior of
degree q = (q1, q2, q3) in x3. The model of degree (1, 1, 0)

is the Reissner–Mindlin model and needs the introduction
of a reduced energy. The (1, 1, 2) model is the lowest
degree model to use the same elastic energy (2) as the 3-D
model.

We address shells in Section 4 (asymptotic expansions
and limiting models) and Section 5 (hierarchical models).
After a short introduction of the metric and curvature ten-
sors on the midsurface, we first describe the three-scale
expansion of the solutions of (3) on clamped elliptic shells:
Two of these scales can be captured by hierarchical models.
We then present and comment on the famous classification
of shells as flexural or membrane. We also mention two
distinct notions of shallow shells. We emphasize the uni-
versal role played by the Koiter model for the structure �d ,
independently of any embedding of �d in a family (�ε)ε.

The last section is devoted to the discretization of the
3-D problems and their 2-D hierarchical projections, by p-
version finite elements. The 3-D thin elements (one layer of
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elements through the thickness) constitute a bridge between
3-D and 2-D discretizations. We address the issue of locking
effects (shear and membrane locking) and the issue of
capturing boundary layer terms. Increasing the degree p of
approximation polynomials and using anisotropic meshes is
a way toward solving these problems. We end this chapter
by presenting a series of eigen-frequency computations on
a few different families of shells and draw some ‘practical’
conclusions.

2 MULTISCALE EXPANSIONS FOR
PLATES

The question of an asymptotic expansion for solutions uε

of problems (3) or (4) posed in a family of plates is
difficult: One may think it is natural to expand uε either
in polynomial functions in the thickness variable x3, or in
an asymptotic series in powers εk with regular coefficients
vk defined on the stretched plate � = S × (−1, 1). In
fact, for the class of loads considered here or for the
eigen-mode problem, both those Ansätze are relevant, but
they are unable to provide a correct description of the
behavior of uε in the vicinity of the lateral boundary �ε,
where there is a boundary layer of width ∼ ε (except in
the particular situation of a rectangular midsurface with
symmetry lateral boundary conditions (hard simple support
or sliding edge); see Paumier, 1990). And, worse, in the
absence of knowledge of the boundary layer behavior, the
determination of the terms vk is impossible (except for v0).

The investigation of asymptotics as ε → 0 was first per-
formed by the construction of infinite formal expansions;
see Friedrichs and Dressler (1961), Gol’denveizer (1962),
and Gregory and Wan (1984). The principle of multiscale
asymptotic expansion is applied to thin domains in Maz’ya,
Nazarov and Plamenevskii (1991b). A two-term asymp-
totics is exhibited in Nazarov and Zorin (1989). The whole
asymptotic expansion is constructed in Dauge and Gruais
(1996, 1998a) and Dauge, Gruais and Rössle (1999/00).

The multiscale expansions that we propose differ from
the matching method in Il’in (1992) where the solutions
of singularly perturbed problems are fully described in
rapid variables inside the boundary layer and slow variables
outside the layer, both expansions being ‘matched’ in an
intermediate region. Our approach is closer to that of Vishik
and Lyusternik (1962) and Oleinik, Shamaev and Yosifian
(1992).

2.1 Coordinates and symmetries

The midsurface S is a smooth domain of the plane � � R
2

(see Fig. 1) and for ε ∈ (0, ε0) �ε = S × (−ε, ε) is the

S S

x2

x1

s

r

Figure 1. Cartesian and local coordinates on the midsurface.

x3

+1

−1
+ε
−ε

Ω
Ωε

X3 = 
x3
ε

Figure 2. Thin plate and stretched plate.

generic member of the family of plates (see Fig. 2). The
plates are symmetric with respect to the plane �. Since they
are assumed to be made of an isotropic material, problems
(3) or (4) commute with the symmetry S: u �→ (u�(·,−x3),
−u3(·,−x3)). The eigenspaces of S are membrane and
bending displacements (also called stretching and flexural
displacements), cf. Friedrichs and Dressler (1961):

u membrane iff u�(x�,+x3) = u�(x�,−x3)

and u3(x�,+x3) = −u3(x�,−x3)

u bending iff u�(x�,+x3) = −u�(x�,−x3)

and u3(x�,+x3) = u3(x�,−x3)

(5)

Any general displacement u is the sum um + ub of a
membrane and a bending part (according to formulae um =
(1/2)(u + Su) and uf = (1/2)(u − Su). They are also
denoted by uI and uII in the literature).

In addition to the coordinates x� in S, let r be the distance
to ∂S in � and s an arclength function on ∂S (see Fig. 1).
In this way, (r, s) defines a smooth coordinate system in
a midplane tubular neighborhood V of ∂S. Let χ = χ(r)
be a smooth cut-off function with support in V, equal to 1
in a smaller such neighborhood. It is used to substantiate
boundary layer terms. The two following stretched (or
rapid) variables appear in our expansions:

X3 = x3

ε
and R = r

ε

The stretched thickness variable X3 belongs to (−1, 1)
and is present in all parts of our asymptotics, whereas
the presence of R characterizes boundary layer terms (see
Figure 2).

2.2 Problem with external load

The solutions of the family of problems (3) have a two-scale
asymptotic expansion in regular terms vk and boundary
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layer terms wk , which we state as a theorem (Dauge, Gruais
and Rössle, 1999/00; Dauge and Schwab, 2002). Note that
in contrast with the most part of those references, we work
here with natural displacements (i.e. unscaled), which is
more realistic from the mechanical and computational point
of view, and allows an easier comparison with shells.

Theorem 1. (Dauge, Gruais and Rössle, 1999/00) For
the solutions of problem (3), ε ∈ (0, ε0], there exist regular
terms vk = vk(x�, X3), k ≥ −2, and boundary layer terms
wk = wk(R, s, X3), k ≥ 0, such that

uε � ε−2v−2 + ε−1v−1 + ε0(v0 + χw0)

+ ε1(v1 + χw1) + · · · (6)

in the sense of asymptotic expansions: The following esti-
mates hold∥∥∥∥∥uε −

K∑
k=−2

εk(vk + χwk)

∥∥∥∥∥
E(�ε)

≤ CK(f) εK+1/2,

K = 0, 1, . . .

where we have set w−2 = w−1 = 0 and the constant CK(f)
is independent of ε ∈ (0, ε0].

2.2.1 Kirchhoff displacements and their deformation
patterns

The first terms in the expansion of uε are Kirchhoff dis-
placements, that is, displacements of the form (with the
surface gradient ∇� = (∂1, ∂2))

(x�, x3) �−−−→ v(x�, x3) =
(
ζ�(x�) − x3∇�ζ3(x�),

ζ3(x�)
)

(7)

Here, ζ� = (ζα) is a surface displacement and ζ3 is a
function on S. We call the three-component field ζ :=
(ζ�, ζ3), the deformation pattern of the KL displacement
v. Note that

v bending iff ζ = (0, ζ3) and v membrane iff ζ = (ζ�, 0)

In expansion (6) the first terms are Kirchhoff displacements.
The next regular terms vk are also generated by deformation
patterns ζk via higher degree formulae than in (7). We suc-
cessively describe the vk, the ζk and, finally, the boundary
layer terms wk .

2.2.2 The four first regular terms

For the regular terms vk , k = −2,−1, 0, 1, there exist bend-
ing deformation patterns ζ−2 = (0, ζ−2

3 ), ζ−1 = (0, ζ−1
3 ),

and full deformation patterns ζ0, ζ1 such that

v−2 = (0, ζ−2
3 )

v−1 = (−X3∇�ζ−2
3 , ζ−1

3 )

v0 = (ζ0
� − X3∇�ζ−1

3 , ζ0
3) + (0, P 2

b (X3)��ζ−2
3 )

v1 = (ζ1� − X3∇�ζ0
3, ζ1

3) + (P 3
b (X3)∇���ζ−2

3 ,

P 1
m(X3) div ζ0

� + P 2
b (X3)��ζ−1

3 )

(8)

In the above formulae, ∇� = (∂1, ∂2) is the surface gra-
dient on S, �� = ∂2

1 + ∂2
2 is the surface Laplacian and

div ζ� is the surface divergence (i.e. div ζ� = ∂1ζ1 + ∂2ζ2).
The functions P �

b and P �
m are polynomials of degree �,

whose coefficients depend on the Lamé constants according
to

P 1
m(X3) = − λ

λ + 2µ
X3,

P 2
b (X3) =

λ

2λ + 4µ

(
X2

3 −
1

3

)
,

P 3
b (X3) =

1

6λ + 12µ

(
(3λ + 4µ) X3

3 − (11λ + 12µ) X3

)
(9)

Note that the first blocks in
∑

k≥−2 εkvk yield Kirchhoff
displacements, whereas the second blocks have zero mean
values through the thickness for each x� ∈ S.

2.2.3 All regular terms with the help of formal series

We see from (8) that the formulae describing the successive
vk are partly self-similar and, also, that each vk is enriched
by a new term. That is why the whole regular term series∑

k εkvk can be efficiently described with the help of the
formal series product.

A formal series is an infinite sequence (a0, a1, . . . , ak,

. . .) of coefficients, which can be denoted in a symbolic
way by a[ε] =∑k≥0 εkak, and the product a[ε]b[ε] of the
two formal series a[ε] and b[ε] is the formal series c[ε] with
coefficients c� =∑0≤k≤� akb�−k . In other words, the equa-
tion c[ε] = a[ε]b[ε] is equivalent to the series of equation
c� =∑0≤k≤� akb�−k , ∀�.

With this formalism, we have the following identity,
which extends formulae (8):

v[ε] = V[ε]ζ[ε] + Q[ε]f[ε] (10)

(i) ζ[ε] is the formal series of Kirchhoff deformation
patterns

∑
k≥−2 εkζk starting with k = −2 .

(ii) V[ε] has operator valued coefficients Vk , k ≥ 0, acting
from C∞(S)3 into C∞(�)3:
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V0ζ = (ζ�, ζ3)

V1ζ = (−X3∇�ζ3, P 1
m(X3) div ζ�)

V2ζ = (P 2
m(X3)∇� div ζ�, P 2

b (X3)��ζ3)

. . .

V2jζ = (P
2j
m (X3)∇��

j−1
� div ζ�, P

2j
b (X3)�

j

�ζ3)

V2j+1ζ = (P
2j+1
b (X3)∇��

j

�ζ3,

P
2j+1
m (X3)�

j

� div ζ�)
(11)

with P �
b and P �

m polynomials of degree � (the first
ones are given in (9)).

(iii) f[ε] is the Taylor series of f around the surface x3 = 0:

f[ε] =
∑
k≥0

εkf k with f k(x�, X3) =
Xk

3

k!

∂kf

∂xk
3

∣∣∣
x3=0

(x�)

(12)

(iv) Q[ε] has operator valued coefficients Qk acting from
C∞(�)3 into itself. It starts at k = 2 (we can see
now that the four first equations given by equality
(10) are v−2 = V0ζ−2, v−1 = V0ζ−1 + V1ζ−2, v0 =
V0ζ0 + V1ζ−1 + V2ζ−2, v1 = V0ζ1 + V1ζ0 + V2ζ−1

+ V3ζ−2, which gives back (8))

Q[ε] =
∑
k≥2

εkQk (13)

Each Qk is made of compositions of partial derivatives in
the surface variables x� with integral operators in the scaled
transverse variable. Each of them acts in a particular way
between semipolynomial spaces Eq(�), q ≥ 0, in the scaled
domain �: We define for any integer q, q ≥ 0

Eq(�) =
{

v ∈ C∞(�)3, ∃zn ∈ C∞(S)3, v(x�, X3)

=
q∑

n=0

Xn
3zn(x�)

}
(14)

Note that by (12), f k belongs to Ek(�).
Besides, for any k ≥ 2, Qk acts from Eq(�) into

Eq+k(�). The first term of the series Q[ε]f[ε] is Q2f 0 and
we have:

Q2f 0(x�, X3) =
(

0,
1 − 3X2

3

6λ + 12µ
f03(x�)

)
As a consequence of formula (10), combined with the
structure of each term, we find

Lemma 1. (Dauge and Schwab, 2002) With the definition
(14) for the semipolynomial space Eq(�), for any k ≥ −2
the regular term vk belongs to Ek+2(�).

2.2.4 Deformation patterns

From formula (8) extended by (10) we obtain explicit
expressions for the regular parts vk provided we know the
deformation patterns ζk . The latter solves boundary value
problems on the midsurface S. Our multiscale expansion
approach gives back the well-known equations of plates
(the Kirchhoff–Love model and the plane stress model)
completed by a whole series of boundary value problems.

(i) The first bending generator ζ−2
3 solves the Kirch-

hoff–Love model

Lbζ
−2
3 (x�) = f03(x�), x� ∈ S with ζ−2

3

∣∣
∂S

= 0,

∂nζ
−2
3

∣∣
∂S

= 0 (15)

where Lb is the fourth-order operator

Lb := 4µ

3

λ + µ

λ + 2µ
�2

� = 1

3
(̃λ + 2µ) �2

� (16)

and n the unit interior normal to ∂S. Here λ̃ is the
‘averaged’ Lamé constant

λ̃ = 2λµ

λ + 2µ
(17)

(ii) The second bending generator ζ−1
3 is the solution of

a similar problem

Lbζ
−1
3 (x�) = 0, x� ∈ S with ζ−1

3

∣∣
∂S

= 0,

∂nζ
−1
3

∣∣
∂S

= cb
λ,µ��ζ−2

3 (18)

where cb
λ,µ is a positive constant depending on the

Lamé coefficients.
(iii) The membrane part ζ0

� of the third deformation
pattern solves the plane stress model

Lmζ0
�(x�) = f 0

�(x�), x� ∈ S and ζ0
�|∂S = 0

(19)

where Lm is the second-order 2 × 2 system(
ζ1
ζ2

)
�−−−→

−
(

(̃λ + 2µ)∂11 + µ∂22 (̃λ + µ)∂12
(̃λ + µ)∂12 µ∂11 + (̃λ + 2µ)∂22

)
×
(

ζ1
ζ2

)
(20)

(iv) Here, again, the whole series of equations over the
series of deformation patterns

∑
k≥−2 εkζk can be
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written in a global way using the formal series prod-
uct, as reduced equations on the midsurface:

L[ε]ζ[ε] = R[ε]f[ε] in S with d[ε]ζ[ε] = 0 on ∂S

(21)

Here, L[ε] = L0 + ε2L2 + ε4L4 + · · ·, with

L0ζ =
(

Lm 0
0 0

)(
ζ�
ζ3

)
L2ζ =

(
L2

m 0
0 Lb

)(
ζ�
ζ3

)
, . . . (22)

where L2
mζ� has the form c∇��� div ζ�. The series

of operators R[ε] starts at k = 0 and acts from
C∞(�)3 into C∞(S)3. Its first coefficient is the mean-
value operator

f �→ R0f with R0f(x�) = 1

2

∫ 1

−1
f(x�, X3) dX3

(23)

Finally, the coefficients of the operator series d[ε] are trace
operators acting on ζ. The first terms are

d0ζ =


ζ� · n
ζ� × n

0
0

 , d1ζ =


−cm

λ,µ div ζ�
0
0
0

 ,

d2ζ =


•
•
ζ3

∂nζ3

 , d3ζ =


•
•
0

−cb
λ,µ��ζ3

 (24)

where cb
λ,µ is the constant in (18), cm

λ,µ is another positive
constant and • indicates the presence of higher order
operators on ζ�.

Note that the first three equations in (21): L0ζ−2 =
0, L0ζ−1 = 0, L0ζ0 + L2ζ−2 = R0f 0 on S and d0ζ−2 =
0, d0ζ−1 + d1ζ−1 = 0, d0ζ0 + d1ζ−1 + d2ζ−2 = 0 on ∂S,
give back (15), (18), and (19) together with the fact that
ζ−2
� = ζ−1

� = 0.

2.2.5 Boundary layer terms

The terms wk have a quite different structure. Their nat-
ural variables are (R, s, X3), see Section 2.1 and Fig. 3,

∂S

×

Σ+

+1

−1

R = r
ε

Figure 3. Boundary layer coordinates in ∂S × �+.

and they are easier to describe in boundary fitted compo-
nents (wr, ws, w3) corresponding to the local coordinates
(r, s, x3). The first boundary layer term, w0 is a bending
displacement in the sense of (5) and has a tensor product
form: In boundary fitted components it reads

w0
s = 0 and (w0

r , w0
3)(R, s, X3) = ϕ(s) w 0

∗ (R, X3)

with ϕ = ��ζ−2
3

∣∣
∂S

and w 0
∗ is a two component exponentially decreasing profile

on the semi-strip �+ := {(R, X3), R > 0, |X3| < 1}: There
exists η > 0 such that

|eηR w 0
∗ (R, X3)| is bounded as R → ∞

The least upper bound of such η is the smallest exponent
η0 arising from the Papkovich–Fadle eigenfunctions; see
Gregory and Wan (1984). Both components of w 0

∗ are
nonzero.

The next boundary layer terms wk are combinations of
products of (smooth) traces on ∂S by profiles w k,� in
(R, X3). These profiles have singularities at the corners
(0,±1) of �+, according to the general theory of Kon-
drat’ev (1967). Thus, in contrast with the ‘regular’ terms
vk , which are smooth up to the boundary of �, the terms
wk do have singular parts along the edges ∂S × {±1} of
the plate. Finally, the edge singularities of the solution uε

of problem (3) are related with the boundary layer terms
only; see Dauge and Gruais (1998a) for further details.

2.3 Properties of the displacement expansion
outside the boundary layer

Let S ′ be a subset of S such that the distance between ∂S′
and ∂S is positive. As a consequence of expansion (6) there
holds

uε(x) =
K∑

k=−2

εkvk(x�, X3) +O(εK+1)

uniformly for x ∈ S ′ × (−ε, ε)

Coming back to physical variables (x�, x3), the expan-
sion terms vk being polynomials of degree k + 2 in X3
(Lemma 1), we find that

uε(x) =
K∑

k=−2

εk v̂K,k(x�, x3) +O(εK+1)

uniformly for x ∈ S ′ × (−ε, ε)
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with fields v̂K,k being polynomials in x3 of degree K − k.
This means that the expansion (6) can also be seen as a
Taylor expansion at the midsurface, provided we are at a
fixed positive distance from the lateral boundary.

Let us write the first terms in the expansions of the
bending and membrane parts uε

b and uε
m of uε:

uε
b = ε−2

(
−x3∇�ζ−2

3 , ζ−2
3 + λx2

3

2λ + 4µ
��ζ−2

3

)

−
(

0,
λ

6λ + 12µ
��ζ−2

3

)
+ ε−1

(
−x3∇�ζ−1

3 ,

ζ−1
3 + λx2

3

2λ + 4µ
��ζ−1

3

)
+ · · · (25)

From this formula, we can deduce the following asymp-
totics for the strain and stress components

eαβ(u
ε
b) = −ε−2x3∂αβ

(
ζ−2

3 + εζ−1
3

)+O(ε)

e33(u
ε
b) = ε−2 λx3

λ + 2µ
��
(
ζ−2

3 + εζ−1
3

)+O(ε) (26)

σ33(uε
b) = O(ε)

Since ε−2x3 = O(ε−1), we see that e33 = O(ε−1). Thus, σ33

is two orders of magnitude less than e33, which means a
plane stress limit. To compute the shear strain (or stress),
we use one further term in the asymptotics of uε

b and obtain
that it is one order of magnitude less than e33:

eα3(u
ε
b) =

2λ + 2µ

λ + 2µ
(ε−2x2

3 − 1)∂α��ζ−2
3 +O(ε) (27)

Computations for the membrane part uε
m are simpler and

yield similar results

uε
m =

(
ζ0
�, − λx3

λ + 2µ
div ζ0

�

)
+ ε

(
ζ1
�, − λx3

λ + 2µ
div ζ1

�

)
+ · · ·

eαβ(u
ε
m) = 1

2
(∂αζ

0
β + ∂βζ

0
α) +

ε

2
(∂αζ

1
β + ∂βζ

1
α) +O(ε2)

e33(u
ε
m) = − λ

λ + 2µ
div
(
ζ0
� + εζ1

�
)+O(ε2)

(28)

and σ33(uε
m) = O(ε2), eα3(u

ε
m) = O(ε).

In (26)–(28) the O(ε) and O(ε2) are uniform on any
region S

′ × (−ε, ε) where the boundary layer terms have
no influence. We postpone global energy estimates to the
next section.

2.4 Eigen-mode problem

For each ε > 0, the spectrum of problem (4) is discrete and
positive. Let �ε

j , j = 1, 2, . . . be the increasing sequence
of eigenvalues. In Ciarlet and Kesavan (1981) it is proved
that ε−2�ε

j converges to the j th eigenvalue �KL
b,j of the

Dirichlet problem for the Kirchhoff operator Lb, cf. (16). In
Nazarov and Zorin (1989) and Nazarov (1991c), a two-term
asymptotics is constructed for the ε−2�ε

j . Nazarov (2000b)
proves that |ε−2�ε

j − �KL
b,j | is bounded by an O(

√
ε) for a

much more general material matrix A.
In Dauge et al. (1999), full asymptotic expansions for

eigenvalues and eigenvectors are proved: For each j there
exist

• bending generators ζ−2
3 , ζ−1

3 , . . . where ζ−2
3 is an eigen-

vector of Lb associated with �KL
b,j

• real numbers �1
b,j , �2

b,j , . . .

• eigenvectors uε
b,j associated with �ε

j for any ε ∈
(0, ε0)

so that for any K ≥ 0

�ε
j = ε2�KL

b,j + ε3�1
b,j + · · · + εK+2�K

b,j +O(εK+3)

uε
b,j = ε−2(−x3∇�ζ−2

3 , ζ−2
3 ) + ε−1(−x3∇�ζ−1

3 , ζ−1
3 )

+ · · · + εK(vK+ χwK) +O(εK+1) (29)

where the terms vk and wk are generated by the ζk
3, k ≥ 0

in a similar way as in Section 2.2, and O(εK+1) is uniform
over �ε.

The bending and membrane displacements are the eigen-
vectors of the symmetry operator S; see (5). Since S

commutes with the elasticity operator, both have a joint
spectrum, which means that there exists a basis of common
eigenvectors. In other words, each elasticity eigenvalue can
be identified as a bending or a membrane eigenvalue. The
expansion (29) is the expansion of bending eigen-pairs.

The expansion of membrane eigen-pairs can be done in
a similar way. Let us denote by �ε

m,j the j th membrane
eigenvalue on �ε and by �KL

m,j the j th eigenvalue of the
plane stress operator Lm, cf. (20) with Dirichlet boundary
conditions. Then we have a similar statement as above, with
the distinctive feature that the membrane eigenvalues tend
to those of the plane stress model:

�ε
m,j = �KL

m,j + ε1�1
m,j + · · · + εK�K

m,j +O(εK+1) (30)

This fact, compared with (29), explains why the smallest
eigenvalues are bending. Note that the eigenvalue formal
series �[ε] satisfy reduced equations L[ε]ζ[ε] = �[ε]ζ[ε]
like (21) with the same L0, L1 = 0 and L2 as in (22). In
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particular, equations(
Lm 0
0 ε2Lb

)(
ζ�
ζ3

)
= �

(
ζ�
ζ3

)
(31)

give back the ‘limiting’ eigenvalues �KL
m and ε2�KL

b . Our
last remark is that the second terms �1

b,j and �1
m,j are

positive; see Dauge and Yosibash (2002) for a discussion
of that fact.

2.5 Extensions

2.5.1 Traction on the free parts of the boundary

Instead of a volume load, or in addition to it, tractions g±
can be imposed on the faces S × {±ε} of the plate. Let us
assume that g± is independent of ε. Then the displacement
uε has a similar expansion as in (6), with the following
modifications:

• If the bending part of g± is nonzero, then the regular
part starts with ε−3v−3 and the boundary layer part
with ε−1χw−1;

• If the membrane part of g± is nonzero, the membrane
regular part starts with ε−1v−1.

2.5.2 Lateral boundary conditions

A similar analysis holds for each of the seven remaining
types of ‘canonical’ boundary conditions: soft clamping,
hard simple support, soft simple support, two types of fric-
tion, sliding edge, and free boundary. See Dauge, Gruais
and Rössle (1999/00) for details. It would also be possible
to extend such an analysis to more intimately mixed bound-
ary conditions where only moments through the thickness
along the lateral boundary are imposed for displacement or
traction components; see Schwab (1996).

If, instead of volume load f or tractions g±, we set f ≡ 0,
g± ≡ 0, and impose nonzero lateral boundary conditions, uε

will have a similar expansion as in (6) with the remarkable
feature that the degree of the regular part in the thickness
variable is ≤ 3; see Dauge and Schwab (2002), Rem. 5.4.
Moreover, in the clamped situation, the expansion starts
with O(1).

2.5.3 Laminated composites

If the material of the plate is homogeneous, but not
isotropic, uε will still have a similar expansion; see Dauge
and Gruais (1996) and Dauge and Yosibash (2002) for
orthotropic plates. If the plate is laminated, that is, formed
by the union of several plies made of different homoge-
neous materials, then uε still expands in regular parts vk and

boundary layer parts wk , but the vk are no more polynomials
in the thickness variable, only piecewise polynomial in each
ply, and continuous; see Actis, Szabo and Schwab (1999).
Nazarov (2000a, 2000b) addresses more general material
laws where the matrix A depends on the variables x� and
X3 = x3/ε.

3 HIERARCHICAL MODELS FOR
PLATES

3.1 The concepts of hierarchical models

The idea of hierarchical models is a natural and efficient
extension to that of limiting models and dimension reduc-
tion. In the finite element framework, it has been firstly
formulated in Szabó and Sahrmann (1988) for isotropic
domains, mathematically investigated in Babuška and Li
(1991, 1992a, 1992b), and generalized to laminated com-
posites in Babuška, Szabó and Actis (1992) and Actis,
Szabo and Schwab (1999). A hierarchy of models consists
of

• a sequence of subspaces V q(�ε) of V (�ε) with the
orders q = (q1, q2, q3) forming a sequence of integer
triples, satisfying

V q(�ε) ⊂ V q′
(�ε) if q � q′ (32)

• a sequence of related Hooke laws σ = Aqe, cor-
responding to a sequence of elastic bilinear forms
aε,q(u, u′) = ∫

�ε Aqe(u) : e(u′).

Let uε,q be the solution of the problem

Find uε,q ∈ V q(�ε) such that

aε,q(uε,q, u′) =
∫

�ε

fε · u′ dx, ∀u′ ∈ V q(�ε) (33)

Note that problem (33) is a Galerkin projection of problem
(3) if aε,q = aε.

Any model that belongs to the hierarchical family has to
satisfy three requirements; see Szabó and Babuška (1991),
Chap. 14.5:

(a) Approximability. At any fixed thickness ε > 0:

lim
q→∞‖uε − uε,q‖

E(�ε)
= 0 (34)

(b) Asymptotic consistency. For any fixed degree q:

lim
ε→0

‖uε − uε,q‖
E(�ε)

‖uε‖
E(�ε)

= 0 (35)
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(c) Optimality of the convergence rate. There exists a
sequence of positive exponents γ(q) with the growth
property γ(q) < γ(q′) if q ≺ q′, such that ‘in the
absence of boundary layers and edge singularities’:

‖uε − uε,q‖
E(�ε)

≤ Cεγ(q)‖uε‖
E(�ε)

(36)

The substantiation of hierarchical models for plates, in
general, requires the choice of three sequences of finite
dimensional nested director spaces 	0

j ⊂ · · ·	N
j ⊂ · · · ⊂

H 1(−1, 1) for j = 1, 2, 3 and the definition of the space
V q(�ε) for q = (q1, q2, q3) as

V q(�ε) =
{

u ∈ V (�ε),
(
(x�, X3) �→ uj (x�, εX3)

)
∈ H 1

0 (S) ⊗ 	
qj

j , j = 1, 2, 3
}

(37)

We can reformulate (37) with the help of director functions:
With dj (N) being the dimension of 	N

j , let 
n
j = 
n

j (X3),
0 ≤ n ≤ dj (N), be hierarchic bases (the director functions)
of 	N

j . There holds

V q(�ε) =
{

u ∈ V (�ε), ∃zn
j ∈ H 1

0 (S), 0 ≤ n ≤ dj (qj ),

uj (x�, x3) =
dj (qj )∑
n=0

zn
j (x�)
n

j

(x3

ε

)}
(38)

The choice of the best director functions is addressed in
Vogelius and Babuška (1981c) in the case of second-order
scalar problems with general coefficients (including possi-
ble stratifications). For smooth coefficients, the space 	N

j

coincides with the space PN of polynomial with degree ≤
N . The director functions can be chosen as the Legendre
polynomials Ln(X3) or, simply, the monomials Xn

3 (and then
xn

3 can be used equivalently instead (x3/ε)
n in (38)).

We describe in the sequel in more detail, the conve-
nient hierarchies for plates and discuss the three qualities
(34)–(36); see Babuška and Li (1991, 1992a) and Babuška,
Szabó and Actis (1992) for early references.

3.2 The limit model (Kirchhoff–Love)

In view of expansion (6), we observe that if the transverse
component f3 of the load is nonzero on the midsurface,
uε is unbounded as ε → 0. If we multiply by ε2, we
have a convergence to (0, ζ−2

3 ), which is not kinematically
relevant. At that level, a correct notion of limit uses scalings
of coordinates: If we define the scaled displacement ũε by
its components on the stretched plate � = S × (−1, 1) by

ũε
� := εuε

� and ũε
3 := ε2uε

3 (39)

then ũε converges to (−X3∇�ζ−2
3 , ζ−2

3 ) in H 1(�)3 as
ε → 0. This result, together with the mathematical deriva-
tion of the resultant equation (15), is due to Ciarlet and
Destuynder (1979a).

The corresponding subspace of V (�ε) is that of bending
Kirchhoff displacements or, more generally, of Kirchhoff
displacements:

V KL(�ε) = {u ∈ V (�ε), ∃ζ ∈ H 1
0 × H 1

0 × H 2
0 (S),

u = (ζ� − x3∇�ζ3, ζ3)} (40)

It follows from (40) that e13 = e23 = 0 for which the phys-
ical interpretation is that ‘normals to S prior to deforma-
tion remain straight lines and normals after deformation’.
Hooke’s law has to be modified with the help of what we
call ‘the plane stress trick’. It is based on the assumption
that the component σ33 of the stress is negligible (note
that the asymptotics (6) of the three-dimensional solution
yields that σ33 = O(ε), whereas eαβ, e33 = O(ε−1) outside
the boundary layer, cf. (26), which justifies the plane stress
assumption). From standard Hooke’s law (1), we extract
the relation σ33 = λ(e11 + e22) + (λ + 2µ)e33, then set σ33

to zero, which yields

e33 = − λ

λ + 2µ
(e11 + e22) (41)

Then, we modify Hooke’s law (1) by substituting e33 by its
expression (41) in σ11 and σ22, to obtain

σii = 2λµ

λ + 2µ
(e11 + e22) + 2µeii, i = 1, 2

σij = 2µeij for i �= j

(42)

Thus, σii = λ̃(e11 + e22) + 2µeii , with λ̃ given by (17).
Taking into account that e33 = 0 for the elements of
V KL(�ε), we obtain a new Hooke’s law given by the same
formulae as (1) when replacing the Lamé coefficient λ by
λ̃. This corresponds to a modified material matrix Ãijkl

Ãijkl = λ̃δijδkl + µ(δikδj l + δilδjk) (43)

and a reduced elastic energy ã(u, u) = ∫
�ε σij (u)eij (u).

Note that for u = (ζ� − x3∇�ζ3, ζ3)

ã(u, u) = 2ε

∫
S

Ãαβσδeαβ(ζ�)eσδ(ζ�) dx�

+ 2ε3

3

∫
S

Ãαβσδ∂αβ(ζ3)∂σδ(ζ3) dx� (44)

exhibiting a membrane part in O(ε) and a bending part in
O(ε3). There hold as a consequence of Theorem 1
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Theorem 2. Let uε,KL be the solution of problem (33) with
V q = V KL and aq = ã. Then

(i) In general uε,KL = ε−2
(−x3∇�ζ−2

3 , ζ−2
3

)+O(1) with
ζ−2

3 the solution of (15);
(ii) If f is membrane, uε,KL = (ζ0

�, 0
)+O(ε2) with ζ0

� the
solution of (19).

Can we deduce the asymptotic consistency for that
model? No! Computing the lower-order terms in the expres-
sion (35), we find with the help of (25) that, if f03 �≡ 0

‖uε‖
E(�ε)

� O(ε−1/2)

and
‖uε − uε,KL‖

E(�ε)
≥ ‖e33(u

ε)‖
L2(�ε)

� O(ε−1/2)

Another source of difficulty is that, eventually, relation (41)
is not satisfied by uε,KL. If f03 ≡ 0 and f 0

� �≡ 0, we have
exactly the same difficulties with the membrane part.

A way to overcome these difficulties is to consider
a complementing operator C defined on the elements of
V KL by

Cu = u +
(

0,− λ

λ + 2µ

∫ x3

0
div u�(·, y) dy

)
(45)

Then (41) is now satisfied by Cu for any u ∈ V KL. More-
over (still assuming f3 �≡ 0), one can show

‖uε − Cuε,KL‖
E(�ε)

≤ C
√

ε‖uε‖
E(�ε)

(46)

The error factor
√

ε is due to the first boundary layer term
w0. The presence of w0 is a direct consequence of the fact
that Cuε,KL does not satisfy the lateral boundary conditions.

Although the Kirchhoff–Love model is not a member
of the hierarchical family, it is the limit of all models for
ε → 0.

3.3 The Reissner–Mindlin model

This model is obtained by enriching the space of kinemat-
ically admissible displacements, allowing normals to S to
rotate after deformation. Instead of (40), we set

V RM(�ε) = {u ∈ V (�ε), ∃z ∈ H 1
0 (S)3, ∃θ� ∈ H 1

0 (S)2,

u = (z� − x3θ�, z3)}

With the elasticity tensor A corresponding to 3-D elasticity,
the displacements and strain–energy limit of the RM model
as d → 0 would not coincide with the 3-D limit (or the
Kirchhoff–Love limit).

We have again to use instead the reduced elastic bilinear
form ã to restore the convergence to the correct limit, by
virtue of the same plane stress trick. The corresponding
elasticity tensor is Ã (43). A further correction can be
introduced in the shear components of Ã to better represent
the fully 3-D shear stresses σ13 and σ23 (and also the strain
energy) for small yet nonzero thickness ε. The material
matrix entries A1313, A2323 are changed by introducing the
so-called shear correction factor κ:

Ã1313 = κA1313 Ã2323 = κA2323

By properly chosen κ, either the energy of the RM solution,
or the deflection u3 can be optimized with respect to the
fully 3-D plate. The smaller the ε, the smaller the influence
of κ on the results. For the isotropic case, two possible
κ’s are (see details in Babuška, d’Harcourt and Schwab
(1991a)):

κEnergy = 5

6(1 − ν)
or κDeflection = 20

3(8 − 3ν)
,

with ν = λ

2(λ + µ)
(Poisson ratio)

A value of κ = 5/6 is frequently used in engineering
practice, but for modal analysis, no optimal value of κ is
available.

Note that, by integrating equations of (33) through the
thickness, we find that problem (33) is equivalent to a
variational problem for z and θ only. For the elastic energy,
we have

ã(u, u) = 2ε

∫
S

Ãαβσδeαβ(z�)eσδ(z�) dx�
(membrane energy)

+ ε

∫
S

κµ(∂αz3 − θα)(∂αz3 − θα) dx�
(shear energy)

+ 2ε3

3

∫
S

Ãαβσδeαβ(θ�)eσδ(θ�) dx�
(bending energy)

(47)

Let uε,RM be the solution of problem (33) with V q = V RM

and aq = ã. The singular perturbation character appears
clearly. In contrast with the Kirchhoff–Love model, the
solution admits a boundary layer part. Arnold and Falk
(1990b, 1996) have described the two-scale asymptotics of
uε,RM. Despite the presence of boundary layer terms, the
question of knowing if uε,RM is closer to uε than uε,KL has
no clear answer to our knowledge. A careful investigation
of the first eigenvalues �ε

1, �
ε,KL
1 , and �

ε,RM
1 of these three

models in the case of lateral Dirichlet conditions shows
the following behavior for ε small enough (Dauge and
Yosibash, 2002):
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�
ε,RM
1 < �

ε,KL
1 < �ε

1

which tends to prove that RM model is not generically
better than KL for (very) thin plates. Nevertheless, an
estimate by the same asymptotic bound as in (46) is valid
for uε − Cuε,RM.

3.4 Higher order models

The RM model is a (1, 1, 0) model with reduced elastic
energy. For any q = (q�, q�, q3) we define the space V q

by (compare with (38) for monomial director functions)

V q(�ε) =
{

u ∈ V (�ε), ∃zn
� ∈ H 1

0 (S)2, 0 ≤ n ≤ q�,

∃zn
3 ∈ H 1

0 (S), 0 ≤ n ≤ q3

u� =
q�∑

n=0

xn
3 zn

�(x�) and u3 =
q3∑

n=0

xn
3 zn

3(x�)

}
(48)

The subspaces V
q

b and V
q

m of bending and membrane
displacements in V q can also be used, according to the
nature of the data. The standard 3-D elastic energy (2) is
used with V q and V

q
b for any q � (1, 1, 2) and with V

q
m for

any q � (0, 0, 1).

Theorem 3.

(i) If f satisfies f3
∣∣
S
�≡ 0, for any q � (1, 1, 2) there exists

Cq = Cq(f) > 0 such that for all ε ∈ (0, ε0)

‖uε − uε,q‖
E(�ε)

≤ Cq

√
ε ‖uε‖

E(�ε)
(49)

(ii) If f is membrane and f�
∣∣
S
�≡ 0, for any q � (0, 0, 1)

there exists Cq = Cq(f) > 0 such that for all ε ∈ (0, ε0)

(49) holds.

Proof. Since the energy is not altered by the model, uε,q

is a Galerkin projection of uε on V q(�ε). Since the strain
energy is uniformly equivalent to the elastic energy on any
�ε, we have by Céa’s lemma that there exists C > 0

‖uε − uε,q‖
E(�ε)

≤ C‖uε − vq‖
E(�ε)

∀vq ∈ V q(�ε)

(i) We choose, compare with (25),

vq = ε−2

(
−x3∇�ζ−2

3 , ζ−2
3 + λx2

3

2λ + 4µ
��ζ−2

3

)

− ε−2λx2
3

2λ + 4µ
ϕ(s)

(
0, ξ(R)

)

with ϕ = ��ζ−2
3

∣∣
∂S

and ξ a smooth cut-off function
equal to 1 in a neighborhood of R = 0 and 0 for
R ≥ 1. Then vq satisfies the lateral boundary condi-
tions and we can check (49) by combining Theorem 1
with the use of Céa’s lemma.

(ii) We choose, instead

vq =
(
ζ0
�,− λx3

λ + 2µ
div ζ0

�

)
+ λx3

λ + 2µ
ϕ(s)

(
0, ξ(R)

)
with ϕ = div ζ0

�
∣∣
∂S

�

It is worthwhile to mention that for the (1, 1, 2) model
the shear correction factor (when ν → 0, κ(1,1,2) tends to
5/6, just like for the two shear correction factors of the RM
model)

κ(1,1,2) =
12 − 2ν

ν2

−1 +
√

1 + 20ν2

(12 − 2ν)2


can be used for optimal results in respect with the error in
energy norm and deflection for finite thickness plates; see
Babuška, d’Harcourt and Schwab (1991a). For higher plate
models, no shear correction factor is furthermore needed.

The result in Schwab and Wright (1995) regarding the
approximability of the boundary layers by elements of
V q, yields that the constant Cq in (49) should rapidly
decrease when q increases. Nevertheless the factor

√
ε is

still present, for any q, because of the presence of the
boundary layer terms. The numerical experiments in Dauge
and Yosibash (2000) demonstrate that the higher the degree
of the hierarchical model, the better the boundary layer
terms are approximated.

If one wants to have an approximation at a higher order
in ε one should

• either consider a problem without boundary layer, as
mentioned in requirement (c) (36), that is, a rectan-
gular plate with symmetry boundary conditions: In
this case, the convergence rate γ(q) in ε is at least
minj qj − 1,

• or combine a hierarchy of models with a three-
dimensional discretization of the boundary layer; see
Stein and Ohnimus (1969) and Dauge and Schwab
(2002).

The (1, 1, 2) is the lowest order model which is asymp-
totically consistent for bending. See Paumier and Raoult
(1997) and Rössle et al. (1999). It is the first model in the
bending model hierarchy

(1, 1, 2), (3, 3, 2), (3, 3, 4), . . .

(2n − 1, 2n − 1, 2n), (2n + 1, 2n + 1, 2n), . . .
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The exponent γ(q) in (36) can be proved to be 2n − 1
if q = (2n − 1, 2n − 1, 2n) and 2n if q = (2n + 1, 2n +
1, 2n), thanks to the structure of the operator series V[ε]
and Q[ε] in (11). If the load f is constant over the whole
plate, then the model of degree (3, 3, 4) captures the whole
regular part of uε, (Dauge and Schwab (2002), Rem. 8.3)
and if, moreover, f ≡ 0 (in this case, only a lateral boundary
condition is imposed), the degree (3, 3, 2) is sufficient.

3.5 Laminated plates

If the plate is laminated, the material matrix A = Aε has
a sandwich structure, depending on the thickness variable
x3: We assume that Aε(x3) = A(X3), where the coeffi-
cients of A are piecewise constant. In Nazarov (2000a)
the asymptotic analysis is started, including such a sit-
uation. We may presume that a full asymptotic expan-
sion like (6) with a similar internal structure, is still
valid.

In the homogeneous case, the director functions in (38)
are simply the monomials of increasing degrees; see (48).
In the laminated case, the first director functions are still 1
and x3:


0
1 = 
0

2 = 
0
3 = 1; 
1

1 = 
1
2 = x3

In the homogeneous case, we have 
1
3 = x3 and 
2

j = x2
3,

j = 1, 2, 3. In Actis, Szabo and Schwab (1999) three more
piecewise linear director functions and three piecewise
quadratic director functions are exhibited for the laminated
case.

How many independent director functions are necessary
to increase the convergence rate γ(q) (36)? In other words,
what is the dimension of the spaces 	

qj

j (cf. (37))? In our
formalism, see (10)–(11), this question is equivalent to
knowing the structure of the operators Vj . Comparing with
Nazarov (2000a), we can expect that

V1ζ =
(
− X3∇�ζ3, P

1,1
3 (X3)∂1ζ1 + P

1,2
3 (X3)(∂1ζ2 + ∂2ζ1)

+ P
1,3
3 (X3)∂2ζ2

)
V2ζ =

( 3∑
k=1

P
2,k,1
j (X3)∂

2
1 ζk + P

2,k,2
j (X3)∂

2
12ζk

+ P
2,k,3
j (X3)∂

2
2 ζk

)
j=1,2,3

(50)

As soon as the above functions P
n,∗
j are independent,

they should be present in the bases of the director space
	n

j . The dimensions of the spaces generated by the P
n,∗
j

have upper bounds depending only on n. But their actual
dimensions depend on the number of plies and their
nature.

4 MULTISCALE EXPANSIONS AND
LIMITING MODELS FOR SHELLS

Up to now, the only available results concerning multiscale
expansions for ‘true’ shells concern the case of clamped
elliptic shells investigated in Faou (2001a, 2001b, 2003).
For (physical) shallow shells, which are closer to plates
than shells, multiscale expansions can also be proved; see
Nazarov (2000a) and Andreoiu and Faou (2001).

In this section, we describe the results for clamped elliptic
shells, then present the main features of the classification
of shells as flexural and membrane. As a matter of fact,
multiscale expansions are known for the most extreme
representatives of the two types: (i) plates for flexural
shells, (ii) clamped elliptic shells for membrane shells.
Nevertheless, multiscale expansions in the general case
seem out of reach (or, in certain cases, even irrelevant).

4.1 Curvature of a midsurface and other
important tensors

We introduce minimal geometric tools, namely, the metric
and curvature tensors of the midsurface S, the change of
metric tensor γαβ, and the change of curvature tensor ραβ.
We also address the essential notions of elliptic, hyperbolic,
or parabolic point in a surface. We make these notions more
explicit for axisymmetric surfaces. A general introduction
to differential geometry on surfaces can be found in Stoker
(1969).

Let us denote by 〈X, Y 〉
R3 the standard scalar product

of two vectors X and Y in R
3. Using the fact that the

midsurface S is embedded in R
3, we naturally define the

metric tensor (aαβ) as the projection on S of the standard
scalar product in R

3: Let p� be a point of S and X, Y ,
two tangent vectors to S in p�. In a coordinate system
x� = (xα) on S, the components of X and Y are (Xα) and
(Y α), respectively. Then the matrix

(
aαβ(x�)

)
is the only

positive definite symmetric 2 × 2 matrix such that for all
such vectors X and Y〈

X, Y
〉
R3 = aαβ(x�)XαY β =:

〈
X, Y

〉
S

The inverse of aαβ is written aαβ and thus satisfies aαβaβσ =
δα
σ, where δα

σ is the Kronecker symbol and where we
used the repeated indices convention for the contraction
of tensors.

The covariant derivative D is associated with the metric
aαβ as follows: It is the unique differential operator such
that D〈X, Y 〉S = 〈DX, Y 〉S + 〈X, DY 〉S for all vector fields
X and Y . In a local coordinate system, we have

Dα = ∂α + terms of order 0
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where ∂α is the derivative with respect to the coordinate
xα. The terms of order 0 do depend on the choice of the
coordinate system and on the type of the tensor field on
which D is applied. They involve the Christoffel symbols
of S in the coordinate system (xα).

The principal curvatures at a given point p� ∈ S can be
seen as follows: We consider the family P of planes P

containing p� and orthogonal to the tangent plane to S at
p�. For P ∈ P, P ∩ S defines a curve in P and we denote
by κ its signed curvature κ. The sign of κ is determined
by the orientation of S. The principal curvatures κ1 and
κ2 are the minimum and maximum of κ when P ∈ P. The
principal radii of curvature are Ri := |κi |−1. The Gaussian
curvature of S in p� is K(p�) = κ1κ2.

A point p� is said to be elliptic if K(p�) > 0, hyperbolic
if K(p�) < 0, parabolic if K(p�) = 0 but κ1 or κ2 is
nonzero, and planar if κ1 = κ2 = 0. An elliptic shell is
a shell whose midsurface is everywhere elliptic up to
the boundary (similar definitions hold for hyperbolic and
parabolic shells. . . and planar shells that are plates).

The curvature tensor is defined as follows: Let 	: x� �→
	(x�) be a parameterization of S in a neighborhood of a
given point p� ∈ S and n(	(x�)) be the normal to S in
	(x�). The formula

bαβ :=
〈
n(	(x�)) ,

∂	

∂xα∂xβ

(x�)
〉
R3

defines, in the coordinate system x� = (xα), the compo-
nents of a covariant tensor field on S, which is called the
curvature tensor.

The metric tensor yields diffeomorphisms between tensor
spaces of different types (covariant and contravariant): We
have, for example, b

β
α = aασbσβ. With these notations, we

can show that in any coordinate system, the eigenvalues of
bα

β at a point p� are the principal curvatures at p�.
In the special case where S is an axisymmetric surface

parametrized by

	: (x1, x2) �→ (x1 cos x2, x1 sin x2, f (x1)) ∈ R
3 (51)

where x1 ≥ 0 is the distance to the axis of symmetry,
x2 ∈ [0, 2π[ is the angle around the axis, and f : R �→ R

a smooth function, we compute directly that

(bα
β) =

1√
1 + f ′(x1)

2


f ′′(x1)

1 + f ′(x1)
2

0

0
f ′(x1)

x1


whence

K = f ′(x1)f
′′(x1)

x1(1 + f ′(x1)
2)2

A deformation pattern is a three-component field ζ =
(ζα, ζ3) where ζα is a surface displacement on S, and
ζ3 a function on S. The change of metric tensor γαβ(ζ)

associated with the deformation pattern ζ has the following
expression:

γαβ(ζ) = 1
2 (Dαζβ + Dβζα) − bαβζ3 (52)

The change of curvature tensor associated with ζ writes

ραβ(ζ) = DαDβζ3 − bσ
αbσβζ3 + bσ

αDβζσ + Dαb
σ
βζσ (53)

4.2 Clamped elliptic shells

The generic member �ε of our family of shells is defined
as

S × (−ε, ε) � (p�, x3) −−−→ p� + x3 n(p�) ∈ �ε ⊂ R
3

(54)

where n(p�) is the normal to S at p�. Now three stretched
variables are required (cf. Section 2.1 for plates):

X3 = x3

ε
, R = r

ε
and T = r√

ε

where (r, s) is a system of normal and tangential coordi-
nates to ∂S in S.

4.2.1 Three-dimensional expansion

The solutions of the family of problems (3) have a three-
scale asymptotic expansion in powers of ε1/2, with regular
terms vk/2, boundary layer terms wk/2 of scale ε like
for plates, and new boundary layer terms ϕk/2 of scale
ε1/2.

Theorem 4. (Faou, 2003) For the solutions of problems
(3), there exist regular terms vk/2(x�, X3), k ≥ 0, boundary
layer terms ϕk/2(T, s, X3), k ≥ 0 and wk/2(R, s, X3), k ≥ 2,
such that

uε � (v0 + χϕ0) + ε1/2(v1/2 + χϕ1/2) + ε(v1 + χϕ1

+ χw1) + · · · (55)

in the sense of asymptotic expansions: There holds the
following estimates∥∥∥∥∥uε −

2K∑
k=0

εk/2(vk/2 + χϕk/2 + χwk/2)

∥∥∥∥∥
E(�ε)

≤ CK(f) εK+1/2, K = 0, 1, . . .
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where we have set w0 = w1/2 = 0 and the constant CK(f)
is independent of ε ∈ (0, ε0].

Like for plates, the terms of the expansion are linked with
each other, and are generated by a series of deformation
patterns ζk/2 = ζk/2(x�) of the midsurface S. They solve
a recursive system of equations, which can be written in a
condensed form as an equality between formal series, like
for plates. The distinction from plates is that, now, half-
integer powers of ε are involved and we write, for example,
ζ[ε1/2] for the formal series

∑
k εk/2ζk/2.

4.2.2 Regular terms

The regular terms series v[ε1/2] =∑k εk/2vk/2 is deter-
mined by an equation similar to (10):

v[ε1/2] = V[ε1/2]ζ[ε1/2] + Q[ε1/2]f[ε1/2]

(i) The formal series of deformation patterns ζ[ε1/2]
starts with k = 0 (instead of degree −2 for plates).

(ii) The first terms of the series V[ε] are

V0ζ = ζ, V1/2 ≡ 0,

V1ζ = (−X3(Dαζ3 + 2b
β
αζβ), P 1

m(X3)γ
α
α(ζ))

(56)

where P 1
m is the polynomial defined in (9), and the

tensors D (covariant derivative), b (curvature), and
γ (change of metric) are introduced in Section 4.1:
Even if the displacement V1ζ is given through its
components in a local coordinate system, it indeed
defines an intrinsic displacement, since Dα, bα

β , and
γα

β are well-defined independently of the choice of a
local parameterization of the surface. Note that γα

α(ζ)

in (56) degenerates to div ζ� in the case of plates
where bαβ = 0. More generally, for all integer k ≥ 0,
all ‘odd’ terms Vk+1/2 are zero and, if b ≡ 0, all
even terms Vk degenerate to the operators in (11).
In particular, their degrees are the same as in (11).

(iii) The formal series Q[ε1/2] appears as a generalization
of (13) and f[ε1/2] is the formal Taylor expansion of f
around the midsurface x3 = 0, which means that for
all integer k ≥ 0, fk+1/2 ≡ 0 and fk is given by (12).

4.2.3 Membrane deformation patterns

The first term ζ0 solves the membrane equation

ζ0 ∈ H 1
0 × H 1

0 × L2(S), ∀ ζ′ ∈ H 1
0 × H 1

0 × L2(S),

aS,m(ζ0, ζ′) = 2
∫

S

ζ′ · f 0 (57)

where f 0 = f|S and aS,m is the membrane form

aS,m(ζ, ζ′) = 2
∫

S

Ãαβσδγαβ(ζ)γσδ(ζ
′) dS (58)

with the reduced energy material tensor on the midsurface
(with λ̃ still given by (17)):

Ãαβσδ = λ̃aαβaσδ + µ(aασaβδ + aαδaβσ)

Problem (57) can be equivalently formulated as L0ζ0 = f 0

with Dirichlet boundary conditions ζ0
� = 0 on ∂S and is

corresponding to the membrane equations on plates (com-
pare with (19) and (22)). The operator L0 is called mem-
brane operator and, thus, the change of metric γαβ(ζ) with
respect to the deformation pattern ζ appears to coincide with
the membrane strain tensor; see Naghdi (1963) and Koi-
ter (1970a). If b ≡ 0, the third component of L0ζ vanishes
while the surface part degenerates to the membrane opera-
tor (20). In the general case, the properties of L0 depends
on the geometry of S: L0 is elliptic (of multidegree (2, 2, 0)
in the sense of Agmon, Douglis and Nirenberg, 1964) in x
if and only if S is elliptic in x; see Ciarlet (2000), Genevey
(1996), and Sanchez-Hubert and Sanchez-Palencia (1997).

As in (21), the formal series ζ[ε1/2] solves a reduced
equation on the midsurface with formal series L[ε1/2],
R[ε1/2], f[ε1/2] and d[ε1/2], degenerating to the formal series
(21) in the case of plates.

4.2.4 Boundary layer terms

Problem (57) cannot solve for the boundary conditions
ζ0

3|∂S = ∂nζ
0
3|∂S = 0 (see the first terms in (24)). The two-

dimensional boundary layer terms ϕk/2 compensate these
nonzero traces: We have for k = 0.

ϕ0 = (0,ϕ0
3(T, s)) with ϕ0

3(0, s) = −ζ0
3|∂S

and ∂nϕ
0
3(0, s) = 0

For k = 1, the trace ∂nζ
0
3|∂S is compensated by ϕ

1/2
3 : The

scale ε1/2 arises from these surface boundary layer terms.
More generally, the terms ϕk/2 are polynomials of degree
[k/2] in X3 and satisfy

|eηTϕ(T, s, X3)| bounded as T → ∞

for all η < (3µ(̃λ + µ))1/4 (̃λ + 2µ)−1/2bss(0, s)1/2 where
bss(0, s) > 0 is the tangential component of the curvature
tensor along ∂S.

The three-dimensional boundary layer terms wk/2 have
a structure similar to the case of plates. The first nonzero
term is w1.
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4.2.5 The Koiter model

Koiter (1960) proposed the solution zε of following surface
problem

Find zε ∈ VK(S) such that

εaS,m(zε, z′) + ε3aS,b(z
ε, z′) = 2ε

∫
S

z′ · f 0, ∀ z′ ∈ VK(S)

(59)

to be a good candidate for approximating the three-
dimensional displacement by a two-dimensional one. Here
the variational space is

VK(S) := H 1
0 × H 1

0 × H 2
0 (S) (60)

and the bilinear form aS,b is the bending form:

aS,b(z, z′) = 2

3

∫
S

Ãαβσδραβ(z)ρσδ(z
′) dS (61)

Note that the operator underlying problem (59) has the form
K(ε) = εL0 + ε3B where the membrane operator L0 is the
same as in (57) and the bending operator B is associated
with aS,b. Thus, the change of curvature tensor ραβ appears
to be identified with the bending strain tensor. Note that
K(ε) is associated with the two-dimensional energy (com-
pare with (44))

2ε

∫
S

Ãαβσδγαβ(z)γσδ(z) dS + 2ε3

3

∫
S

Ãαβσδραβ(z)ρσδ(z) dS

(62)

For ε small enough, the operator K(ε) is elliptic of multide-
gree (2, 2, 4) and is associated with the Dirichlet conditions
z = 0 and ∂nz3 = 0 on ∂S. The solution zε of the Koi-
ter model for the clamped case solves equivalently the
equations

(L0+ε2B)zε(x�) = f 0(x�) on S and zε|∂S = 0, ∂nzε
3|∂S =0

(63)

This solution has also a multiscale expansion given by the
following theorem.

Theorem 5. (Faou, 2003) For the solutions of prob-
lem (63), ε ∈ (0, ε0], there exist regular terms zk/2(x�) and
boundary layer terms ψk/2(T, s), k ≥ 0, such that

zε � z0 + χψ0 + ε1/2(z1/2 + χψ1/2) + ε1(z1 + χψ1) + · · ·
(64)

in the sense of asymptotic expansions: The following esti-
mates hold∥∥∥∥∥zε −

2K∑
k=0

εk/2(zk/2 + χψk/2)

∥∥∥∥∥
ε,S

≤ CK(f) εK+1/4,

K = 0, 1, . . .

where ‖z‖2

ε,S
= ‖γ(z)‖2

L2(S)
+ ε2‖ρ(z)‖2

L2(S)
and CK(f) is

independent of ε ∈ (0, ε0].

The precise comparison between the terms in the expan-
sions (55) and (64) shows that [1] ζ0 = z0, ζ1/2 = z1/2,
ϕ0 = ψ0, ϕ

1/2
� = ψ

1/2
� , while ζ1 and z1, ϕ

1/2
3 and ψ

1/2
3 are

generically different, respectively. This allows obtaining
optimal estimates in various norms: Considering the scaled
domain � � S × (−1, 1), we have

‖uε − zε‖
H 1×H 1×L2(�)

≤ ‖uε − ζ0‖
H 1×H 1×L2(�)

+ ‖zε − ζ0‖
H 1×H 1×L2(�)

≤ Cε1/4

(65)

This estimate implies the convergence result of Ciarlet
and Lods (1996a) and improves the estimate in Mardare
(1998a). To obtain an estimate in the energy norm, we
need to reconstruct a 3-D displacement from zε : First, the
Kirchhoff-like [2] displacement associated with zε writes,
cf. (56)

U1,1,0
KL zε = (zε

α − x3(Dαzε
3 + 2bσ

αzε
σ), zε

3

)
(66)

and next, according to Koiter (1970a), we define the recon-
structed quadratic displacement [3]

U1,1,2
K zε = U1,1,0

KL zε + λ

λ + 2µ

(
0,−x3γ

α
α(z

ε) + x2
3

2
ρα

α(z
ε)

)
(67)

Then there holds (compare with (46) for plates):

‖uε − U1,1,2
K zε‖

E(�ε)
≤ C

√
ε‖uε‖

E(�ε)
(68)

and similar to plates, the error factor
√

ε is optimal and
is due to the first boundary layer term w1. Moreover,
expansion (64) allows proving that the classical models
discussed in Budiansky and Sanders (1967), Naghdi (1963),
Novozhilov (1959), and Koiter (1970a) have all the same
convergence rate (68).

4.3 Convergence results for general shells

We still embed �d in the family (54) with S the mid-
surface of �d . The fact that all the classical models are
equivalent for clamped elliptic shells may not be true in
more general cases, when the shell becomes sensitive (e.g.
for a partially clamped elliptic shell with a free portion
in its lateral surface) or produces bending effects (case of
parabolic or hyperbolic shells with adequate lateral bound-
ary conditions).
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4.3.1 Surface membrane and bending energy

Nevertheless, the Koiter model seems to keep good approx-
imation properties with respect to the 3-D model. The
variational space VK of the Koiter model is, in the totally
clamped case given by the space VK(S) (60) (if the shell
�ε is clamped only on the part γ0 × (−ε, ε) of its bound-
ary (with γ0 ⊂ ∂S), the Dirichlet boundary conditions in the
space VK have to be imposed only on γ0). As already men-
tioned (62), the Koiter model is associated with the bilinear
form εaS,m + ε3aS,b with aS,m and aS,b the membrane and
bending forms defined for z, z′ ∈ VK(S) by (58) and (61)
respectively.

From the historical point of view, such a decomposi-
tion into a membrane (or stretching) energy and a bending
energy on the midsurface was first derived by Love (1944)
in principal curvature coordinate systems, that is, for which
the curvature tensor (bα

β) is diagonalized. The expression of
the membrane energy proposed by Love is the same as (61),
in contrast with the bending part for which the discussion
was very controversial; see Budiansky and Sanders (1967),
Novozhilov (1959), Koiter (1960), and Naghdi (1963) and
the reference therein. Koiter (1960) gave the most natural
expression using intrinsic tensor representations: The Koi-
ter bending energy only depends on the change of curvature
tensor ραβ, in accordance with Bonnet theorem character-
izing a surface by its metric and curvature tensors aαβ and
bαβ; see Stoker (1969).

For any geometry of the midsurface S, the Koiter model
in its variational form (59) has a unique solution; see
Bernadou and Ciarlet (1976).

4.3.2 Classification of shells

According to this principle each shell, in the zero thickness
limit, concentrates its energy either in the bending surface
energy aS,b (flexural shells) or in the membrane surface
energy aS,m (membrane shells).

The behavior of the shell depends on the ‘inextensional
displacement’ space

VF(S) := {ζ ∈ VK(S) | γαβ(ζ) = 0
}

(69)

The key role played by this space is illustrated by the
following fundamental result:

Theorem 6.

(i) (Sanchez-Hubert and Sanchez-Palencia, 1997; Ciarlet,
Lods and Miara, 1996) Let uε be the solution of
problem (3). In the scaled domain � � S × (−1, 1),
the displacement ε2uε(x�, X3) converges in H 1(�)3 as
ε → 0. Its limit is given by the solution ζ−2 ∈ VF(S)

of the bending problem

∀ ζ′ ∈ VF(S) aS,b(ζ
−2, ζ′) = 2

∫
S

ζ′ · f 0 (70)

(ii) (Ciarlet and Lods, 1996b) Let zε be the solution of
problem (59). Then ε2zε converges to ζ−2 in VK(S) as
ε → 0.

A shell is said flexural (or noninhibited) when VF(S) is
not reduced to {0}. Examples are provided by cylindrical
shells (or portions of cones) clamped along their generatri-
ces and free elsewhere. Of course, plates are flexural shells
according to the above definition since in that case, VF(S)

is given by {ζ = (0, ζ3) | ζ3 ∈ H 2
0 (S)} and the bending oper-

ator (70) coincides with the operator (16).
In the case of clamped elliptic shells, we have VF(S) =

{0}. For these shells, uε and zε converge in H 1 × H 1 × L2

to the solution ζ0 of the membrane equation (57); see
Ciarlet and Lods (1996a) and (65): Such shells are called
membrane shells. The other shells for which VF(S) reduces
to {0} are called generalized membrane shells (or inhibited
shells) and for these also, a delicate functional analysis
provides convergence results to a membrane solution in
spaces with special norms depending on the geometry of
the midsurface; see Ciarlet and Lods (1996a) and Ciarlet
(2000), Ch. 5. It is also proved that the Koiter model
converges in the same sense to the same limits; see Ciarlet
(2000), Ch. 7.

Thus, plates and elliptic shells represent extreme situa-
tions: Plates are a pure bending structures with an inex-
tensional displacement space as large as possible, while
clamped elliptic shells represent a pure membrane situa-
tion where VF(S) reduces to {0} and where the membrane
operator is elliptic.

4.4 Shallow shells

We make a distinction between ‘physical’ shallow shells in
the sense of Ciarlet and Paumier (1986) and ‘mathematical’
shallow shells in the sense of Pitkäranta, Matache and
Schwab (2001). The former involves shells with a curvature
tensor of the same order as the thickness, whereas the latter
addresses a boundary value problem obtained by freezing
coefficients of the Koiter problem at one point of a standard
shell.

4.4.1 Physical shallow shells

Let R denote the smallest principal radius of curvature of
the midsurface S and let D denote the diameter of S. As
proved in Andreoiu and Faou (2001) if there holds

R ≥ 2-D (71)
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then there exists a point p� ∈ S such that the orthogonal
projection of S on its tangent plan in p� allows the
representation of S as a C∞ graph in R

3:

ω � (x1, x2) �→
(
x1, x2, �(x1, x2)

)
:= x� ∈ S ⊂ R

3 (72)

where ω is an immersed (in particular, ω may have self-
intersection) domain of the tangent plane in p�, and where
� is a function on this surface. Moreover, we have

|�| ≤ CR−1 and ‖∇�‖ ≤ CR−1 (73)

with constants C depending only on D.
We say that �d is a shallow shell if S satisfies a condition

of the type

R−1 ≤ Cd (74)

where C does not depend on d . Thus, if S is a surface
satisfying (74), for d sufficiently small S satisfies (71)
whence representation (72). Moreover, (73) yields that �

and ∇� are � d . In these conditions, we can choose to
embed �d into another family of thin domains than (54):
We set θ = d−1� and define for any ε ∈ (0, d] the surface
Sε by its parameterization (cf. (72))

ω � (x1, x2) �→
(
x1, x2, εθ(x1, x2)

)
:= x� ∈ Sε

It is natural to consider �d as an element of the family �ε

given as the image of the application

ω × (−ε, ε) � (x1, x2, x3) �→
(
x1, x2, ε θ(x1, x2)

)
+ x3 nε(x�) (75)

where nε(x�) denotes the unit normal vector to the mid-
surface Sε. We are now in the framework of Ciarlet and
Paumier (1986).

A multiscale expansion for the solution of (3) is given in
Andreoiu and Faou (2001). The expansion is close to that
of plates, except that the membrane and bending operators
yielding the deformation patterns are linked by lower-
order terms: The associated membrane and bending strain
components γ̃αβ and ρ̃αβ are respectively given by

γ̃αβ := 1
2 (∂αzβ + ∂βzα) − ε∂αβθ z3 and ρ̃αβ := ∂αβz3

(76)

It is worth noticing that the above strains are asymptotic
approximations of the Koiter membrane and bending strains
associated with the midsurface S = Sε. As a consequence,
the Koiter model and the three-dimensional equations con-
verge to the same Kirchhoff–Love limit.

4.4.2 Mathematical shallow shells

These models consist in freezing coefficients of standard
two-dimensional models at a given point p� ∈ S in a prin-
cipal curvature coordinate system. That procedure yields,
with bi := κi(p�):

γ11 = ∂1z1 − b1z3, γ22 = ∂2z2 − b2z3,

γ12 = 1
2 (∂1z2 + ∂2z1) (77)

for the membrane strain tensor, and

κ11 = ∂2
1 z3 + b1∂1z1, κ22 = ∂2

2 z3 + b2∂2z2,

κ12 = ∂1∂2z3 + b1∂2z1 + b2∂1z2 (78)

as a simplified version of the bending strain tensor. Such a
localization procedure is considered as valid if the diameter
D is small compared to R

R � D (79)

and for the case of cylindrical shells where the strains have
already the form (77)–(78) in cylindrical coordinates (see
equation (80) below). In contrast with the previous one, this
notion of shallowness does not refer to the thickness. Here
R is not small, but D is. Such objects are definitively shells
and are not plate-like.

These simplified models are valuable so to develop
numerical approximation methods, (Havu and Pitkäranta,
2002, 2003) and to find possible boundary layer length
scales, (Pitkäranta, Matache and Schwab, 2001): These
length scales (width of transition regions from the boundary
into the interior) at a point p� ∈ ∂S are ε1/2 in the nonde-
generate case (bss(p�) �= 0), ε1/3 for hyperbolic degenera-
tion (p� hyperbolic and bss(p�) = 0) and ε1/4 for parabolic
degeneration (p� parabolic and bss(p�) = 0).

To compare with the standard shell equations, note that
in the case of an axisymmetric shell whose midsurface is
represented by

	: (x1, x2) �→ (f (x1) cos x2, f (x1) sin x2, x1)

where x1 ∈ R, x2 ∈ [0, 2π[ and f (x1) > 0 is a smooth
function, we have

γ11(z) = ∂1z1 −
f ′(x1)f

′′(x1)

1 + f ′(x1)
2

z1 +
f ′′(x1)√

1 + f ′(x1)
2

z3

γ22(z) = ∂2z2 +
f (x1)f

′(x1)

1 + f ′(x1)
2

z1 −
f (x1)√

1 + f ′(x1)
2

z3

γ12(z) = 1

2
(∂1z2 + ∂2z1) −

f ′(x1)

f (x1)
z2

(80)
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Hence the equation (77) is exact for the case of cylindrical
shells, where f (x1) ≡ R > 0, and we can show that the
same holds for (78).

4.5 Versatility of Koiter model

On any midsurface S, the deformation pattern zε solution of
the Koiter model (59) exists. In general, the mean value of
the displacement uε through the thickness converges to the
same limit as zε when ε → 0 in a weak sense depending
on the type of the midsurface and the boundary conditions;
see Ciarlet (2000). Nevertheless, actual convergence results
hold in energy norm when considering reconstructed dis-
placement from the deformation pattern zε.

4.5.1 Convergence of the Koiter reconstructed
displacement

On any midsurface S, the three-dimensional Koiter recon-
structed displacement U1,1,2

K zε is well-defined by (66)–(67).
Let us set

e(S, ε, zε, uε) :=
‖uε − U1,1,2

K zε‖
E(�ε)

‖zε‖
Eε(S)

(81)

with ‖z‖
Eε(S)

, the square root of the Koiter energy (62).
In Koiter (1970a, 1970b), an estimate is given: e(S, ε, zε,

uε)2 would be bounded by εR−1 + ε2L−2, with R the
smallest principal radius of curvature of S, and L the
smallest wavelength of zε. It turns out that in the case
of plates, we have L = O(1), R−1 = 0 and, since (46)
is optimal, the estimate fails. In contrast, in the case of
clamped elliptic shells, we have L = O(

√
ε), R−1 = O(1)

and the estimate gives back (68).
Two years after the publications of Koiter (1970a,

1970b), it was already known that the above estimate does
not hold as ε → 0 for plates. We read in Koiter and Sim-
monds (1973) ‘The somewhat depressing conclusion for
most shell problems is, similar to the earlier conclusions of
GOL’DENWEIZER, that no better accuracy of the solutions can
be expected than of order εL−1 + εR−1, even if the equa-
tions of first-approximation shell theory would permit, in
principle, an accuracy of order ε2L−2 + εR−1.’

The reason for this is also explained by John (1971)
in these terms: ‘Concentrating on the interior we sidestep
all kinds of delicate questions, with an attendant gain in
certainty and generality. The information about the inte-
rior behavior can be obtained much more cheaply (in the
mathematical sense) than that required for the discussion
of boundary value problems, which form a more ‘transcen-
dental’ stage’.

Koiter’s tentative estimate comes from formal compu-
tations also investigated by John (1971). The analysis by
operator formal series introduced in Faou (2002) is in the
same spirit: For any geometry of the midsurface, there exist
formal series V[ε], R[ε], Q[ε], and L[ε] reducing the three-
dimensional formal series problem to a two-dimensional
problem of the form (21) with L[ε] = L0 + ε2L2 + · · ·
where L0 is the membrane operator associated with the form
(58). The bending operator B associated with aS,b can be
compared to the operator L2 appearing in the formal series
L[ε]: We have

∀ ζ, ζ′ ∈ VF(S)
〈
L2ζ, ζ′

〉
L2(S)3 =

〈
Bζ, ζ′

〉
L2(S)3 (82)

Using this formal series analysis, the first two authors
are working on the derivation of a sharp expression of
e(S, ε, zε, uε) including boundary layers effects, and opti-
mal in the case of plates and clamped elliptic shells; see
Dauge and Faou (2004).

In this direction also, Lods and Mardare (2002) prove the
following estimate for totally clamped shells

‖uε − (U1,1,2
K zε + w�)‖

E(�ε)
≤ Cε1/4‖uε‖

E(�ε)
(83)

with w� an explicit boundary corrector of U1,1,2
K zε.

4.5.2 Convergence of Koiter eigenvalues

The operator ε−1K(ε) has a compact inverse, therefore its
spectrum is discrete with only an accumulation point at
+∞. We agree to call Koiter eigenvalues the eigenvalues
of the former operator, that is, the solutions µε of

∃ zε ∈ VK(S) \ {0} such that

aS,m(zε, z′) + ε2aS,b(z
ε, z′) = 2µε

∫
S

zε · z′, ∀ z′ ∈ VK(S)

(84)

As already mentioned in Section 2.4, cf. (31), this spec-
trum provides the limiting behavior of three-dimensional
eigenvalues for plates. Apparently, very little is known for
general shells.

Concerning Koiter eigenvalues, interesting results are
provided by Sanchez-Hubert and Sanchez-Palencia (1997),
Ch. X: The µε are attracted by the spectrum of the mem-
brane operator S(M) where M is the self-adjoint unbounded
operator associated with the symmetric bilinear form aS,m

defined on the space H 1 × H 1 × L2(S). There holds (we
still assume that S is smooth up to its boundary):

Theorem 7. The operator M + µ Id is elliptic of multide-
gree (2, 2, 0) for µ > 0 large enough. Moreover its essential
spectrum Ses(M) satisfies:
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(i) If S is elliptic and clamped on its whole boundary,
Ses(M) is a closed interval [a, b], with a > 0,

(ii) If S is elliptic and not clamped on its whole boundary,
Ses(M) = {0} ∪ [a, b] with a > 0,

(iii) For any other type of shell (i.e. there exists at least one
point where the Gaussian curvature is ≤ 0) Ses(M) is
a closed interval of the form [0, b], with b ≥ 0.

If the shell is of flexural type, the lowest eigenvalues
µε tend to 0 like O(ε2), same as for plates; see (29). If the
shell is clamped elliptic, the µε are bounded from below by
a positive constant independent of ε. In any other situation,
we expect that the lowest µε still tends to 0 as ε → 0.

5 HIERARCHICAL MODELS FOR
SHELLS

The idea of deriving hierarchical models for shells goes
back to Vekua (1955, 1965, 1985) and corresponds to
classical techniques in mechanics: Try to find asymptotic
expansions in x3 by use of Taylor expansion around the
midsurface S. An alternative approach consists in choosing
the coefficients zn

j in (38) as moments through the thickness
against Legendre polynomials Ln(x3/ε).

Vogelius and Babuška (1981a, 1981b, 1981c) laid the
foundations of hierarchical models in view of their appli-
cations to numerical analysis (for scalar problems).

5.1 Hierarchies of semidiscrete subspaces

The concepts mentioned in Section 3 can be adapted to the
case of shells. In contrast with plates for which there exist
convenient Cartesian system of coordinates fitting with the
tangential and normal directions to the midsurface, more
nonequivalent options are left open for shells. They are;
for example;

The direction of semidiscretization: The intrinsic choice is
of course the normal direction to the midsurface (variable
x3), nevertheless for shells represented by a single local
chart like in (72), any transverse direction could be cho-
sen. In the sequel, we only consider semidiscretizations
in the normal direction.

The presence or absence of privileged components for the
displacement field in the Ansatz (38). If one privileged
component is chosen, it is of course the normal one u3
and the two other ones are (uα) = u�. Then the sequence
of orders q is of the form q = (q�, q�, q3), and the
space V q(�ε) has the form (48). Note that this space
is independent of the choice of local coordinates on S.

If there is no privileged component, q has to be of the
form (q, q, q) and the space V q(�ε) can be written

V q(�ε) =
{

u = (u1, u2, u3) ∈ V (�ε),

∃zn = (zn
1, z

n
2, z

n
3) ∈ H 1

0 (S)3, 0 ≤ n ≤ q,

uj =
q∑

n=0

xn
3 zn

j (x�), j = 1, 2, 3
}

(85)

Here, for ease of use, we take Cartesian coordinates,
but the above definition is independent of any choice of
coordinates in �ε ⊂ R

3. In particular, it coincides with
the space (48) for q� = q3.

Then the requirements of approximability (34), asymptotic
consistency (35), and optimality of the convergence rate
(36) make sense.

5.2 Approximability

For any fixed thickness ε, the approximability issue is
as in the case of plates. By Céa’s lemma, there exists
an adimensional constant C > 0 depending only on the
Poisson ratio ν, such that

‖uε − uε,q‖
E(�ε)

≤ C‖uε − vq‖
E(�ε)

∀ vq ∈ V q(�ε)

and the determination of approximability properties relies
on the construction of a best approximation of uε by
functions in V q(�ε).

In Avalishvili and Gordeziani (2003), approximability is
proved using the density of the sequence of spaces V q(�ε)

in H 1(�ε)3. But the problem of finding a rate for the
convergence in (33) is more difficult, since the solution
uε has singularities near the edges and, consequently, does
not belong to H 2(�ε) in general. For scalar problems,
Vogelius and Babuška (1981a, 1981b, 1981c) prove best
approximation results using weighted Sobolev norms [4].
Up to now, for elasticity systems, there are no such results
taking the actual regularity of uε into account.

It is worth noticing that, in order to obtain an equal-
ity of the form (36), we must use Korn inequality, since
most approximation results are based on Sobolev norms.
But due to blow up of the Korn constant when ε → 0, it
seems hard to obtain sharp estimates in the general case.
(Let us recall that it behaves as ε−1 in the case of partially
clamped shells.)

5.3 Asymptotic consistency

Like for plates, the presence of the nonpolynomial three-
dimensional boundary layers wk generically produces a
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limitation in the convergence rate in (35). As previously
mentioned, the only case where a sharp estimate is avail-
able, is the case of clamped elliptic shells. Using (68), we
indeed obtain the following result (compare with Theo-
rem 3):

Theorem 8. If the midsurface S is elliptic, if the shell is
clamped along its whole lateral boundary, and if f

∣∣
S
�≡ 0,

then for any q � (1, 1, 2) with definition (48), and for any
q � (2, 2, 2) with (85), and with the use of the standard 3-D
elastic energy (2), there exists Cq = Cq(f) > 0 such that for
all ε ∈ (0, ε0)

‖uε − uε,q‖
E(�ε)

≤ Cq

√
ε ‖uε‖

E(�ε)
(86)

Note that in this case, the two-dimensional boundary
layers are polynomial in x3, Therefore they can be captured
by the semidiscrete hierarchy of spaces V q.

Using estimate (83) of Lods and Mardare (2002), together
with the fact that the corrector term w� is polynomial in x3
of degree (0, 0, 2), we obtain a proof for the asymptotic
consistency for any (smooth) clamped shell without assum-
ing that the midsurface is elliptic:

Theorem 9. If the shell is clamped along its whole lateral
boundary, and if f

∣∣
S
�≡ 0, then for q as in Theorem 8 and

the standard energy (2), there exists Cq = Cq(f) > 0 such
that for all ε ∈ (0, ε0)

‖uε − uε,q‖
E(�ε)

≤ Cq ε1/4 ‖uε‖
E(�ε)

(87)

5.4 Examples of hierarchical models

Various models of degree (1, 1, 0), (1, 1, 2), and (2, 2, 2)

are introduced and investigated in the literature. Note that
the model (1, 1, 1) is strictly forbidden for shells because it
cannot be associated with any correct energy; see Chapelle,
Ferent and Bathe (2004).

5.4.1 (1, 1, 0 ) models

One of the counterparts of Reissner–Mindlin model for
plates is given by the Naghdi model: see Naghdi (1963,
1972). The space of admissible displacements is

V N(�ε) = {u ∈ V (�ε), ∃z ∈ H 1
0 (S)3, ∃θα ∈ H 1

0 (S)2,

u = (zα − x3(θα + bβ
αzβ), z3)} (88)

As in (47) the energy splits into three parts (with the shear
correction factor κ):

ã(u, u) = 2ε

∫
S

Ãαβσδγαβ(z�)γσδ(z�) dS

(membrane energy)

+ εκ

∫
S

µaασ(Dαz3 + bδ
αzδ − θα)

× (Dσz3 + b
β
σzβ − θσ) dS

(shear energy)

+ 2ε3

3

∫
S

Ãαβσδραβ(z, θ)ρσδ(z, θ) dS

(bending energy)

(89)

where

ραβ(z, θ) = 1
2 (Dαθβ + Dβθα)−cαβz3 + 1

2bσ
αDβzσ + 1

2bσ
βDαzσ

Note that when the penalization term in the shear energy
goes to zero, we get θσ = Dσz3 + b

β
σzβ and the displacement

u in (88) coincides with (66). In Lods and Mardare (2002),
an estimate of the error between the solution of the Naghdi
model and the solution of the 3-D model is provided in a
subenergetic norm.

A more recent (1, 1, 0) model (called general shell ele-
ment; see Chapelle and Bathe, 2000) consists of the reduced
energy projection on the space V (1,1,0)(�ε). Indeed, it does
not coincide with the Naghdi model but both models pos-
sess similar asymptotic properties and they are preferred to
Koiter’s for discretization.

5.4.2 Quadratic kinematics

In accordance with Theorems 8 and 9, it is relevant to use
the standard 3-D elastic energy (2) for such kinematics.
Quadratic models based on the (1, 1, 2) model are inves-
tigated in Bischoff and Ramm (2000). The enrichment of
the general shell element by the introduction of quadratic
terms – model (2, 2, 2) – is thoroughly studied from both
asymptotic and numerical point views in Chapelle, Fer-
ent and Bathe (2004) and Chapelle, Ferent and Le Tallec
(2003).

6 FINITE ELEMENT METHODS IN THIN
DOMAINS

We herein address some of the characteristics of finite
element methods (FEM), mainly the p-version of the FEM,
when applied to the primal weak formulations (3) and (33)
for the solution of plate and shell models. We only address
isotropic materials, although our analysis could be extended
to laminated composites.

As illustrative examples, we present the results of some
computations performed with the p-version FE computer
program StressCheck. (StressCheck is a trade mark of
Engineering Software Research and Development, Inc.,
10845 Olive Blvd., Suite 170, St. Louis, MO 63141, USA.)
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6.1 FEM discretizations

Let us recall that, when conformal, the FEM is a Galerkin
projection into finite dimensional subspaces VN of the varia-
tional space associated with the models under consideration.
In the p-version of the FEM, subspaces are based on one
partition of the domain into a finite number of subdomains
K ∈ T (the mesh) in which the unknown displacement is
discretized by mapped polynomial functions of increasing
degree p. The subdomains K are mapped from reference
element(s) K̂ .

6.1.1 Meshes

All finite element discretizations we consider here are based
on a mesh TS of the midsurface S: We mean that the
3-D mesh of �ε has in normal coordinates (x�, x3) the
tensor product form [5] TS ⊗ Iε where Iε represents a
partition of the interval (−ε, ε) in layers, for example, the
two halves (−ε, 0) and (0, ε), or – this case is important
in the sequel – , the trivial partition by only one element
through the thickness. We agree to call that latter mesh a
thin element mesh.

The 3-D elements K are thus images by maps ψK

from reference elements K̂ , which are either pentahedral
(triangle × interval) or hexahedral:

ψK : K̂ = T̂ × [0, 1] � (x̂1, x̂2, x̂3) �→ x ∈ K

with T̂ the reference triangle or the reference square. For
the 2-D FEM, we denote by T the elements in TS : They
are the image of T̂ by maps ψT

ψT : T̂ � (x̂1, x̂2) �→ x� ∈ T

If �ε is a plate, the midsurface S is plane but its
boundary ∂S is not straight. For some lateral boundary
conditions, for example, the hard, simple supported plate,
the approximation of ∂S by a polygonal lines produces, in
general, wrong results. This effect is known as the Babuška
paradox (Babuška and Pitkäranta, 1990). If �ε is a shell,
the geometric approximation of S by ‘plane’ elements is
also an issue: If the mappings are affine, the shell is
approximated by a faceted surface which has quite different
rigidity properties than the smooth surface; see Akian and
Sanchez-Palencia (1992) and Chapelle and Bathe (2003),
Section 6.2.

As a conclusion, good mappings have to be used for the
design of the elements K (high degree polynomials or other
analytic functions).

6.1.2 Polynomial spaces for hierarchical models

For hierarchical models (33), the discretization is indeed
two-dimensional: The degree q of the hierarchy being fixed,
the unknowns of (33) are the functions zn

j defined on S and
representing the displacement according to (38), where the
director functions 
n

j form adequate bases of polynomials
in one variable, for example, Legendre polynomials Ln.

We have already mentioned in Section 5 that the only
intrinsic option for the choice of components is taking
j = (α, 3), which results into the Ansatz (written here with
Legendre polynomials)

u� =
q�∑

n=0

zn
�(x�) Ln

(x3

ε

)
and

u3 =
q3∑

n=0

zn
3(x�) Ln

(x3

ε

)

Now the discretization consists in requiring that zn
α|T ◦ψT ,

α = 1, 2, and zn
3|T ◦ψT belong to the space Pp(T̂ ) for some

p where Pp(T̂ ) is the space of polynomials in two variables

• of degree ≤ p if T̂ is the reference triangle,
• of partial degree ≤ p if T̂ is the reference square

[0, 1] × [0, 1].

It makes sense to fix different degrees pj in relation with
j = α, 3, and we set p = (p1, p2, p3). When plugged back
into formula (38), this discretization of the zn

j , j = α, 3,
yields a finite dimensional subspace V

q
p (�ε) of V q(�ε). As

already mentioned for the transverse degrees q, cf. (48) and
Section 5, we have to assume for coherence that p1 = p2
for shells. In the situation of plates, if T is affinely mapped
from the reference square, the zn

j |T are simply given by

zn
1(x�) =

p1∑
i,k=0

zn
1,ikPi(x1)Pk(x2)

zn
2(x�) =

p2∑
i,k=0

zn
2,ikPi(x1)Pk(x2)

zn
3(x�) =

p3∑
i,k=0

zn
3,ikPi(x1)Pk(x2)

where the zn
j,ik are real coefficients and Pi denotes a

polynomial of degree i which is obtained from Legendre
polynomials; see for example Szabó and Babuška (1991).

The discretization of hierarchical models (33) can also
be done through the h-version or the h-p versions of FEM.
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6.1.3 Polynomial spaces for 3-D discretization.
Case of thin elements

In 3-D, on the reference element K̂ = T̂ × [0, 1], we can
consider any of the polynomial spaces Pp,q(K̂) = Pp(T̂ ) ⊗
Pq([0, 1]), p, q ∈ N, For the discretization of (3), each
Cartesian component ui of the displacement is sought
for in the space of functions v ∈ H 1(�ε) such that for
any K in the mesh, v|K ◦ψK belongs to Pp,q(K̂). We
denote by Vp,q(�

ε) the corresponding space of admissible
displacements over �ε.

In the situation where we have only one layer of elements
over �ε in the thickness (thin element mesh) with a (p, q)

discretization, let us set q = (q, q, q) and p = (p, p, p).
Then it is easy to see that, in the framework of semidiscrete
spaces (85), we have the equality between discrete spaces:

Vp,q(�
ε) = V q

p (�ε) (90)

In other words, thin elements are equivalent to the dis-
cretization of underlying hierarchical models. Let us insist
on the following fact: For a true shell, the correspondence
between the Cartesian components uj and the tangential
and transverse components (u�, u3) is nonaffine. As a con-
sequence, equality (90) holds only if the space V

q
p (�ε)

corresponds to the discretization of a hierarchical model
in Cartesian coordinates.

Conversely, hierarchical models of the type q = (q, q, q)

with the ‘Cartesian’ unknowns zn
j , n = 0, . . . , q, j = 1, 2, 3

can be discretized directly on S, or inherit a 3-D discretiza-
tion; see Chapelle, Ferent and Bathe (2004). Numerical
evidence that the p-version with anisotropic Ansatz spaces
allows the analysis of three-dimensional shells with high
accuracy was firstly presented in Düster, Bröker and Rank
(2001).

6.1.4 FEM variational formulations

Let us fix the transverse degree q of the hierarchical model.
Its solution uε,q solves problem (33). For each ε > 0 and
each polynomial degree p, (33) is discretized by its finite
dimensional subspace V

q
p (�ε). Let uε,q

p be the solution of

Find uε,q
p ∈ V

q
p (�ε) such that

aε,q(uε,q
p , u′) =

∫
�ε

fε · u′ dx, ∀u′ ∈ V q
p (�ε) (91)

We can say that (91) is a sort of 3-D discretization of (33).
But, indeed, the actual unknowns of (91) are the zn

α, n =
0, . . . , q�, and zn

3, n = 0, . . . , q3, or the zn
j for n = 0, . . . , q

and j = 1, 2, 3. Thus, (91) can be alternatively formulated
as a 2-D problem involving spaces Z

q
p(S) independent of

ε, and a coercive bilinear form a
q
S(ε) polynomial in ε.

Examples are provided by the Reissner–Mindlin model,
cf. (47), the Koiter model (84), and the Naghdi model, cf.
(89). The variational formulation now takes the form

Find Z =: (zn)0≤n≤q ∈ Zq
p(S) such that

a
q
S(ε)(Z, Z′) = F(ε)(f, Z′), ∀Z′ ∈ Zq

p(S) (92)

where F(ε)(f, Z′) is the suitable bilinear form coupling
loadings and test functions. Let us denote by Zε,q

p the
solution of (92).

6.2 Locking issues

In the framework of the family of discretizations consid-
ered above, the locking effect is said to appear when a
deterioration in the resulting approximation of uε,q by uε,q

p ,
p → ∞ tends to ∞, occurs as ε → 0. Of course, a similar
effect is reported in the h-version of FEM: The deteriora-
tion of the h-approximation also occurs when the thickness
ε approaches zero.

Precise definition of locking may be found in Babuška
and Suri (1992): It involves the locking parameter (the
thickness ε in the case of plates), the sequence of finite
element spaces V

q
p that comprise the extension procedure

(the p-version in our case, but h and h-p versions can
also be considered), and the norm in which error is to be
measured. Of course, in different error measures different
locking phenomena are expected.

6.2.1 Introduction to membrane locking

A locking-free approximation scheme is said to be robust.
For a bilinear form aS(ε) of the form a0 + ε2a1 like Koi-
ter’s, a necessary condition for the robustness of the approx-
imation is that the intersections of the discrete spaces with
the kernel of a0 are a sequence of dense subspaces for
the whole kernel of a0; see Sanchez-Hubert and Sanchez-
Palencia (1997), Ch. XI. In the case of the Koiter model,
this means that the whole inextensional space VF(S) (69)
can be approximated by the subspaces of the inextensional
elements belonging to FE spaces. For hyperbolic shells,
the only inextensional elements belonging to FE spaces are
zero; see Sanchez-Hubert and Sanchez-Palencia (1997) and
Chapelle and Bathe (2003), Section 7.3, which prevents all
approximation property of VF(S) if it is not reduced to {0}.

This fact is an extreme and general manifestation of the
membrane locking of shells, also addressed in Pitkaranta
(1992) and Gerdes, Matache and Schwab (1998) for cylin-
drical shells, which are a prototype of shells having a
nonzero inextensional space. Plates do not present mem-
brane locking since all elements z = (0, z3) are inexten-
sional, thus can be approximated easily by finite element
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subspaces. Nevertheless, as soon as the RM model is used,
as can be seen from the structure of the energy (47), a shear
locking may appear.

6.2.2 Shear locking of the RM and hierarchical
plate models

Shear locking occurs because the FE approximation using
C0 polynomials for the RM family of plates at the limit
when ε → 0 has to converge to the KL model in energy
norm Suri, 2001, requiring C1 continuity. Let us consider
the three-field RM model on the subspace of V RM(�ε),
cf. Section 3.3, of displacements with bending parity: {u ∈
V (�ε), u = (−x3θ�, z3)}. According to Suri, Babuška and
Schwab (1995) we have the following:

Theorem 10. The p-version of the FEM for the RM plate
model without boundary layers, on a mesh of triangles
and parallelograms, with polynomial degrees of p� ≥ 1 for
rotations θ� and p3 ≥ p� for z3 is free of locking in the
energy norm.

For the h-version over a uniform mesh consisting either
of triangles or rectangles, to avoid locking the tangential
degree p� has to be taken equal to four or larger, with
the transverse degree p3 being chosen equal to p + 1. A
similar phenomenon was earlier found in connection with
‘Poisson Ratio’ locking for the equations of elasticity. (i.e.
conforming elements of degree four or higher encounter no
locking); see Scott and Vogelius (1985). In Suri, Babuška
and Schwab (1995), it is proven that locking effects (and
results) for the (1, 1, 2) plate model are similar to the
RM model because no additional constraints arise as the
thickness ε → 0. Furthermore, it is stated that locking
effects carry over to all hierarchical plate models.

Here we have discussed locking in energy norm. How-
ever, if shear stresses are of interest, then locking is signif-
icantly worse because these involve an extra power ε−1.

For illustration purposes, consider a clamped plate with
ellipsoidal midsurface of radii 10 and 5, Young mod-
ulus (we recall that the Young modulus is given by
E = µ(3λ + 2µ)/2(λ + µ) and the Poisson ratio by ν =
λ/2(λ + µ)) E = 1 and Poisson ratio ν = 0.3; see Figure 4.
The plate is loaded by a constant pressure of value (2ε)2.

The discretization is done over a 32 p-element mesh (see
Figure 4(a) and (b) for 2ε = 1 and 0.1) using two layers,
each of dimension ε in the vicinity of the boundary. The
FE space is defined with p3 = p� ranging from 1 to 8. We
show in Figure 5 the locking effects for the RM model with
κEnergy.

The error plotted in ordinates is the estimated relative
discretization error in energy norm between the numerical
and exact solution of the RM plate model for each fixed

X

Y

ZX

Y

Z X

Y

Z

(a) (b) (c)

Figure 4. p-FE mesh for 2ε = 1, 0.1 for RM model and 2ε = 1
for 3-D model. A color version of this image is available at
http://www.mrw.interscience.wiley.com/ecm

||e
||

Thickness = 1
Thickness = 0.1
Thickness = 0.01
Thickness = 0.001
Thickness = 0.0001
Thickness = 0.00001

1 2 3 4 5 6 7 8

Polynomial order

1.E+00

1.E–01

1.E–02

1.E–03

1.E–04

Figure 5. Discretization error versus polynomial degree p for
RM plates of various thicknesses ε. A color version of this image
is available at http://www.mrw.interscience.wiley.com/ecm

thickness ε (it is not the error between the RM numerical
solution and the exact 3-D plate model). A similar behavior
can be observed with the model q = (1, 1, 2).

To illustrate both the locking effects for the hierarchical
family of plates and the modeling errors between the plate
models and their 3-D counterpart, we have computed for
two thicknesses of plates (2ε = 1 or 2ε = 0.01), the solution
for the first four plate models (see Table 1 [6]), and for the
fully 3-D plate with the degrees p� = p3 = 1, 2, . . . , 8 with
the model represented in Figure 4(c) for 2ε = 1.

The relative errors between energy norms of the hierar-
chical models and the 3D plate model versus the polynomial
degree p is shown in Figure 6. As predicted, increas-
ing the order of the plate model does not improve the
locking ratio, and as the hierarchical model number is
increased the relative error decreases. We note that when

Table 1. Hierarchical plate-model definitions for bending sym-
metry.

Model # 1 (RM) 2 3 4

Degrees q = (q1, q2, q3) (1,1,0) (1,1,2) (3,3,2) (3,3,4)
# independent

fields d = (d1, d2, d3) (1,1,1) (1,1,2) (2,2,2) (2,2,3)
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Figure 6. Relative error versus polynomial degree for 2ε = 1 and
0.01 for the first 4 hierarchical models. A color version of this
image is available at http://www.mrw.interscience.wiley.com/ecm

2ε = 1 the relative error of the four models converges to
the modeling error, which is still quite big since ε is not
small, whereas when 2ε = 0.01, the error stays larger that
15% for all models when p ≤ 4, and starts converging
for p ≥ 5.

6.3 Optimal mesh layout for hierarchical models
with boundary layers

All hierarchical plate models (besides KL model) exhibit
boundary layers. These are rapidly varying components,
which decay exponentially with respect to the stretched
distance R = r/ε from the edge, so that at a distance
O(2ε) these are negligible. Finite element solutions should
be able to capture these rapid changes. Using the p-
version of the finite element method, one may realize
exponential convergence rates if a proper design of meshes
and selection of polynomial degrees is applied in the
presence of boundary layers.

In a 1-D problem with boundary layers, it has been
proven in Schwab and Suri (1996) that the p-version over
a refined mesh can achieve exponential convergence for
the boundary layers, uniformly in ε. The mesh has to be
designed so to consist of one O(p(2ε)) boundary layer
element at each boundary point. More precisely, the optimal
size of the element is αp(2ε), where, 0 < α < 4/e (see
Fig. 7).

This result carries over to the heat transfer problem on
2-D domains as shown in Schwab, Suri and Xenophontos
(1998), and to the RM plate model, as demonstrated by
numerical examples. Typical boundary layer meshes are
shown in Figure 4 for 2ε = 1 and 0.1: In practice, for ease
of computations, two elements in the boundary layer zone
are being used, each having the size in the normal direction
of ε, independent of the polynomial degree used. This,

αp(2ε)

Figure 7. A typical design of the mesh near the boundary for the
p-version of the FEM.

although not optimal, still captures well the rapid changes
in the boundary layer.

In order to realize the influence of the mesh design
over the capture of boundary layer effects, we have again
solved numerically the RM plate model for a thickness of
2ε = 0.01 (and κDeflection as shear correction factor). Three
different mesh layouts have been considered, with two
layers of elements in the vicinity of the edge of dimension
0.5, 0.05, and 0.005 (the first two ones are represented
in Figure 4). For comparison purposes, we have computed
the 3-D solution over a domain having two layers in the
thickness direction and two elements in the boundary layer
zone of dimension 0.005. We have extracted the vertical
displacement u3 and the shear strain e23 along the line
starting at (x1, x2) = (9.95, 0) and ending at the boundary
(x1, x2) = (10, 0), that is, in the boundary layer region.
Computations use the degrees p� = p3 = 8. It turns out
that the vertical displacement u3 is rather insensitive to
the mesh, whereas the shear strain e23 is inadequately
computed if the mesh is not properly designed: With the
mesh containing fine layers of thickness 0.005, the average
relative error is 10%, but this error reaches 100% with
mesh layer thickness 0.05 and 400% for the mesh layer
thickness 0.5.

Concerning shells, we have seen in Section 4.2 that the
Koiter model for clamped elliptic shells admits boundary
layers of length scale

√
ε, and in Section 4.4 that other

length scales may appear for different geometries (ε1/3

and ε1/4). Moreover, for Naghdi model, the short length
scale ε is also present; see Pitkäranta, Matache and Schwab
(2001). Nevertheless, the “long” length scales ε1/3 and
ε1/4 appear to be less frequent. We may expect a similar
situation for other hierarchical models. As a conclusion the
mesh design for shell of small thicknesses should (at least)
take into account both length scales ε and

√
ε. Another

phenomenon should also be considered: Hyperbolic and
parabolic shells submitted to a concentrated load or a
singular data are expected to propagate singularities along
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their zero curvature lines, with the scale width ε1/3; see
Pitkäranta, Matache and Schwab (2001).

6.4 Eigen-frequency computations

Eigen-frequency computations are, in our opinion, a very
good indicator of (i) the quality of computations, (ii) the
nature of the shell (or plate) response. In particular, the
bottom of the spectrum indicates the maximal possible
stress–strain energy to be expected under a load of given
potential energy. From Theorem 7, we may expect that,
except in the case of clamped elliptic shells, the ratio
between the energy of the response and the energy of the
excitation will behave almost as O(ε−2).

6.4.1 Eigen-frequency of RM versus 3-D for plates

Eigen-frequencies obtained by the p-version finite ele-
ment method for clamped RM plates and their counterpart
3-D eigen-frequencies have been compared in Dauge and
Yosibash (2002), where rectangular plates of dimensions
1 × 2 × 2ε have been considered. For isotropic materials

with Poisson coefficient ν = 0.3, the relative error for the
first three eigen-frequencies was found negligible (less than
0.12%), for thin plates with slender ratio of less than 1%,
and still small (0.2%) for moderately thick plates (slander
ratio about 5%).

For some orthotropic materials, much larger relative
errors between the RM eigen-frequencies and their 3-D
counterparts have been observed even for relatively thin
plates. In one of the orthotropic rectangular plate examples
in Dauge and Yosibash (2002), for which the boundary
layer effect on the eigen-frequencies should be the most
pronounced, a very large relative error of 25% has been
reported for the first eigen-frequency at ε = 0.1. This is
a significant deviation, whereas the RM model underes-
timates the ‘true’ 3-D by 25%, and is attributed to the
boundary layer effect.

6.4.2 3-D eigen-frequency computations for shells

We present computations on three families of shells, see
Figure 8: (a) clamped spherical shells, (b) sensitive spher-
ical shells, (c) flexural cylindrical shells, all with material

X

Y

Z

(a)

X

Y Z

(b)

Y X

Z

(c)

Figure 8. Shell models (a), (b) and (c) for ε = 0.04. A color version of this image is available at http://www.mrw.interscience.wiley.
com/ecm
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Figure 9. Model (a). vertical components of eigen-modes 1, 2 and 4 for ε = 0.08. A color version of this image is available at
http://www.mrw.interscience.wiley.com/ecm
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parameters ν = 0.3 and E = 1. These three families illus-
trate the three cases (i), (ii) and (iii) in Theorem 7: The
shells (a) are elliptic clamped on their whole boundary, (b)
are elliptic, but clamped only on a part of their boundaries,
and (c) are parabolic. Note that Theorem 7 states results
relating to Koiter eigenvalues and not for 3-D eigenvalues.
Nevertheless, a similar behavior can be expected for 3-D
eigenvalues.

Family (a). The midsurface S is the portion of the unit
sphere described in spherical coordinates by ϕ ∈ [0, 2π)

and θ ∈ (π/4, π/2]. Thus S a spherical cap containing the
north pole. The family of shells �ε has its upper and lower
surfaces characterized by the same angular conditions, and
the radii ρ = 1 + ε and ρ = 1 − ε, respectively. We clamp
�ε along its lateral boundary θ = π/4.

We have computed the first five eigen-frequencies of the
3-D operator (4) by a FE p-discretization based on two
layers of elements in the transverse direction and 8 × 5
elements in the midsurface, including one thin layer of ele-
ments in the boundary layer. The vertical (i.e. normal to the
tangent plane at the north pole, not transverse to the mid-
surface!) component u3 for three modes are represented
in Figure 9 for the (half)-thickness ε = 0.08. Mode 3 is
rotated from mode 2, and mode 5 from mode 4 (dou-
ble eigen-frequencies). The shapes of the eigen-modes for
smaller values of the thickness are similar. Figure 10 pro-
vides the three first distinct eigen-frequencies as a function
of the thickness in natural scales. In accordance with
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Figure 10. Model (a). Eigen-frequencies versus thickness (2ε).
A color version of this image is available at http://www.mrw.inter
science.wiley.com/ecm

Theorem 7 (i), the smallest eigen-frequencies all tend to
the same nonzero limit, which should be the (square root
of the) bottom of the membrane spectrum.

Family (b). The midsurface S is the portion of the unit
sphere described in spherical coordinates by ϕ ∈ [0, 2π)

and θ ∈ (π/4, 5π/12]. The family of shells �ε has its upper
and lower surfaces characterized by the same angular con-
ditions, and the radii ρ = 1 + ε and ρ = 1 − ε, respectively.
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Figure 11. Model (b). Vertical components of modes 1, 3, 5, 7, 8, 9 for ε = 0.04. A color version of this image is available at
http://www.mrw.interscience.wiley.com/ecm
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Figure 12. Model (b). Vertical components of modes 1, 3, 5 for ε = 0.00125. A color version of this image is available at
http://www.mrw.interscience.wiley.com/ecm

We clamp �ε along its lateral boundary θ = 5π/12 and let
it free along the other lateral boundary θ = π/4. This shell
is a sensitive one in the sense of Pitkäranta and Sanchez-
Palencia (1997), which means that it is sensitive to the
thickness and answers differently according to the value
of ε.

We have computed the first five (or first ten) eigen-
frequencies of the 3-D operator (4) by a FE p-discretization
similar to that of (a) (two layers in the transverse direction
and 8 × 4 elements in the surface direction – for the ‘small’
thickness, a globally refined mesh of 16 × 6 elements has
been used). In Figure 11, we plot the vertical components
of modes number 1, 3, 5, 7, 8, and 9 for ε = 0.04 and
in Figure 12, modes number 1, 3, 5 for ε = 0.00125. In
both cases, modes 2, 4, and 6 are similar to modes 1, 3,
and 5 respectively and associated with the same (double)
eigen-frequencies.

For ε = 0.04, we notice the axisymmetric mode at posi-
tion 7 (it is at position 5 when ε = 0.08, and 9 for ε = 0.02).
Mode 8 looks odd. Indeed, it is very small (less than 10−4)
for normalized eigenvectors in O(1). This means that this
mode is mainly supported in its tangential components (we
have checked they have a reasonable size). Mode 8 is in fact
a torsion mode, which means a dominant stretching effect,
whereas the other ones have a more pronounced bending
character.

Figure 13 provides the first distinct eigen-frequencies
classified by the nature of the eigenvector (namely the num-
ber of nodal regions of u3) as a function of the thickness in
natural scales. The organization of these eigen-frequencies
along affine lines converging to positive limits as ε → 0
is remarkable. We may expect a convergence as ε → 0 of
the solution uε of problem (3) provided the loading has
a finite number of angular frequencies in ϕ (the displace-
ment will converge to the highest angular frequency of
the load). Nevertheless, such a phenomenon is specific to
the axisymmetric nature of the shell (b) and could not be
generalized to other sensitive shells. Computations with a
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Figure 13. Model (b). Eigen-frequencies versus thickness (2ε). A
color version of this image is available at http://www.mrw.inter
science.wiley.com/ecm

concentrated load (which, of course, has an infinite number
of angular frequencies) display a clearly nonconverging
behavior (Chapelle and Bathe (2003), Section 4.5.3).

Family (c). The midsurface S is a half-cylinder descri-
bed in cylindrical coordinates (r, θ, y) by θ ∈ (0, π), r = 1
and y ∈ (−1, 1). The family of shells �ε has its upper
and lower surfaces characterized by the same angular and
axial condition, and the radii r = 1 + ε and r = 1 − ε,
respectively. We clamp �ε along its lateral boundaries
θ = 0 and θ = π and leave it free everywhere else. This
is a well-known example of flexural shell, where the space
of inextensional displacements contains the space, cf. (80)
(note that, below, zr = z3)

VF,0 := {z = (zr , zθ, zy); zy = 0, zr = zr (θ), zθ = zθ(θ)

with ∂θzθ = zr and zθ = zr = ∂θzr = 0 in θ = 0, π
}

(93)
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Besides these patterns independent of the axial variable y,
there is another subspace VF,1 of inextensional displace-
ments, where zy is independent on y and zr , zθ are linear
in y:

VF,1 :=
{

z = (zr , zθ, zy); zy = zy(θ),

zθ = −y∂θzy(θ), zr = −y∂2
θ zy(θ)

with zy = zθ = zr = ∂θzr = 0 in θ = 0, π
}

(94)

and VF = VF,0 ⊕ VF,1. We agree to call ‘constant’ the dis-
placements associated with VF,0 and ‘linear’ those associ-
ated with VF,1.

We have computed the first ten eigen-frequencies (4) by
a FE p-discretization based on two layers of elements in

the transverse direction and a midsurface mesh of 8 × 6
curved quadrangles. For the half-thickness ε = 0.0025, we
plot the vertical component uz = ur sin θ + uθ cos θ of the
eigenmodes u: In Figure 14, the first six constant flexural
eigenmodes and in Figure 15, the first three linear flexural
eigen-modes (their components uy clearly display a nonzero
constant behavior in y). The shapes of the eigen-modes for
larger values of the thickness are similar. In Figure 16, we
have plotted in logarithmic scale these eigen-frequencies,
classified according to the behavior of the flexural eigen-
modes (‘constant’ and ‘linear’). The black line has the
equation ε �→ ε/4: Thus we can see that the slopes of
the eigen-frequency lines are close to 1, as expected by
the theory (at least for Koiter model). In Figure 17, we
represent the first nonflexural modes (with rank 10 for
ε = 0.01 and rank 8, 9 for ε = 0.04).
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Figure 14. Model (c). Vertical components of modes 1, 2, 5, 6, 9 and 10 for ε = 0.0025. A color version of this image is available at
http://www.mrw.interscience.wiley.com/ecm
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Figure 15. Model (c). Vertical components modes 3, 4 and 7 for ε = 0.0025. A color version of this image is available at
http://www.mrw.interscience.wiley.com/ecm
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Figure 16. Model (c). Eigen-frequencies versus ε in log–log
scale. A color version of this image is available at http://www.
mrw.interscience.wiley.com/ecm

6.4.3 Thin element eigen-frequency computations

We present in Tables 2–4 the computation of the first
eigen-frequency of the shell �ε in families (a) and (b)
for a moderate thickness (ε = 0.02) and a small thickness
(ε = 0.00125) and for family (c) for a moderate thickness
(ε = 0.04) and a small thickness (ε = 0.0025), respectively,
for a moderate thickness (ε = 0.04) and a small thickness

(ε = 0.0025). The degree q is the degree in the transverse
direction (according to Section 6.1.3 there is one layer of
elements). We notice that, for an accuracy of 0.01% and
ε = 0.02, the quadratic kinematics is not sufficient, whereas
it is for ε = 0.00125. No locking is visible there. In fact,
the convergence of the q-models to their own limits is more
rapid for ε = 0.02.

6.5 Conclusion

It is worthwhile to point out that the most serious difficul-
ties we have encountered in computing all these models
occurred for ε = 0.00125 and model (b) – the sensitive
shell: Indeed, in that case, when ε → 0, the first eigen-
mode is more and more oscillating, and the difficulties of
approximation are those of a high-frequency analysis. It is
also visible from Tables 3 and 4 that the computational
effort is lower for the cylinder than for the sensitive shell,
for an even better quality of approximation.

It seems that, considering the high performance of
the p-version approximation in a smooth midsurface (for
each fixed ε and fixed degree q we have an expo-
nential convergence in p), the locking effects can be
equilibrated by slightly increasing the degree p as ε

decreases.
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Figure 17. Model (c). First nonflexural modes for ε = 0.01 and ε = 0.04. A color version of this image is available at
http://www.mrw.interscience.wiley.com/ecm

Table 2. Thin element computations for the first eigen-frequency of model (a).

p ε = 0.02 and q = 2 ε = 0.02 and q = 3 ε = 0.00125 and q = 2

DOF e-freq. % err. DOF e-freq. % err. DOF e-freq. % err.

1 297 0.2271659 37.967 396 0.2264908 37.557 297 0.2055351 36.437
2 729 0.1694894 2.938 828 0.1694269 2.900 729 0.1560694 3.601
3 1209 0.1652870 0.386 1308 0.1652544 0.366 1209 0.1537315 2.049
4 2145 0.1648290 0.108 2244 0.1648001 0.090 2145 0.1517604 0.741
5 3321 0.1646992 0.029 3636 0.1646693 0.011 3321 0.1508741 0.152
6 4737 0.1646859 0.021 5268 0.1646555 0.002 4737 0.1506988 0.036
7 6393 0.1646849 0.020 7140 0.1646544 0.002 6393 0.1506544 0.007
8 8289 0.1646849 0.020 9252 0.1646543 0.002 8289 0.1506447 0.000
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Table 3. Thin element computations for the first eigen-frequency of model (b).

p ε = 0.02 and q = 2 ε = 0.02 and q = 3 ε = 0.00125 and q = 2

DOF e-freq. % err. DOF e-freq. % err. DOF e-freq. % err.

1 864 0.0597700 89.68 1152 0.0595287 88.91 864 0.0462144 932.2
2 2016 0.0326855 3.73 2304 0.0326036 3.46 2016 0.0129819 189.9
3 3168 0.0318094 0.95 3456 0.0317325 0.70 3168 0.0064504 44.06
4 5472 0.0316330 0.39 5760 0.0315684 0.18 5472 0.0047030 5.04
5 8352 0.0316071 0.30 9216 0.0315319 0.06 8352 0.0045085 0.69
6 11 808 0.0316011 0.28 13 248 0.0315223 0.03 11 808 0.0044800 0.06
7 15 840 0.0316000 0.28 17 856 0.0315200 0.03 15 840 0.0044780 0.01
8 20 448 0.0315998 0.28 23 040 0.0315195 0.03 20 448 0.0044779 0.01

Table 4. Thin element computations for the first eigen-frequency of model (c).

p ε = 0.04 and q = 2 ε = 0.04 and q = 3 ε = 0.0025 and q = 2

DOF e-freq. % err. DOF e-freq. % err. DOF e-freq. % err.

1 567 0.0514951 210.2 756 0.0510683 208.7 567 0.0397025 3666.
2 1311 0.0207290 24.9 1500 0.0206911 24.7 1311 0.0079356 653.1
3 2055 0.0167879 1.2 2244 0.0167596 0.98 2055 0.0011505 9.188
4 3531 0.0166354 0.02 3720 0.0166091 0.08 3531 0.0010578 0.395
5 5367 0.0166293 0.02 5928 0.0166011 0.03 5367 0.0010548 0.108
6 7563 0.0166289 0.02 8496 0.0166004 0.02 7563 0.0010541 0.045
7 10 119 0.0166288 0.02 11 424 0.0166003 0.02 10 119 0.0010538 0.012
8 13 035 0.0166288 0.02 14 712 0.0166002 0.02 13 035 0.0010537 0.002

Of course, there exist many strategies to overcome lock-
ing in different situations: Let us quote here (Bathe and
Brezzi, 1985; Brezzi, Bathe and Fortin, 1989; Arnold and
Brezzi, 1997) as ‘early references’, on mixed methods,
which result in a relaxation of the zero-membrane-energy
constraint. These methods are addressed in other chapters
of the Encyclopedia.
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NOTES

[1] We have a similar situation with plates, where the
solution uε,KL of the Kirchhoff–Love model gives back
the first generating terms on the asymptotics of uε, cf.
Theorem 2.

[2] The actual Kirchhoff–Love displacement (satisfying
ei3 = 0) is slightly different, containing an extra quad-
ratic surface term.

[3] The complementing operator C defined in (45) for
plates satisfies CU1,1,0

KL = U1,1,2
K .

[4] These norms are those of the domains of the frac-
tional powers As of the Sturm–Liouville operator
A: ζ �→ ∂x((1 − x2)∂xζ) on the interval (−1, 1). Such
an approach is now a standard tool in the p-version
analysis.

[5] Of course, different mesh designs are possible on
thin domains. If one wants to capture boundary layer
terms with an exponential rate of convergence, a h-p
refinement should be implemented near the edges of
�ε, Dauge and Schwab (2002).

[6] Here, for ease of presentation, we use the numbering
system for plate models displayed in Table 1, where we
also provide the number dj of fields in each direction
for bending models, that is, for which the surface com-
ponents are odd and the normal component even in x3.
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Kármán equations. Comput. Mech. 1986; 1:177–202.

Dauge M and Faou E. Koiter Estimate Revisited. Research report,
INRIA, 2004; to appear.

Dauge M and Gruais I. Asymptotics of arbitrary order for a thin
elastic clamped plate. I: Optimal error estimates. Asymptot.
Anal. 1996; 13:167–197.

Dauge M and Gruais I. Asymptotics of arbitrary order for a thin
elastic clamped plate. II: Analysis of the boundary layer terms.
Asymptot. Anal. 1998a; 16:99–124.

Dauge M and Schwab C. ‘hp-FEM for three-dimensional elastic
plates. M2AN Math. Model. Numer. Anal. 2002; 36(4):597–630.

Dauge M and Yosibash Z. Boundary Layer Realization in Thin
Elastic 3-D Domains and 2-D Hierarchic Plate Models. Int. J.
Solids Struct. 2000; 37:2443–2471.



REVIS
ED P

AGE P
ROOFS

ECM015

Plates and Shells: Asymptotic Expansions and Hierarchic Models 33

Dauge M and Yosibash Z. Eigen-frequencies in thin elastic 3-D
domains and Reissner-Mindlin plate models. Math. Methods
Appl. Sci. 2002; 25(1):21–48.
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mptotic in thin elastic plates. J. Math. Pures Appl. 1999;
78:925–964.
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Suri M, Babuška I and Schwab C. Locking effects in the finite
element approximation of plate models. Math. Comput. 1995;
64:461–482.
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Guo B and Babuška I. Regularity of the solutions for elliptic
problems on nonsmooth domains in R3. I. Countably normed
spaces on polyhedral domains. Proc. R. Soc. Edinburgh, Sect.
A 1997b; 127(1):77–126.
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de coque élastique dans le cas d’un modèle linéaire de Naghdi.
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mince: résolution en série formelle en puissances de l’épaisseur.
C. R. Acad. Sci. Paris, Sér. I Math. 2000b; 330(5):415–420.
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Feigin VI. Elliptic equations in domains with multidimensional
singularities of the boundary. Uspehi-Mat. Nauk. 1972; 2:183,
184.

Fichera G. Existence theorems in elasticity. In Handbuch der
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Pitkäranta J, Leino Y, Ovaskainen O and Piila J. Shell deforma-
tion states and the finite element method: a benchmark study
of cylindrical shells. Comput. Methods Appl. Mech. Eng. 1995;
128(1–2):81–121.

Prager W and Synge JL. Approximations in elasticity based on the
concept of the function space. Q. Appl. Math. 1947; 5:241–269.

Raschewski PK. Riemannsche Geometrie und Tensoranalysis.
VEB deutscher Verlag der Wissenschaften: Berlin, 1959.

Reissner E. On the theory of bending of elastic plates. J. Math.
Phys. 1944; 23:184–191.

Reissner E. The effect of transverse shear deformations on the
bending of elastic plates. J. Appl. Mech. 1945; 12:A69–A77.

Reissner E. On a variational theorem in elasticity. J. Math. Phys.
1950; 28:90–95.

Reissner E. On the derivation of boundary conditions for plate
theory. Proc. R. Soc. Ser. A 1963; 276:178–186.

Reissner E. Reflections on the theory of elastic plates. Appl. Mech.
Rev. 1985; 38:453–464.

Reissner E. On small finite deflections of shear deformable elastic
plates. Comput. Methods Appl. Mech. Eng. 1986; 59:227–233.

Rodriguez JM and Viaño JM. Analyse asymptotique de l’équation
de Poisson dans un domaine mince. Application à la théorie de
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Rössle A. Asymptotische Entwicklungen für dünne Platten im Rah-
men der linearen Elastostatik. Doctoral Dissertation, Mathema-
tisches Institut A, Universität Stuttgart, Germany, 1999.

Sanchez-Hubert J and Sanchez-Palencia E. Vibration and Cou-
pling of Continuous Systems; Asymptotic Methods. Springer-
Verlag: Heidelberg, 1989.

Sanchez-Palencia E. Non-Homogeneous Media and Vibration The-
ory, vol. 127 of Lecture Notes in Physics. Springer-Verlag:
Heidelberg, 1980.

Sanchez-Palencia E. Forces appliquées à une petite région de
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Université Pierre et Marie Curie, Paris, 1998.

Timosheno S and Woinovsky-Krieger W. Theory of Plates and
Shells. McGraw-Hill: New York, 1959.
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Abstract: Concerning thin structures, such as plates and shells, the idea of reducing the equations of elasticity to two-
dimensional models defined on the midsurface seems relevant. Such a reduction was first performed thanks to kinematical
hypotheses about the transformation of normal lines to the midsurface. As nowadays, the asymptotic expansion of the
displacement solution of the three-dimensional linear model is fully known at least for plates and clamped elliptic shells, we
start from a description of these expansions in order to introduce the two-dimensional models known as hierarchical models:
These models extend the classical models, and presuppose the displacement to be polynomial in the thickness variable,
transverse to the midsurface. Because of the singularly perturbed character of the elasticity problem as the thickness
approaches zero, boundary, or internal layers may appear in the displacements and stresses, and so may numerical locking
effects. The use of hierarchical models, discretized by higher degree polynomials (p-version of finite elements) may help
overcome these severe difficulties.

Keywords: shells, plates, hierarchical models, asymptotic expansion, modal analysis, eigen-frequencies, finite elements


