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SUMMARY

This paper presents a new method for accurate pointwise stress extraction from �nite element solutions,
applied to two-dimensional linear elastostatic problems having bounded value stresses. The method, denoted
by SEC (Stress Extraction by Complementary principle), is based on the complementary energy principle
applied over a local domain in the post-processing phase. Detailed formulation of the SEC method is provided,
and numerical experiments with the h- and p-versions of the �nite element method are presented for a family
of exact solutions characterized by varying degree of smoothness. It is shown that on the boundaries of the
domain, as well as in the interior, accurate pointwise stresses are obtained, and the relative error in the
pointwise stresses converges with a rate which is as fast as the relative error measured in energy norm
or faster. Importantly, the SEC method in conjunction with the p-version of the �nite element method is
virtually independent of the Poisson’s ratio,1 and is equally applicable to nearly incompressible materials.
? 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Displacement-based Finite Element (FE) methods, formulated based on the principle of minimum
potential energy, maintain only C0 continuity over the problem domain, and the convergence of
the numerical approximation to the exact value is usually measured in the energy norm, which is a
global measure. Analysts, however, are interested in pointwise stresses rather than energy, and the
problem of stress extraction from FE solutions has been the subject of many investigations. Typi-
cally, the pointwise stresses are obtained ‘directly’ from the FE solution, that is, by di�erentiating
the displacement function to obtain the strain components, then using the strain–stress law for
computing the stresses (see detailed description in Section 11.4.1 of Reference 2). The pointwise
stresses computed by the direct method do not (in general) converge monotonically (even though
the error in energy norm does), and their rate of convergence usually depends on the smoothness
of the exact solution. Only when the exact solution is relatively smooth, one observes that the
stresses extracted by the direct method converge in a satisfactory manner, and their rates of con-
vergence are similar to that of the energy norm when the latter is su�ciently small. This behaviour
was demonstrated in Reference 3. As the exact solution becomes progressively less smooth, the
performance of the direct method deteriorates, and indirect extraction methods should be sought.
Indirect computation of stresses have been shown to be superior to direct methods (see for ex-

ample References 4–9 and the references therein). The methods presented in References 4–7 are
based on specially constructed extraction functions, so that some measure of arti�cial intelligence
should be applied in a general purpose computer programs in the sense that the proper extraction
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functions must be selected automatically, depending on the problem parameters and the location
of output information required (this holds true for the SEC method, but in a smaller extent).
Computer implementation of these indirect methods is di�cult, because di�erent procedures are
required at and near boundaries as opposed to the interior. The author does not know of any
practical implementation of indirect extraction techniques for the pointwise stresses, even though
the methods have been known for more than 10 years. The patch recovery method in Reference 8
requires the existence of superconvergent points and does not perform satisfactorily in the neigh-
bourhood of steep stress gradients. In Reference 9 a technique based on local interpolation of nodal
displacements using the moving least-squares method is presented which demonstrates good results
for the extracted stresses for many of the cases studied. For nearly incompressible materials, the
performance of the mentioned indirect methods is expected to deteriorate considerably, except for
the methods presented in References 4 and 5.
The SEC method presented in this paper in the framework of two-dimensional elastostatics

is equally suited for nearly incompressible materials when applied in conjunction with the p-
version of the FEM,1 is fully general, and may be implemented in any �nite element code. It is
a post-processing technique, namely, after the displacement-based FE analysis is completed, the
displacements approximation is used for further computations to obtain results of higher accuracy.
The formulation of the method, based on the principle of minimum complementary energy, is
presented for stress computation at interior and boundary points. Pointwise stresses extracted by
SEC are documented for a family of problems for which the exact solution is known and the
smoothness of the solution is varied. Mathematical analysis on convergence rates of the SEC is
not discussed.
An outline of the paper is as follows. Notations and detailed formulation of the suggested

extraction method is followed. In Section 3 we describe the family of problems for which the
exact solution is known. These problems are solved by the p-version of the �nite element method,
and the stresses are extracted by the direct and by the SEC methods and compared to the exact
values. The performance of the SEC in conjunction with the h-version of the FEM is documented
in Section 4. We �nally present a summary and conclusions in Section 5.

2. SEC METHOD

2.1. Notations and preliminaries

The problem of interest is the linear plane elasticity in an isotropic domain without body forces
or thermal loading. Let 
 be a two-dimensional linear elastic domain with a boundary denoted
by @
 and let 
R⊂
. The displacements vector expressed in a Cartesian co-ordinate system is

denoted by u def= (u1; u2)T and the linear strain tensor by

”ij(u) =
1
2

(
@ui
@xj

+
@uj
@xi

)
Throughout the paper the stress tensor in two dimensions will be denoted either by its tensor or
vector form,

b
t
def=
[
�11 �12
�12 �22

]
or b def=


�11
�22
�12


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The constitutive law (Hooke’s law) for an isotropic two-dimensional elastic domain is given
by

[C]b = i def= (”11; ”22; ”12)
T (1)

where

[C] =
1 + �
2E


c + 1 c − 1 0

c − 1 c + 1 0

0 0 2


c = 1 − 2� for plane-strain situation, c = (1− �)=(1 + �) for plane-stress situation and E and �
are the Young’s modulus and the Poisson’s ratio, respectively.
We denote the inner product of the L2(
) space for a vector function or a tensor by

(b; �)L2 ;

def=
∫∫


bT� d


(
b
t
; �
t

)
L2 ;


≡
∫∫


b
t
: �
t
d
 def=

∫∫



∑
i

∑
j
�ij�ij d
 (2)

with the corresponding norm ‖ • ‖L2 ;
 def=
√
(•; •)L2 ;
. Notice that

√
2‖b‖L2 ;
¿‖ bt ‖L2 ;
¿‖b‖L2 ;
:

The div and grad operators on vectors and div, grad operators on tensors are de�ned according
to Chapter 9 of Reference 10. We denote the Sobolev space for a vector function excluding rigid
body motions by H1(
):

H1(
) = {u |
√
‖grad u‖2L2 ;
 + ‖u‖2L2 ;
 ¡∞} \ {Rigid body motions}

with ‖•‖1;
 denoting the corresponding norm. Let �(
R) be the statically admissible space de�ned
by

�(
R) = {b
t
| ‖ b
t
‖L2 ;
R ¡∞; div b

t
= 0 in 
R}

and let �N (
R) be a subspace of �(
R) with dim�N (
R) = N ¡∞.
We introduce the two bilinear forms associated with the primal and dual weak formula-

tions:

B(u; v) =
∫∫


[2� i

t
(u) : i

t
(v) + �� div u · div v]d
 (3)

Bc(b; bo) =
∫∫

R
bT[C]bo d
: (4)

and their corresponding norms, de�ned as follows:

‖u‖B;
 def=

√
1
2
B(u; u) =

1√
2
(2�‖ i

t
(u)‖20;
 + ��‖div u‖20;
)1=2
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called the ‘energy norm’, and

‖b‖Bc ;
R def=
√
1
2
Bc(b; b)

�� =
{

� for plane-strain
2��=(�+ 2�) for plane-stress

where �; � are the Lam�e constants, expressed in terms of E and � as follows:

� =
E

2(1 + �)
; � =

E�
(1 + �)(1− 2�)

The linear continuous forms associated with the primal and dual weak formulations are de�ned as

F(v) =
∫
�T
vT · t ds (5)

Fc(bo) =
∫
(�R)u

ûT · ([n]bo) ds (6)

where �T denotes the part of the boundary @
 where traction boundary conditions t are pre-
scribed, (�R)u denotes the part of the boundary @
R where displacement boundary conditions û
are prescribed,

[n] =
[
n1 0 n2
0 n1 n2

]
and n def= (n1; n2) is the outward normal vector to the boundary.
The primal weak formulation (also known as the displacement weak formulation) equivalent to

the elasticity Lam�e–Navier equations is cast in the form:

Seek u ∈ H1(
) such that
B(u; v) =F(v) ∀v ∈ H1(
) (7)

If also homogeneous Dirichlet boundary conditions are speci�ed on �D⊂ @
 (a part of the bound-
ary), u and v in (7) are required to lie in the space

o
H 1(
) de�ned by

o
H 1(
)

{
u
∣∣ u ∈ H1(
); u = 0 on �D } :

The dual (complementary) weak formulation of the elasticity problem over the sub-domain 
R is

Seek b ∈ �(
R) such that
Bc(b; bo) =Fc(bo) ∀bo ∈ �(
R) (8)

2.2. The SEC method

The complementary weak form (8) is used for pointwise stress extraction. The procedure is
a post-solution operation performed after the elastostatic problem over 
 is solved by the FEM
based on the displacement formulation (7) and having obtained uFE.
Assume that the stresses at a speci�c point are of interest. A subdomain around that point is

selected, depending on whether the point O is an internal point, the point Q is on a smooth
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Figure 1. Typical points of interest in a domain

boundary or the point P is a point where the stresses are singular, see Figure 1. De�ne SR as the
interior points of a circle of radius R centred on the point of interest. For points O and P, 
R is
de�ned by 
 ∩ SR. For point Q we de�ne 
R as the half circle 
 ∩ SR∩ the half plane de�ned
by the straight tangent line to the boundary at the point Q. In the following, only points O and
Q, where the stresses are regular, are treated. A detailed treatment for point P, where the stresses
are singular, can be found in References 11 and 12.
We discretize the complementary weak form (8) over 
R by choosing a sequence of �nite-

dimensional subspaces �N (
R)⊂�(
R) (N denoting the dimension, and as will be shown in the
following, it depends on Airy’s stress function polynomial order). Any b which belongs to �N (
R)
can be written in the form

b(r; �) =
N∑
i=1
ai fi(r; �) (9)

where r; � are the co-ordinates of a cylindrical co-ordinate system located at the point of interest
and fi = (f11; f22; f12)Ti are smooth vector functions which have to lay in the statically admissible
space �(
R). On the boundary @
R, we impose displacement boundary conditions obtained by
the FE analysis, uFE. The functions fi ∈ �(
R) are derived from an Airy stress function �i(�; �).
Many statically admissible spaces can be constructed, and we concentrate our discussion in the
next subsection on two possibilities.
On @
R the �nite element solution obtained by the displacement formulation (uFE) is prescribed,
thus the discretized complementary weak form (8) is equivalent to solving

[Bc]a = Fc (10)

where a = (a1; a2; : : : ; aN )T, [Bc] is an N × N matrix and Fc is a vector de�ned by

(Bc)ij =
∫ R

0

∫ �2

�1
{C1(f11)i(f11)j + C3(f22)i(f22)j + C6(f12)i(f12)j

+C2(f11)i(f22)j + C4(f11)i(f12)j + C5(f22)i(f12)j

+C2(f22)i(f11)j + C4(f12)i(f11)j + C5(f12)i(f22)j} r dr d� i; j = 1; 2; : : : ; N (11)
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(Fc)j =
∫
@
R

(
uFE
)T{ cos �(f11)j + sin �(f12)j

sin �(f22)j + cos �(f12)j

}
ds; j = 1; 2; : : : ; N (12)

where C1 = C11; C2 = C12; C3 = C22; C4 = C13; C5 = C23; and C6 = C33. For points within the
domain (as point O) �1 = 0; �2 = 2�, whereas for points on the boundary (as point Q) �1 = �
and �2 = � + �, � being the angle between the inward normal vector to the boundary at Q and
the x1-axis. The entries of the matrix [Bc] can be pre-computed analytically because the vectors fi
are simple polynomials in r and sin � or cos �, and the material properties within 
R are assumed
to be �xed. The entries of the vector Fc are computed by Gaussian quadrature of order 14.

Remark 1. The SEC method does not distinguish between cases when stresses are sought on the
boundaries or in the interior of the domain. When boundary stresses are sought, the same technique
applies whether tractions or displacements are speci�ed as boundary conditions.

Remark 2. Unlike FEM based entirely on complementary energy principle, requiring C1 continu-
ous elements, the SEC method does not require any such constraints.

Remark 3. It should be emphasized that the SEC method is a localized operation applied over a
standard circular type domain.

Solving (10), one obtains an approximation for a, and the SEC stresses at the point of interest
are given by

b =
N∑
i=1
ai fi(0; 0) (13)

2.3. Constructing the statically admissible space

2.3.1. The equilibrated space. Any vector fi which is derived from an Airy polynomial function
�i(�; �) by the relation

fi =



@2�i(�; �)
@�2

@2�i(�; �)
@�2

−@
2�i(�; �)
@�@�

(14)

satis�es identically the equilibrium equation, therefore lies in the statically admissible space. The
polynomials �i(�; �) are constructed as a product of two Legendre polynomials:

�i(�; �) = Pj(�)Pk(�); j; k = 0; 1; : : : ; 9→ i = 0; 1; : : : ; 100

where Pj is the Legendre polynomials of degree j, � = r cos � and � = r sin �. For any combi-
nation of j and k, the vector fi is computed:

fi =


Pj(�)

@2Pk (�)
@�2

Pk(�)
@2Pj(�)

@�2

− @2(Pj(�)Pk (�))

@�@�

j; k = 0; 1; : : : ; 9
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Choosing Legendre polynomials up to degree 8 (P0; : : : ; P9), we obtain up to N = 97 di�erent
fi (the combinations P0(�)P0(�); P0(�)P1(�), and P1(�)P0(�) provide a null fi vector). For any
polynomial degree of the Airy stress function, p¿1, we obtain N = (p+1)2−3 di�erent statically
admissible vector functions fi. The functions fi obtained for an Airy polynomial function of order
1, 2 and 3, for example, are provided in Appendix I.

Remark 4. As the radius R of the domain 
R varies, it is necessary to scale the variables � and �
accordingly, and we use �=R and �=R in the fuctional expressions for fi. Otherwise, the condition
number of the matrix [Bc] depends on R.

The statically admissible space created by the aformentioned method does not have to satisfy
the compatibility equation. Namely, any �i(�; �) is a harmonic function satisfying ∇2�i(�; �) = 0,
however, we can further restrict �i(�; �) to be a bi-harmonic function, which brings us to the next
possible statically admissible space.

2.3.2. The equilibrated/compatible space. Any polynomial of the form

�(�; �) ≡
I∑
i=0
di�i(�; �) =

L∑
l=0

M∑
m=0
blm�l�m (15)

can be chosen as the Airy stress function from which the vectors fi can be constructed by (14).
However, if we wish that not only the equilibrium equation be satis�ed, but also the compatibility
equation, it is necessary to enforce that ∇4�i(�; �) = 0. This condition imposes a restriction on
the coe�cient blm (and therefore on di) in (15) (see Reference 13, pp. 516–518):

(l+2)(l+1)l(l−1)bl+2; m−2+2l(l−1)m(m−1)bl;m+(m+ 2)(m+ 1)m(m− 1)bl−2; m+2 = 0 (16)

This relationship among groups of three alternate coe�cients restricts the number of independent
fi’s, obtained from �(�; �) using (14), to N = 4(p + 1) − 1, where p + 2 is the degree of the
complete polynomial function �(�; �).
A di�erent approach to obtain the same ‘equilibrated/compatible’ space is by using the com-

plex functions approach by Muskhelishvili, summarized in pp. 262–267 of Reference 14. Any
bi-harmonic Airy stress function over a connected domain can be represented by

�(�; �) = < [ �z�(z) + �(z)] (17)

where z = �+i�, �(z) =
∑J

j=0(Aj+iBj)z
j and �(z) =

∑J+1
k=0 (Ej+iFj)z

j, and Aj; Bj; Ej; Fj being
real constants. After mathematical manipulations performed by symbolic mathematics, one obtains
the statically admissible space fi from (17) and (14). The ‘equilibrated/compatible’ functions fi
for an Airy polynomial function of order 3, 4 and 5, for example, are provided in Appendix I.

3. NUMERICAL EXPERIMENTS WITH THE p-VERSION OF THE FEM

3.1. The model problem

Consider the elastostatic problem of an elliptical plate containing an elliptic hole presented in
Figure 2, for which the analytic (exact) solution is provided in Reference 3. The domain of interest
is bounded by two ellipses, the outer with major axis a = 4 + m=4 and minor axis b = 4− m=4,
and the inner with a = 1 + m=1 and b = 1 − m=1. By varying m from 0 to 0·9, we can obtain
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Figure 2. Solution domain and boundary conditions

stress concentration factors at point A (see Figure 2), which range from 3 (corresponding to a
circular hole) to 39, respectively. The normal traction component TN and the tangential traction
component TT on the outer elliptical boundary are

TN(�(t)) =
1

f2(4; �)
{sin 2� [480(1 + m)(16− m2) + 255(m2 + 256)]

−4080m sin 4�}
TT(�(t)) =

1
f2(4; �)

{255(256− 2m− m2)(16− m2)− cos 2� [193(256 + m2)

+512(m2 + 1)] + 7200m cos2 2�}
where f(4; �) = 256− 32m cos 2�+ m2 and

� = arctan
{(

16 + m
16− m

)
tan(t)

}
The inner elliptical boundary is stress-free and along the y-axis symmetry boundary conditions are
speci�ed, i.e. u1 = 0; TT = 0. The stresses at any point of the domain are provided in equations
(7) and (8) of Reference 3. This model problem, under the assumption of plane stress, Young’s
modulus 1.0 and Poisson’s ratio 0·3, is used in the following to assess the accuracy of the SEC
method in conjunction with the p-version of the FEM. Table I summarizes the exact stresses at
point A and at point B which is at a distance 0·05 along the x1-axis for several values of m.
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Figure 3. 
R domains used for the SEC method

3.2. Numerical results

In the following, we document a convergence study, in which the stresses are extracted from the
�nite element solution by the SEC and the direct methods as the number of degrees of freedom
(DOF) in the �nite element model is increased. There are two systematic ways for increasing
the number of DOF: the p-version, where the polynomial order over each element is increased
while keeping the mesh �xed, and the traditional h-version, where the mesh is successively re�ned
while keeping the polynomial order �xed (usually p = 1 or p = 2) on each element. Numerical
experiments were performed using the computer code STRESS CHECK ∗ which has h- and p-
extension capabilities. For solving the model problem by the FEM based on the displacements
formulation we used the product space of degree p which spans the set of monomials �i�j; i; j =
0; 1; 2; : : : ; p, on the standard quadrilateral element de�ned by 
(q)st = {�; � | |�|61; |�|61}.
Elements are mapped by the blending function method, therefore the boundaries are represented
exactly in the sti�ness matrix and load vector computations. The load vectors were computed by

∗ STRESS CHECK is Trade Mark of Engineering Software Research and Development, Inc. 7750 Clayton Road, Suite
204, St. Louis, MO 63117, U.S.A.
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Figure 4. Finite element meshes used in conjunction with the p-version of the FEM: (a) Mesh for m=0; (b) Mesh for
m=0·25; (c) Mesh for m=0·5; (d) Mesh for m=0·75; (e)Mesh for m=0·9

evaluating the applied tractions in 14 Gauss points along the loaded edge of each element and
integrated numerically, using double precision operations. The trial functions over each element are
polynomials of degree 16p68, and the integration scheme uses (p+3)(p+3) Gauss integration
points over each quadrilateral.
In this subsection, the convergence of the extracted stresses from p-version FEM solutions is

studied. In order to demonstrate the performance of the SEC method, the stresses are extracted at
the boundary point A, where the stress gradient is the highest, and at an interior point B which is
0·05 away from point A along the x-axis. The extraction subdomains 
R, used for the SEC method
at points A and B are shown in Figure 3. The �nite element meshes used in conjunction with the
p-version of the FEM for obtaining uFE are presented in Figure 4. Numerical experiments per-
formed with both the ‘equilibrated’ and the ‘equilibrated/compatible’ statically admissible spaces
show that there is a negligible di�erence in the results when using the same Airy polynomial
degree. Nevertheless, the ‘equilibrated/compatible’ space has a much smaller number of vectors
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Table II. SEC stresses at point (x; y) = (1 · 8; 0) for m = 0 · 75, R = 0 · 05 using the ‘equilibrated’ and
‘equilibrated /compatible’ spaces

�11 �22 �12

Equil Equil /Comp Equil Equil /Comp Equil Equil /Comp

p = 1 3·9115 3·9143 11·4895 11·4935 −2·472E−14 2·378E−14
p = 2 3·0818 3·0752 11·4165 11·4080 −1·471E−13 −1·558E−14
p = 3 4·1538 4·1529 9·3684 9·3680 3·635E−14 2·266E−14
p = 4 4·8587 4·8619 9·2352 9·2415 −7·608E−14 −1·009E−14
p = 5 5·0254 5·0319 9·4783 9·4903 3·720E−14 2·533E−14
p = 6 5·0004 5·0071 9·4451 9·4581 −1·805E−14 2·263E−14
p = 7 5·0200 5·0263 9·3948 9·4073 −3·813E−14 2·686E−14
p = 8 5·0422 5·0482 9·4098 9·4218 5·831E−15 2.750E−14
Exact 5·047253 9·432508 0·0
Condition number of the matrix [Bc] is 1·304944E+13 for the ‘equilibrated’, and 1·312507E+03 for the ‘equili-
brated /compatible’ space.

fi and the associated [Bc] matrix has a considerably smaller condition number as compared with
the ‘equilibrated’ space for the same Airy polynomial degree, therefore the latter has been used in
our computation. For example, Table II summarizes the stresses obtained at point (x; y) = (1·8; 0)
when using the SEC method with an Airy polynomial degree 8, R=0·05, and the �nite element
solution uFE corresponding to p=1–8, for the ellipse characterized by m=0·75.
In the convergence study conducted herein, the three components of the stress tensor, �11; �22

and �12, are extracted by the SEC and direct methods, and the relative error in percentage is
computed: 100(�FE − �EX)=�EX. Since at point A both �EX11 , and �EX12 are identically zero, and at
point B �EX12 = 0, the relative error of these quantities are not shown. Figures 5 and 6 present the
convergence pattern of the pointwise stresses at the boundary of the domain and in the interior
extracted by the SEC and direct methods as compared to the convergence in energy norm. The
radius of 
R is taken to be R = 0 ·05 when computing stresses at the interior point for all m’s
shown in Figures 5 and 6. On the boundaries, for relatively small stress gradients, m = 0, 0·25 and
0·5, the radius of 
R is chosen to be R = 0·05. As the stress gradient becomes progressively steep,
m = 0·75; 0·9, the integration radius required for high accuracy is reduced for boundary points to
R = 0 ·01. Figure 5 shows that for boundary points, when the solution is relatively smooth, the
convergence rate of the stresses extracted by the SEC method is faster than that of the energy
norm, and much faster when compared with the direct method. For interior points, the SEC method
is superior to the direct method, and the convergence rate, in general, is similar to that of the
energy norm. Figure 6 demonstrates that for boundary points and interior points, when the stress
gradients are steep, the SEC method provides stresses which are considerably more accurate than
those extracted by the direct method, and the convergence rate is faster than that of the energy
norm (at point B for m = 0 ·9, no convergence is visible for directly extracted �11). Neverthe-
less, the lack of monotonicity observed in the convergence of the pointwise stresses is somewhat
disappointing.
The in
uence of the radius R on the accuracy of the results at interior points is negligible. As

an example, we present in Figure 7 the absolute relative error in �11 and �22 for m = 0·0; 0·5 and
0·9 as a function of R at point B, obtained with uFE at p = 8. However, on the boundaries, for
smooth solutions the larger the radius R, the more accurate are the extracted stresses, whereas for
steep stress gradients the e�ect is reversed as shown in Figure 8.
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Figure 5. Stress convergence for the p-version of the FEM, m = 0 − 0 ·5: (a) Point A, m = 0; (b) Point B, m = 0;
(c) Point A, m = 0·25; (d) Point B, m = 0·25; (e) Point A, m = 0·5; (f) Point B, m = 0·5
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Figure 6. Stress convergence for the p-version of the FEM, m = 0·75−0·9: (a) Point A, m = 0·75; (b) Point B, m = 0·75;
(c) Point A, m = 0·9; (d) Point B, m = 0·9

The design of structural components is usually based on yield criterion, such as the von-Mises
yield criterion, in which the equivalent stress in 2-D is given by

�eq =


√
�211 + �

2
22 − �11�22 + 3�212; plane stress

√
(1− �+ �2)(�211 + �222)− (1 + 2�− 2�2)�11�22 + 3�212; plane strain

Although on the free boundary at point A only �22 is non-zero, the direct method stress extraction
will also give a spurious �11 component, which can be quite sizeable, particularly for small number
of DOF, and it will give also a spurious �12 component. When commercial FE codes report
equivalent stresses, these components are automatically included. Depending on the sign of the
spurious �11, the equivalent stress can be signi�cantly smaller of larger than the exact value. For
example, we report in Tables III and IV �11 and �12, respectively, at point A extracted by the
direct and SEC methods for m = 0, 0·5 and 0·9.



1348 Z. YOSIBASH

Figure 7. R in
uence on the stresses at interior point B: (a) m = 0·00; (b) m = 0·5; (c) m = 0·9

Figure 8. R in
uence on the stresses at boundary point A
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Table III. �11 at point A for m = 0, 0·5 and 0·9 extracted by the direct and SEC methods
m = 0 m = 0·5 m = 0·9

Direct SEC Direct SEC Direct SEC

p = 1 0·802387 1·301284 2·00972 2·971605 16·4764 12·79713
p = 2 0·819469 0·719802 2·82166 2·245907 16·0852 4·700866
p = 3 0·446037 0·350214 2·33288 1·460319 16·1784 4·896819
p = 4 0·156702 0·091917 1·90849 1·031658 16·3429 2·571864
p = 5 0·047647 0·020623 1·42392 0·5049507 16·1835 0·301085
p = 6 0·013695 0·004015 0·957308 0·1573321 15·3694 −0·492814
p = 7 0·003675 0·000582 0·570323 0·0108936 13·6486 −0·0753866
p = 8 0·000932 0·000415 0·307443 −0·029379 11·4608 −0·708049

Table IV. �12 at point A for m = 0, 0·5 and 0·9 extracted by the direct and SEC methods
m = 0 m = 0·5 m = 0·9

Direct SEC Direct SEC Direct SEC

p = 1 3·21228E−01 5·6319E−11 0·727171 5·4830E−11 1·49784 2·9637E−10
p = 2 4·97236E−02 6·5213E−11 0·086842 7·6901E−11 −3·84110 3·0195E−10
p = 3 1·22029E−02 6·2844E−11 0·049710 8·0186E−11 −1·26181 4·5912E−10
p = 4 −3·02338E−03 6·7381E−11 0·232570 7·8748E−11 0·97339 4·2007E−10
p = 5 −2·30773E−04 6·0963E−11 0·199452 7·1040E−11 1·84072 3·3601E−10
p = 6 4·43623E−05 5·7203E−11 0·097133 8·7907E−11 1·88657 4·5428E−10
p = 7 1·43041E−06 4·6280E−11 0·019792 1·0113E−10 1·66913 4·9389E−10
p = 8 −3·21847E−07 7·2205E−11 0·011237 8·0254E−11 1·41999 4·6657E−10

As easily observed in Tables III and IV, the SEC method is much less sensitive to steep stress
gradients as compared to the direct method when the spurious stresses are examined.

4. NUMERICAL EXPERIMENTS WITH THE h-VERSION OF THE FEM

In this section, the convergence of the extracted stresses from h-version FEM solutions is studied.
The model problem is the same problem presented in Figure 2. The domain of interest is discretized
by laying an h-version type mesh with bi-quadratic shape functions (p = 2) over each element.
Unlike standard FE commercial codes, the boundaries of the elements that lie on the domain
boundary are represented accurately, namely they are either ellipses or lines, and not piecewise
quadratic. This is achieved by the blending function mapping. A systematic h-extension procedure
is performed, such that each element is divided into four elements in each re�nement cycle. The
meshes used in our computation for the case m = 0 and m = 0·5 have the same number of elements,
and the four levels of h-re�nement used for m = 0 ·5, for example, are shown in Figure 9. For
the case m = 0·9, a �ner set of meshes were used, as shown in Figure 10. As in the previous
section, the pointwise stresses on the boundary at point A, and in the interior, at point B, were
extracted by the SEC and the direct methods. The relative error (%) in the stresses, and the relative
error in energy norm, for m = 0; 0·5 and 0·9 at points A and B are plotted against the number of
DOF on a log–log scale in Figure 11. Figure 11 shows that the stresses extracted by the SEC,
in conjunction with the h-version of the FEM, converge in general monotonically, especially for
boundary points (of course when the energy norm converges as well). For smooth exact solutions,
the SEC outperforms the direct method, and its rate of convergence is similar to that of the energy
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Figure 9. Finite element meshes used in conjunction with the h-version of the FEM, m = 0·5

norm. As the stress gradient becomes steeper the performance of the SEC deteriorates at boundary
points, but improves for interior points (where one of the stress components extracted by the direct
method does not converge).

Remark 5. Comparing the convergence rates of the SEC stresses and the energy norm associated
with the h-version, to that associated with the p-version of the FEM, one may notice the superiority
of the p-version when applied to problems with a regular exact solution. This is especially visible
for m = 0 and m = 0·5 (notice that h-extensions are performed with a larger number of degrees of
freedom than p-extensions). For m = 0·9 the pointwise stresses at point A extracted in conjunction
with the p-version are more accurate compared to the ones extracted from h-version FEM (this is
not so for point B).

5. SUMMARY AND CONCLUSIONS

A new extraction method for computing pointwise stresses from �nite element solutions is pre-
sented for two-dimensional linear elasticity. The method, denoted by SEC, is based on the principle
of complementary energy applied over a circular-type subdomain in the post-processing phase. It
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Figure 10. Finite element meshes used in conjunction with the h-version of the FEM, m = 0·9

is applicable to both interior points and boundary points with any speci�ed boundary conditions, as
well as to points where the exact solution is singular,11; 12 and to nearly incompressible materials.1

Once the location of high stress gradients is determined by standard direct methods, the SEC
method could be employed to extract accurately pointwise stresses and to serve as a quantitative
measure for the necessity of adaptive procedures.
The numerical performance of the SEC method has been documented based on a set of bench-

mark problems (for which the exact solutions are known), characterized by a varying degree of
smoothness. Numerical results indicate that the gain in accuracy through the SEC method is sig-
ni�cant and cost e�ective. The SEC method is also e�cient in terms of CPU time, which requires
about 3–4 s on an Indigo2 200MHz SGI for obtaining the three stress components extracted from
eight FE solutions. When stress components are zero at boundaries, or at symmetry/antisymmetry
points, they are correctly computed by the SEC method unlike direct methods which usually report
spurious stresses.
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Figure 11. Stress convergence for the h-version of the FEM: (a) Point A, m = 0; (b) Point B, m = 0; (c) Point A, m = 0·5;
(d) Point B, m = 0·5; (e) Point A, m = 0·9; (f) Point B, m = 0·9
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It is shown that the relative error in the stresses extracted from �nite element solutions based on
the p-version of the FEM converge in general as fast as the relative error in energy norm or faster
(although not monotonically). Numerical experiments indicate that the radius of the circular-type
subdomain employed for the extraction should be small for steep stress gradients and large for
smooth solutions. Stresses extracted by the SEC method from h-version FE solutions converge as
fast as the energy norm, or faster, at interior points for all the stress gradients tested. At boundary
points, however, the accuracy deteriorates as the stress gradients become steeper.
From the user’s point of view the SEC method is simple to use and is general. One has to

specify only two parameters: the point of interest within the domain and the radius of integration
(the value of N is to be determined adaptively such that the results become virtually unchanged
as N is increased). If the point of interest is on the boundary or in its neighbourhood, the SEC
is applied automatically on half of a circle, otherwise the subdomain of integration is the whole
circle. This method can be used easily with any �nite element analysis program.
Based on the documented results, further investigation is under consideration: The application

of the SEC method goes beyond pointwise stress extraction, and attention will be focused on error
estimation in adaptive analysis by examining the di�erence in stresses computed by the direct and
the SEC methods. At boundary points, a restriction can be imposed on the system of equations,
restricting degrees of freedom corresponding to stress components which are known (boundary
conditions), therefore improving the accuracy of the extracted stresses.
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APPENDIX I

The statically admissible space

Herein we provide an example of the statically admissible shape functions for the ‘equilibrated’
and the ‘equilibrated/compatible’ spaces.

Table V. The equilibrated statically admissible space

i (f11)i (f22)i (f12)i

1 0 0 1
2 0 1 0
3 0 � −�
4 3�2 3�2 −6��
5 � 0 −�
6 1 0 0
7 0 � 0
8 0 10�� −5�2
9 �(5�2 − 3) �(15�2 − 5) �(3− 15�2)
10 ��(10�2 − 6) ��(10�2 − 6) −(15�2�2 − 3�2 − 3�2)
11 �(15�2 − 5) �(5�2 − 3) �(3− 15�2)
12 10�� 0 −5�2
13 � 0 0
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Table VI. The equilibrated /compatible statically admissible space

i (f11)i (f22)i (f12)i

1 1 1 0
2 −1 1 0
3 0 0 1
4 � 3� −�
5 −3� −� �
6 −3� 3� 3�
7 3� 3� 3�
8 −6�2 6�2 0
9 −6�� −6�� 3(�2 + �2)
10 6(�2 − �2) −6(�2 − �2) 12��
11 12�� −12�� 6(�2 − �2)
12 −2�3 − 18��2 10�3 − 6��2 6(�2�+ �3)
13 10�3 − 6�2� −2�3 − 18�2� 6(��2 + �3)
14 30��2 − 10�3 −30��2 − 10�3 −10�3 + 30�2�
15 −10�3 + 30�2� 10�3 + 30�2� 10�3 − 30��2
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