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Abstract. Computation of eigen-pairs characterizing thelinear el astostatic sol ution in three-dimensional anisotrop-
ic domainsin the vicinity of edge singularitiesis addressed. The singularities may be caused by re-entrant corners,
abrupt changes in boundary conditions or material properties. Edge singularities in three-dimensional domains
are of great interest from the point of view of failure initiation: The eigen-pairs characterize the straining modes
and their amplitudes quantify the amount of energy residing in particular straining modes. For this reason, failure
theories directly or indirectly involve the eigen-pairs and their amplitudes.

Herein we address the problem of determining the edge eigen-pairs numerically on the basis of the modified
Steklov formulation in conjunction with the p-version of the finite element method. The method is very accurate,
efficient and robust, and provides complex eigen-pairs if they exist. Severa practica problems are studied, and
examples are presented for cases including multi-material inclusion problems, cracks in dissimilar materials, and
multi-material interfaces at free and clamped edges.

Key words: Singularities, Finite Element Methods, Steklov method, multi-material interfaces, p-version, delami-
nation, three-dimensional elasticity, fracture-mechanics.

1. Introduction

This paper addresses the mechanical response of linearly elastic three-dimensional domains,
subject to small displacements, in the vicinity of edges. Edges are curves created by the
intersection of surface boundaries of a three-dimensional domain, and in their neighborhood
the stress tensor exhibits singular behavior, i.e. tends to infinity as the distance from the edge
tends to zero.

Dueto the complex trestment of three-dimensional edge singularities, most of the research
on singular stress fields has focused on two-dimensional domains under the assumption of
plane-stress or plane-strain. The reader is referred to the list of publications (Barsoum, 1988
to Costabel and Dauge, 1995; Dempsey and Sinclair, 1979; Gu and Belytschko, 1994 to
Papadakis and Babuska, 1995; Ting, 1986; Williams, 1952; Ying, 1986 and Yosibash and
Szab0, 1995) (not exhaustive by any means), and the references therein which address the
analytical aswell as numerical computation of eigen-pairsin two-dimensions.

Renewed interest in the solution of the three-dimensional linear elastic problems at edges
occurred duetoincreasinginterest in anisotropic laminated compositesand el ectronic devices.
Thedisplacement sol ution (associated with the singul ar stresstensor) isuniquely characterized
by a sequence of discrete eigen-pairs and their coefficients (in the neighborhood of edges).
These are of great interest in structural mechanics because they provide a basis for predicting
failure eventsin the vicinity of edges.

It is assumed that the edge of interest lays along a straight edge coinciding with the =
Cartesian axis, with the geometry and material propertiesindependent of it. Let us denote the
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three displacement fields u o (ug, uy, uz)T. In SOMe cases, for instanceisotropic domains as
well as some special orthotropic domains (if in each sub-domain the orthotropy axis coincides
with the z-axis), the problem for v, is uncoupled with the problem for u,,u,. The two
displacements u,, u, satisfy the genuine two dimensional elasticity problem, and u, is a
solution of an elliptic equation. However, for anisotropic domains, the problem of computing
the edge eigen-pairsis fully coupled.

Three-dimensional edge singularities have been lessinvestigated, especially when associ-
ated with anisotropic materials and multi-material interfaces. Analytical methods asin (Ting
and Chou, 1981; Wang and Choi, 1982) provide the meansfor computing the eigen-pairsfor a
two-material interface however requires extensive mathematics. Several numerical methods,
mainly based on the h-version of thefinite element method have been suggested lately. Among
them (Leguillon and Sanchez-Palencia, 1987), where a determinant method is devel oped for
the computation of the eigen-pairs, (Gu and Belytschko, 1994) in which an excellent reference
list to the subject is provided, and (Pageau and Biggers, 1996). These methods provide good
results, and the eigen-pairs are obtained by solving a quadratic eigen-problem. An inherent
difficulty associated with k- version FE methods is the fact that an adaptive scheme for assur-
ing the convergence of the computed values is not always available. The applicability of the
above methods is not demonstrated for displacements homogeneous boundary conditions,
and it is felt that they fail to indicate these cases which give rise to power-logarithmic stress
singularities.

Herein, a short description of new procedures for computing the edge eigen-pairs, limited
to the most essential features are briefly outline in Section 2, whereas the full details are
provided in (Yosibash, 1997b). In Section 3 numerical examples are provided.

New results on the performance of the numerical algorithms applied to problems at multi-
material internal interfaces, and fixed-free edges are reported herein for the first time. These
include edge crack singularities at a bi-material anisotropic interface, free edge effectsin a
two cross-ply anisotropic laminate, amulti-material internal interface, and composite patches
bonded to ametallic structure. The obtained eigen-pairsare compared to the exact valueswhen
available, demonstrating the efficiency, accuracy and robustness of the method. We conclude
with conclusionsin Section 4.

2. Formulating the eigen-praoblem

The elastostatic displacements field in three-dimensions, in the vicinity of an edge (which
is sufficiently away from a vertex) can be decomposed in terms of edge eigen-pairs and
edge stress intensity functions (ESIFs). Mathematical details on the decomposition can be
found e.g. in (Dauge, 1988; Andersson et al., 1995; Grisvard, 1992) and the references
therein. A representative three-dimensional domain denoted by €2, which containstypical 3-D
singularities is shown in Figure 1. Edge singularities arise in the neighborhood of the edges
A;; and these will be addressed in the following. It shall be assumed that curved edges which
intersect at vertices do not exist, and that the crack faces, if any, lay in aflat plane.

In the neighborhood of an edge, we create a cylindrical domain of radius r = R having
the edge A;; as its axis, see Figure 2. The displacements in the edge neighborhood can be
decomposed as follows

(r,0,z) ZZak )r®(Inr)*f (0) +w(r, 0, z), (1)

k=1s=0
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Figure 1. Typical 3-D singularities.

Figure 2. The edge neighborhood.

where S > Oisan integer which is zero for most practical problems, except for special cases,
ak+1 > oy are called edge eigen-values, ays(z) are analytic in z called edge stress intensity
functions (ESIFs), and can become very large as they approach one of the vertices, and f,, (¢)
areanalyticin 6, called edge eigen-functions. The vector function w(r, 6, z) belongsto [H?]?
(H denotes the usual Sobolev space in one-dimension). We shall address herein only these
caseswhere S = O, therefore, (1) becomes

K
(r,0,2) Z rf.(0) +w(r, 0, z). 2

U = (ug uy u,)? isthe displacementsvector, with u, (r, 6, 2), uy, (r, 0, 2) and u, (r, 0, z) being
its components in the z,y and z directions respectively. We denote the tractions on the

boundariesby T = (T}, T, T>,)" . In the vicinity of the edge we assume that no body forcesare
present.
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Figure 3. The modified Steklov domain Q7.

A two-dimensional sub-domain isconstructed whichisin aplane perpendicular to the edge
(z-axis) and bounded by the radii = R* and = R. Thisdomain, denoted by (27, is shown
in Figure 3.

On the boundaries# = 0 and 6 = w;; of the sub-domain €27, either homogeneous traction
boundary conditions (T = 0), or homogeneous displacements boundary conditions, or a
combination of these are prescribed.

Inview of (2), uin Qg- (respectively v) has the functional representation

f2(0)
u® A=) £,00) b = A)rt0), vE B(2)ref(6). ©
f2(0)

We aso denote the in-plane variation of the displacements as follows

(r,0) ®u/A(z) W(r,0) € v/B(2). )

Following the steps presented in detail in (Yosibash, 1997), an eigen-problem is cast in a
weak form which is an integral equation over a two dimensional domain involving the three
displacement fields. This weak formulation is called the weak Modified Seklov form

Seek o € C,0 £ 01 € [HY(5,)]}, suchthat, Wve [HL(Q5))°
B(,V) — [Nr(0,%) — Ng- (0,%)] = a[Mp(0,V) — Mg (@, )]

2}, is the two dimensional domain which is the flat surface bounded by 0 < 6§ < w1 and
R* < r < RasshowninFigure 3, and

B(G,v E/*/WK [A9]8‘9> } [E]{([A 10, + [A9]80> }rdedr ©)

do (7)
r=R

®)

Na(G,7) /0 AT B[ Ag) 9y
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_ oo def [Y12 ~T T ~
M (G, 7) € / A TE A0 do. ©)
0
r=R
where,
[ cosé 0 0 T [—sing 0 0 ]
0 sing 0 0 cosé 0
0 0 0 0 0 0
def def
[A] = | . [Ag] = : )
snf  cosf 0 coso —sné 0
0 0 sind 0 0 cosé
0 0 cos? | .0 0 —sinf |

and [E] isthe 6 x 6 symmetric material matrix connection the strain vector £ = (e, &, €, Yy
f)’yz 'sz)T to the stress vector o = (Ux Oy Oz Tyy Tyz Ta:z)T.

REMARK 1. Although the test and trial functions have three components, the domain over
which the weak eigen-formulation is defined is two-dimensional, and excludes any singular
points. Therefore the application of the p-version of the FEM for solving (5) is expected to be
very efficient.

REMARK 2. The bilinear forms Nz and Nz« are non-symmetric with respect to G and v,
thus is not self-adjoint. As a consequence, the ‘minimax principle’ does not hold, and any
approximation of the eigenvalues (obtained using a finite dimension supspace of [H(Q%)]3)
cannot be considered as an upper bound of the exact ones and the monotonic behavior of
theerror islost as well. Never-the-less, convergenceis assured (with a very high rate as will
be shown by the numerical examples) under a general proof provided in (Babuska and Aziz,
1972).

REMARK 3. Note that in (5) we do not limit the domain €27, to be isotropic, and in fact (5)
can be applied to multi-material anisotropic interface, aswill be demonstrated by numerical
examples.

REMARK 4. When homogeneous displacement boundary conditions are applied, one has to
restrict the spaces to [H3(22%)]3, or a variation of it, so as to apply the essential boundary
condition restrictions on the spacesin which G and v lay.

2.1. NUMERICAL TREATMENT BY THE FINITE ELEMENT METHOD

In the following, the weak eigen-formulation (5) is discretised by considering afinite dimen-
sional sub-space of [H1(Q%)]3, employing the p-version of the finite element method.
Assume that the domain Q7 consists of three different materials as shown in Figure 4.
We divided 27, into, let’s say 3 finite elements, through a meshing process. L et us consider a
typical element, element number 1, shown in Figure 4, bounded by 61 < 0 < 6». A standard
element in the £, n plane such that —1 < £ < 1,—-1 < n < 1isconsidered, over which the
polynomial basisand trial functions are defined. These standard elements are then mapped by
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Figure 4. A typica finite element in the domain Q7.

appropriate mapping functions onto the ‘real’ elements (for details see (Szabd and Babuska,
1991), Chapter 5-6). The functions 4, u,, @, are expressed in terms of the basis functions
®,(¢,n) inthe standard plane

g (&,m) = L1 ai®i(€,n)
ﬂy (57 77) = Zi\;l aN+i®i (57 77) ) (10)
ﬂw (57 77) = sz\;l a2N+i©i(€7 77)

or
& ...dy 0..0 0..0 ay
i=|0...0 & ..%y O0..0 V¥ (9)a, (11)
0 0 0 0 @1 ...0x] | agy

where a; are the amplitudes of the basis functions (sometimes called the ‘ nodal values'), and

®; are products of integrals of Legendre polynomialsin & and 7. G and v lay in the same space
therefore, we define similarly v % [@]b.
The unconstrained stiffness matrix corresponding to 5(U, v) on thetypical element isgiven

by

% [ [ (1o + 102 w1} ] (100 + 1402 ) 01} r e 22

r
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By defining the following matrices

[—P[sinf ... —P} sinf 0 0 0 0 ]
0 0 Pjcos® ... Py cost 0 0
op] 0 0 0 0 0 0
Pjcosf ... Pycos§ —Pjsing ... —Pysing 0 0
0 0 0 0 Pjcos® ... Py cosd
0 ... 0 o ... 0 —Pjsing ... —P}, sind |
[ Pycosf ... Py cosf o ... 0 o ... 0 ]
0 0 Pysingd ... Pysiné 0 0
[P]d:ef o ... 0 o ... 0 o ... 0
Pising ... Pysing Pycosf ... Pycos§ 0 ... O ’
0 0 0 0 Pysinf ... Pysing
. 0 .. 0 o ... 0 Pycosf ... Py cost |

where P;(¢) for ¢ > 3areintegrals of Legendre polynomials,and P1(£) = (1—-€)/2, P2(€) =
(1+¢)/2 (seefor details (Szabd and Babuska, 1991), Chapter 3-6), we obtain the expression
for Nz (0, V)

1.
Na(@,9) = b" ( | [PriElor

d§) a® p'[Ngla (13)
n=-—1

The entries of [Ny] are computed using Gauss quadrature.
Similarly, the expression M g (U, V) is evaluated by

a0 =t (252 [ ot

-1

dg) a® b’ [Mgla (14)
n=-1

The matrices [Ng-] and [M -] have same values as those of [Nr] and [Mg], but of opposite
sign. This is because the shape functions on the artificial boundariesI'3 and I'4 are the same
(except for some sign changes), and so is the mapping to the standard plane. Denoting the
set of amplitudes of the basis functions associated with the artificial boundary I'3 by ag, and
those associated with the artificial boundary T'4 by ag-, the eigen-pairs can be obtained by
solving the generalized matrix eigen-problem

[K]a— ([NR]aR — [NR*]aR*) = a([MR]aR — [MR*]aR*). (15)

Augmenting the coefficients of the basis functions associated with I'3 with those associated
with I'4, and denoting them by the vector ag i+, (15) becomes

[K]a— [Ngr:]arr = a[Mpr+]agr-- (16)

We assembl e the left hand part of (16). The vector which represents the total number of
nodal values in 23, may be divided into two vectors such that one contains the coefficients
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arg-, and the other contains the remaining coefficients: a’’ = {al, .., al, }. By partitioning
[K], we can write the eigen-problem (16) in the form

[K] — [Nrr-] [KRR*m]] { arg- } . [[MRR*] [O]] {aRR* } an
[Kin—Rrr+] [Kin] am | O] O] am |

Therelation in (17) can be used to eliminate a;,, by static condensation, thus obtaining the
reduced eigen-problem

[Ks]arr- = a[MRrg-]agr-, (18)
where
[Ks] = ([K] — [Nrr+)) = [Krre—in)[Kin) [Kin—rr-]-

It is possible to eliminate the unknowns a;,, from the matrix [K], because the relevant
equations do not involve the as yet unknown eigenvalues .

For the solution of the eigen-problem (18), it isimportant to note that [Ks] is, in general,
afull matrix. However, since the order of the matricesis relatively small, the solution (using
Cholesky factorization to compute [K;,,] 1) is not expensive. The implementation issues for
solving the generalized eigenvalue problem can be found in the LAPACK documentation
(Anderson et a., 1994).

REMARK 5. There is the possibility that » multiple eigenvalues exist with less than m
corresponding eigenvectors (the algebraic multiplicity is higher than the geometric multi-
plicity). This is associated with the special cases when the asymptotic expansion contains
power-logarithmic terms, and this behavior triggers the existence of In(r) terms.

REMARK 6. Although we derived our matrices as if only one finite element exists along the
boundary I"3 and I' 4, the for mulation for multiple finite elementsisidentical, and the matrices
[K],[Ng] and [M] are obtained by an assembly procedure.

REMARK 7. In case of periodic boundary conditions, i.e. multi-material internal interfaces,
thematrices[K], [Nrr+] and [M g+ | are constrained according to ((Leguillon and Sanchez-
Palencia, 1987), p. 73).

Homogeneous di splacements boundary conditions are applied by modifying the generated
matrices. Thisis done by setting to zero only those rows and columns which correspond to
the ‘nodal variables' of the boundary conditions and then assigning the value of —1 to the
relevant diagonal elements. This generates artificial eigen-values —1 with amultiplicity equal
to the number of modified rows, however, negative integer eigen-values are not of interest in
any case. Asaresult of the treatment, the order of the eigen-value problem to be solved is not
reduced.

3. Numerical investigation

The modified Steklov weak-formulation is used in the following subsections for the investi-
gation of the eigen-pairs occurring in several practical problems. Five different test cases are
addressed:



Computing edge singularitiesin elastic anisotropic 229
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Figure 5. Plane crack at abi-materia interface.

(a) First, we consider a plane crack at the interface of a bi-material interface, for which
analytical eigen-valuesexist, thus we may demonstrate the accuracy and efficiency of the
method.

(b) Free edge effectsin atwo cross-ply anisotropic laminate are addressed, for which analyt-
ical eigen-values exist.

(c) Ananisotropic multi-material internal interface.
(d) A composite patch terminating at different angles attached to a metallic structure.

(e) A composite patch attached to a metallic structure constrained against movement in the
vertical direction.

In all example problemsweuse R = 1 and R* = 0.99 (R* has virtually no influence on
the accuracy of the obtained eigen-pairs, and as R* — 1 the accuracy of the results slightly
improves, see (Yosibash, 1997b)). Over each element in the used meshes the polynomial
degree of the shape functions has been increased from 1 to 8.

3.1. PLANE CRACK AT A BI-MATERIAL INTERFACE

Consider a bi-material interface which is composed of two homogeneous materials, with
continuity of tractions and displacements across interface maintained. The two materials are
isotropic, both having Poisson ratio 0.3, the upper material having £ = 10 and the lower
E =1 (F representsthe Young modulus). We are interested in plane cracks at the interface of
the two materials as shownin Figure 5. Thisexample problem has been chosen to demonstrate
the method’s performance for cases where complex eigen-pairs arise. The exact first three
eigen-pairs for this example problem are a1 » = 0.5 £ 40.07581177769 and a3 = 0.5. In
linear elastic fracture mechanics terminology a1 and ap are associated with deformation in
thex — y plane (where mode | and mode 1 are coupled in this case), and a3 isthe out-of-plane
mode.

Thefour-element mesh shown in Figure 6 has been used for the computations. Therelative
error (%) in the first two eigen-valuesis split in two: one defining the relative error in the real
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Figure 7. Cross-ply anisotropic laminate.

part and being denoted by ex., , and the other defining the relative error in the imaginary part

€Fa1

al't — Rag

FE _
69*&1,2(%) = 1009‘{ lmal , u

e3&1,2((%)) =100 a1

(19)

We summarize the number of degrees of freedom, the CPU elapsed time! and the relative
error (%) in the first 3 eigenvaluesin Table 1. The results in Table 1 show that the method
provides excellent results for complex eigen-pairs.

3.2. TWO CROSS-PLY ANISOTROPIC LAMINATE

We study edge singularities associated with a two cross-ply anisotropic laminate. Consider
a composite laminate with ply properties typical of a high-modulus graphite-epoxy system,
as shown in Figure 7. The orientation of fibers differs from layer to layer. Referring to the
principle direction of the fibers, we define

E;, = 1.38 x 10°MPa(20 x 10°psi) Ep = E, = 1.45 x 10*MPa(2.1 x 10° psi)

1 Computations performed on a SGI Indigo? machine, with a R4400 200 Mhz processor, Specfp92 = 131.
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Gor=G,. =G, =0586 x 10'MPa(0.85 x 10°psi) v, = v, = vy, = 0.2,
where the subscripts L, T, z refer to fiber, transverse and thickness directions of an individual
ply, respectively. The material matrix [E] for aply with fibers orientation rotated by an angle
[ about the y-axis is given by

[£] = [T(B)]" [Eo][T(B)],

where,
52 0 Iz 0 0 cs
0 1 0 0 0 0
2 2
c 0 s 0 0 —c'S
T = ,
7B 0 0 0 s c 0
0 0 0 —c s 0
—2c¢s 0 2cs 0 Pr—
cZoos(p), sEsin@),
(1—vr.v.r)Er (vir +ve:v.r)Er (Vo +v.rvrL)EL 0 0 0
(1-vr.ven)EBr (Ver +virver)Er O 0 0
(1— VLTI/TL)EZ 0 0 0
J— GT;
(o) = V = o o |, @0
GLz
v 0
Grr
1%
def _
V= (1 — VprVrp — VpV,pr — ViV, — 2VLTVTZV;L) 17
E, E, E,
Vpp = Vpgp—— Vop = Vp,— V., =V, —.
TL LT B, T T= B, =L L= E,

Wefirst investigate the eigen-pairsassoci ated with the singul arities near thejunction of thefree
edge and the interface, edge A in Figure 7, for acommonly used [+(] angle-ply composite.
Of course, the eigen-pairs depend on 3 and we chose 3 = 45° for which thefirst 12 exact non-
integer eigen-pairs are reported in (Wang and Choi, 1981) with 8 decimal significant digits:
ay = 0.974424342, op 3 = 1.88147184 £ i0.23400497, s 5 = 2.51152634¢0.79281732. ..

The two-element mesh shown in Figure 8 is used in our computation. We summarize the
relative error (%) in the first 5 non-integer eigenvalues, the number of degrees of freedom
before performing static condensation, and the CPU elapsed time required for the computation
in Table 2. The rate of convergence of the eigen-values (reported in Table 2) is clearly visible
when plotted on alog-log scale as shown in Figure 9. Again one obtains a rapid convergence
rate. The three-dimensional eigen-function vector (displacement fields) associated with a;
obtained at p = 8isillustrated in Figure 10.
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Figure 8. Finite element mesh used for the cross-ply anisotropic laminate.
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Figure 9. Convergence of approximated eigen-values for the cross-ply anisotropic laminate.

The variation of the eigen-values for different [+/] cross-ply laminate is investigated in
the following. We use the same mesh presented in Figure 8, with different material properties
which reflect a laminate with fibers rotated at an angle = about the y-axis. The obtained
eigen-valuesreported in Table 3 are accurate up to the 5 decimal digit shown. Thisaccuracy is
guaranteed because these digits have not been changed while increasing the polynomial level
over the finite element mesh.

Table 3. Eigenvaluesfor different [+3] fiber orientation cross-ply laminate.

[+4] 15° 30° 45° 60° 75°

a1 0.99936 0.98834 0.97442 0.97665 0.99105
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Figure 10. Eigen-functions associated with a1 for the cross-ply anisotropic laminate.

Delamination: Once a crack starts propagating between two lamina, the behavior of the
singular stress tensor changes dramatically, and the eigen-pairs are different. We consider a
plane-crack with atip at the edge denoted by edge B in Figure 7. Again we consider a [+45°]
cross-ply laminate, and use afour-element mesh (as the onein Figure 6) for the computations.
The first three eigen-values and the number of DOFs at each p-level are summarized in
Table 4. Observing the obtained results we may conclude with a high degree of confidence
that 1 » = 0.500000 £ 0.0343 and a3 = 0.50000.

3.3. ANISOTROPIC MULTI-MATERIAL INTERNAL INTERFACE

Figure 11 depicts a three material internal interface. Each of the three materials, denoted by
[, Il and 111 is the same fiber/resin composite. Compoasite's properties, when referring to the
principle direction of the fibers, are

Ei=F3=0105F, =10 G = Gi3 = Gps = 0.0425,
vip = 0.02205, 113 =021, 193 =0.21,

where the subscripts 1, 2, 3 refer to fiber, transverse and thickness directions of an individual
composite, respectively. The material matrix [E] for a ply with fibers orientation rotated by
an angle 6; about the z-axisis given by

[E] = [T(6:))" [Eol[T(6:)],
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Figure 11. Anisotropic multi-material internal interface problem.

where in this case,

1 0 0O O 0 0
0 2 2 0 cs 0
(0] = 0 s? ? 0 —cs 0 ,
0 0 0 ¢ 0 -8
0 —2¢s cs A —s? 0
0 0 0 s 0 c
c®cos(0;), s sin;)

and [Ep] isgivenin (20). Thefiber orientation of the three materials differ from each other, and
are measured from the y-axisin they — z plane by the angles 6,, 6,, and 6, for the materias
[, I and I11, respectively.

This example problem is provided to show the ease with which the method can be used for
complicated material arrangements, to demonstrate computation of eigen-pairsfor an internal
interface edge, and because numerical results are available in (Pageau and Biggers, 1996).
For the case of §, = —0,, = —45°, and 6;, = 0°, we compute thefirst three eigen-pairs using
the finite element mesh shown in Figure 12. Table 5 summarizes the first three eigen-values
obtained while increasing the polynomial level over the elementsfrom 2 to 8, and the relative
error in percents between two consecutive eigen-values (computed at p and p + 1 polynomial
levels). We may conclude with high confidence that the first three eigen-values, accurate
within 6 significant figures are

a1 = 0917456 «p = 0.981241 a3 = 1.000000.
These values correspond well with the values a3 = 0.915760 and «a, = 0.980782 report-

ed in (Pageau and Biggers, 1996) which are quoted to be accurate to within 0.5%. The
three-dimensional eigen-function vector (displacement fields) associated with oy = 0.917456
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Figure 12. Finite element mesh used for the anisotropic multi-material internal interface.

obtained at p = 8isillustrated in Figure 13. The eigen-function vector reported in Figure 14
in (Pageau and Biggers, 1996) is expressed in a polar co-ordinate system, and after transfor-
mation to the Cartezian co-ordinate system is very similar to the one presented in Figure 13.
Since the exact eigen-functions are not available, one may question on the correctness of
the reported eigen-function vector. To address this question an adaptive process has been
adopted, and the residual has been computed. Namely, the eigen-stress tensor computed from
the eigen-pairs has been substituted in the three first-order partial differential equations of
equilibrium. Were the eigen-stress tensor exact, its substitution in the equilibrium equations
would have satisfied the equations identically. However, because of the numerical errors, a
residual is obtained, which converges to zero as the p-level is increased (a manuscript with
detailed discussion and examples on a-posteriori error estimates for eigen-pairs computed
numerically will be published in the future). At p = 8 the residual obtained for thefirst eigen-
pair islessthan 10~° for al three equilibrium equations, for any angle, and at most anglesis
10-8. This a-posteriori estimation increases the confidence in the results.

Weinvestigate thefirst three eigen-valueswhen keeping 6, = —6,;, = —45°, and changing
0, from O to 90 degrees. The third eigen-value («3) is 1.0 for al 6, so we summarize
in Table 6 the first two eigen-values as 6, changes. The behavior of the first two eigen-
values, as a function of the angle 6, is best illustrated in the graph presented in Figure 14.
This demonstrates that when 6, = —6;, = —45°, and 6, ~ 45°, complex eigen-pairs are
obtained, and the stress-tensor has* oscillatory singularity’. However, the strongest singul arity
isobtained at 6, = 0.

3.4. COMPOSITE PATCH ATTACHED TO A METALLIC STRUCTURE

In recent yearslaminated composite patcheshave been used for therepair of aging aircraft with
fatigue cracks. These patches are usually bonded to metallic structures and typically terminate
at an angle v as illustrated in Figure 15. We assume that the adhesive layer between the
composite patch and the metallic structure has zero thickness, so that the compositeisin full
contact with the metal. Herein we investigate the edge singul arities along the composite patch
edge at the intersection of face A and B. The composite is taken to be the graphite-epoxy
lamina with material properties as given in subsection 3.2, with fibers orientation rotated
by an angle 8 about the y-axis. The metallic structure is AL7075-T6 with Young modulus
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Figure 13. Eigen-function vector associated with «1 for the anisotropic multi-material internal interface.

Table 6. First two eigen-values for an
anisotropic multi-material internal inter-
face, 6 = —6 = —450, while 6, = 0° to
90°.
Ou [e %1 a2
0° 0.91745669  0.98124118
10° 0.92115292  0.97998158
20° 0.93066075  0.97609411
30° 0.94231127  0.96948293
40° 0.95296001  0.96041106
41.5° 0.95471248  0.95856376
43° 0.95655454 + 0.00173538
45° 0.95639415 + 0.00268324
47° 0.95618821 + :0.00260695
48.5° 0.95601132 =+ 0.00202495
50° 0.95545474  0.95618789
60° 0.94876581  0.96048084
70° 0.95000906  0.95885802
80° 0.95337122  0.95759159
90° 0.94909612  0.96356568

E = 7.17 x 10*MPa(10.5 x 10%psi), and v = 0.3. The finite element mesh contains six
elements, with two elements representing the composite and four elements representing the
metal.

Wefirst investigate the eigen-pairs obtained with fiber orientation 5 = 45° while changing
the terminating angley from 20° to 90°. Thefirst two eigen-valuesare summarized in Table 7,
with a3 being 1.0. It isinteresting to remark that if the patch would have been made of AL 7075-
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Figure 14. Vaeriation of eigen-values as 6, changes for an anisotropic multi-material internal interface, 6, =
—9||| = —45°,

Figure 15. Composite patch attached to a metallic structure.

T6, and v = 90°, the first three eigen-values would be «; = 0.54448373, ai; = 0.66666667
and a3 = 0.90852919, which giverise to a‘stronger’ edge singularity.

We next investigate the influence of the fiber orientation, the angle 3, on the eigen-values,
while keeping v = 90°, and summarize in Table 8 the first three eigen-values. To visualize
the influence of both the fiber orientation angle 3, and the termination angle () on the
eigen-values, we present in Figure 16 two 3-D plots. These plots enable the visualization
of the optimal combination of angles 5 and -y to produce the highest first two eigen-values.
Equivalently, given the fiber orientation angle 3, one may determine the terminating angle
v SO as to obtain the maximum first eigen-value. For this example problem these angles
may be easily realized intuitively without such 3-D plots, however, for complicated material
combinations and geometries the intuitive answers may not be trivial. It is also interesting to
remark that the third eigen-valueis 1.0 for most angles 20° < v < 90°, except at v =~ 90° (as
seenin Table 8).
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Table 7. First two eigen-values for the
composite patch, 3 = 45°, attached to a
metallic structure, while v = 20° to 90°.

v a1 a2

20° 0.82836708 0.96616009
30° 0.78665173 0.94669953
40° 0.75869470 0.92347722
50° 0.73757931 0.89475984
60° 0.71958205 0.85975886
70° 0.70233672 0.82065223
80° 0.68411600 0.78274434
90° 0.66418434 0.75085365

Table 8. First three eigen-values for the composite patch,
~ = 90°, attached to a metallic structure, while 3 = 0° to
0°.

ﬁ (o5} a2 [e%]

0° 0.63637988 0.80945736 0.95767412
10° 0.63766263 0.80302942 0.96071226
20° 0.64161807 0.78792249 0.96721225
30° 0.64846848 0.77096564 0.97363849
40° 0.65829079 0.75641055 0.97871748
45° 0.66418434 0.75085365 0.98071187
50° 0.67048739 0.74692325 0.98236759
60° 0.68248688 0.74642680 0.98475523
70° 0.68962767 0.76087624 0.98607408
80° 0.69167996 0.78946576 0.98656827
920° 0.69201351 0.80945736 0.98661486

4
©

@
E]
g
50
2
g

Second E-value
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o

Figure 16. First two eigen-values as a function of the fiber orientation angle (3), and terminating angle v for the
composite patch attached to a metallic structure.
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Figure 17. Composite patch attached to a metallic structure, constrained against vertical movement.

3.5. COMPOSITE PATCH ATTACHED TO A METALLIC STRUCTURE CONSTRAINED AGAINST
MOVEMENT

We consider herein a similar composite patch attached to a metallic structure, only that the
metallic structureis constrained against movement in the vertical directionimmediately where
the patch ends. Referring to Figure 17, we assume that face A of the patch is traction free,
while face B (which belongs to the metallic structure) is constrained: v, = 0, but 7,, = 0
and T, = 0. This situation is a typical representation of a patched aluminum plate in the
vicinity of a titanium beam (as the wing skin in an aircraft between two main beams). A
five element-mesh is used, having two elements representing the composite patch and three
elements representing the AL7075-T6 metallic structure. The p-level over the elements is
increased from 1 to 8, observing an excellent convergence of the eigen-values. Thefirst three
eigen-values at p-level = 8, for fiber orientation angles 5 from 0° to 90° are plotted in
Figure 18. It isinteresting to observe that the first eigen-valueis almost independent of 3, and
issmaller than 0.5 (first eigen-value corresponding to a crack tip); thus, the singularity of this
configuration is more severe than a crack tip. Also, were the patch made of the same material
asthe metallic structure (AL 7075-T6), thefirst eigen-value would have been % giving riseto
amore severe singularity.

4, Conclusions

A numerical method for reliable computation of three-dimensiona edge eigen-pairsin aniso-
tropic domains, based on the modified Steklov formulation and the p-version of the FEM,
has been described. The method is very general in that it is applicable to many kinds of edge
singularities, and it has been demonstrated on several problems including reentrant-corners,
abrupt changesin material propertiesor boundary conditions, and internal material interfaces.
Although some of the example problems have been treated in the past (and have been used for
comparison purposes), many new results are presented as well. The numerical experiments
indicate that the computed values converge strongly, are accurate and inexpensive from the
points of view of human time needed for input data preparation, and required CPU time.

Power-logarithmic stress singularities could be detected by monitoring the two computed
distinct but adjacent eigenval uesand their corresponding eigen-functions. Whenthese collapse
into one as the number of degrees of freedom is increased, thisindicates the presence of these
kind of singularities. This has been demonstrated in a2-D setting in (Yosibash, 1997a).
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Figure 18. First three eigen-values as a function of the fiber orientation angle (3), for the constrained metallic
structure.

Investigation of edge singularitiesisimportant because it provides a rigorous quantitative
basisfor investigating failure events, such as delamination of composite materials, and failure
in electronic devices. The edge eigen-pairs are the first step in a general method which is
intended to provide also the series coefficients, namely the edge stress intensity functions
(ESIFs). The obtained eigen-pairs are used for extracting the ESIFs by methods as the com-
plementary energy method (described in (Szabb and Yosibash, 1996) in a 2-D setting), and
thiswill be reported in afollowing paper.
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