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in two-dimensions

Z. Yosibash

Abstract A numerical method for extracting the coef®-
cients of the asymptotic series solution of the Poisson
equation in two dimensions in the vicinity of singular
points is presented. This method is an extension of that
presented in (SzaboÂ and Yosibash 1996) to non-homoge-
neous boundary value problems, and is general in the sense
that it is applicable to almost any type of point singularity.
Numerical experiments for crack-tip singularities, re-en-
trant corner singularities, abrupt change in boundary
conditions, and singularities associated with a multi-ma-
terial inclusion are presented to substantiate the proposed
techniques. Constant as well as varying non-homogeneous
``right-hand-side'' functions are studied.

1
Introduction
Solutions of two dimensional linear elliptic problems may
be singular at a point in one of the following cases: (a) the
boundary is unsmooth, (b) the boundary is smooth, but
the nature of the boundary conditions change abruptly, or
(c) one or more data are unsmooth (an example is the
interface point of two domains having different proper-
ties). In the vicinity of a singular point the solution is
uniquely characterized by an asymptotic series of eigen-
functions along with the series coef®cients (see e.g. Ko-
ndratiev 1967). Determination of the eigen-functions and
the associated coef®cients is of signi®cant importance
because many physical phenomena are correlated to them.
In fact, the determination of the ®rst two coef®cients
(called stress intensity factors) in linear elasticity is at the
heart of two-dimensional linear fracture mechanics.

The main focus of this paper is the singular part of
solutions of the Poisson equation r2u � ÿf which arises,
for example, in the Poiseuille ¯ow along a straight duct of
cross-section X containing re-entrant corners, the Saint
Venant torsion of a bar made of two different materials or
having an unsmooth cross-section, the de¯ection of a
membrane with a free half-edge, etc. From the operator

theory viewpoint, a general approach for Poisson prob-
lems over corner domains can be found in (Grisvard 1985;
Dauge 1988). The exact solution u of the Poisson equation
is analytic in X, except in the vicinity of the singular
points. In their vicinity the ``singular solution'' u consists
of two parts: u � uH � uP, where uH is the homogeneous
solution and uP is the particular solution because of the
right hand side ``loading'' f . Homogenous or periodic
boundary conditions in the vicinity of the singular point
are considered. The homogeneous solution is given by the
asymptotic series:

uH �
X1
i�1

Air
ai fi�h�; ai � ai�1 ; �1�

r and h being the polar coordinates centered at the sin-
gular point. Ai are the coef®cients of the asymptotic series,
and ai and fi�h� are the eigenvalues and eigen-functions,
which are associated pairs. fi�h� are regular (smooth)
functions. The cases when uH contains rai ln�r� terms, or
when the boundaries are curved in the vicinity of the
singular point are not addressed herein. The eigen-pairs
depend on the coef®cients of the partial differential
equation, the geometry and the type of boundary condi-
tions in the vicinity of the singular point only, and are
independent of the loading f . Methods for computing
analytically or numerically the eigen-pairs can be found,
for example, in (Grisvard 1985; Leguillon and Sanchez-
Palencia 1987; Papadakis 1988; Yosibash and SzaboÂ 1995;
Costabel and Dauge 1995) and the references therein.
Notice that if ai < 1, the corresponding ith term in the
expansion (1) for ruH is unbounded as r ! 0. We can
think of the coef®cients Ai of these term as analogous to
the stress intensity factors of elasticity, and we denote
them by generalized ¯ux intensity factors (GFIFs). The
GFIFs are important from the engineering point of view
because they are related to failure theories. Although the
eigen-pairs of uH do not depend on the loading, the GFIFs
do depend, and their numerical computation is addressed
in this paper.

For example, consider an isotropic domain with a sin-
gular point at the intersection of two straight edges C1 and
C2, as shown in Fig. 1, with the following homogeneous
boundary conditions:

Bi�u� � 0 on Ci i � 1; 2 : �2�
Bi is the trace operator for Dirichlet boundary conditions,
and o=on for Neumann boundary conditions, where n
denotes the outward normal vector to the boundary. The
eigen-pairs of the homogeneous solution (1) for this case

Computational Mechanics 20 (1997) 320±330 Ó Springer-Verlag 1997

320

Communicated by S. N. Atluri, 17 February 1997

Z. Yosibash
Pearlstone Center for Aeronautical Engineering Studies,
Dept. of Mechanical Engineering, Ben-Gurion University
of the Negev, Beer-Sheva 84105, Israel
E-mail: Zohary@Bgumail.BGU.AC.IL

The reported work has been partially supported
by the Government of Israel, Ministry of Absorption, Center
for Science Absorption.



are (see Leguillon and Sanchez-Palencia 1987, p. 28 and
40):

For Dirichlet BCs on C1 and C2

ai � i=c fi�h� �
��������������
2=�cp�

p
sin�ih=c� �3�

For Neumann BCs on C1 and C2

ai � i=c fi�h� � cos�ih=c� �4�
For Dirichlet BCs on C1 and Neumann BCs on C2

ai � i=2c fi�h� �
��������������
2=�cp�

p
sin�ih=2c� �5�

Under mild regularity restriction on f in the vicinity of the
singular point, we may expand f in a series of the form:

f �
X1
i�0

ri/i�h� : �6�

By the shift theorem, the particular solution uP for the
cases that i� 2 6� aj 8i; j is:

uP �
X1
i�0

ri�2wi�h� : �7�

Otherwise, for each aj which satis®es i� 2 � aj, the series
expansion (7) will contain a term of the form

ri�2�cj ln�r�fj�h� � wi�h�� ; �8�
with cj chosen such that the ``Fredholm's Alternative'' is
satis®ed (see Gilbarg and Trudinger 1977, pp. 78±80). It is
important to notice that wi�h� can be constructed as a
linear combination of fi�h� as shown in (Strang and Fix,
1973, chapt. 8).

Many different successful numerical approaches which
deal with Poisson problems with singularities have been
reported over the years, however, most of these are con-
cerned with the global accuracy of the solution, without
considering the explicit computation of the singular series
solution. See for example the recent publications (Oh and
BabusÏka 1992; Givoli and Rivkin, 1993) and the references
therein. The computation of GFIFs associated with the
singular solution to Poisson problem received scant at-
tention in the past, and the dual singular function method
in (Blum and Dobrowolski 1982) as well as the generalized
in¯uence function method presented in (BabusÏka and
Miller, 1984) are two of the ef®cient methods known to the

author, although these are not applicable to multi-material
interfaces or anisotropic materials in the form presented in
(Blum and Dobrowolski 1982; BabusÏka and Miller, 1984).
Recently, another ef®cient procedure based on multigrid
methods was proposed in (Brenner 1996).

Herein the principle of minimum complementary en-
ergy (which is equivalent to the weak complementary
principle presented in (SzaboÂ and Yosibash 1996)) is ex-
tended for extracting the GFIFs associated with the sin-
gular solution of the Poisson problem. The modi®ed
Steklov method in (Yosibash and SzaboÂ 1995) is used for
computing the eigen-pairs in (1), and the method in
(SzaboÂ and Yosibash 1996) together with Richardson ex-
trapolation (Ralston and Rabinowitz 1977 pp. 94±95) are
applied for extracting the GFIFs from the ®nite element
solution [the method in (SzaboÂ and Yosibash 1996) is
applicable only to Laplace problem, and fails for non-ho-
mogeneous problems as the Poisson problem]. This is a
®nite element post-solution technique applied on a local-
ized sub-domain, enabling a robust, ef®cient and accurate
computation of singular solutions of the Poisson problem.

In Sect. 2 we formulate the techniques for extracting the
®rst series coef®cients Ai and the eigen-functions for
Poisson problems. Section 3 presents the results of three
numerical examples solved by the p-version of the ®nite
element method (SzaboÂ and BabusÏka 1991), to substantiate
the techniques presented in Sect. 2, and the discussion
and conclusions are given in Sect. 4. The numerical
examples involve constant as well as varying right hand
side loadings.

2
Formulation

2.1
Notations and preliminaries
Let oX � [iCi where Ci are analytic simple arc curves
called edges. These edges intersect at points called vertices.
The two straight boundaries which intersect in the singular
point will be denoted by C1 and C2. On C1 and C2 we
assume homogeneous boundary conditions. On the re-
maining boundaries we consider Dirichlet boundary con-
ditions u � û on CD

i , and Neumann boundary conditions
du
dn
� t̂ on oXÿ CD

i �CD
i or oXÿ CD

i may be ;). We de®ne

the space H1
o�X� � fu 2 H1�X� u � 0 on CD

i g where H1 is

the usual Sobolev space. Also, we de®ne the ``statically
admissible space'' (or so-called H1�div;XR� space) over a
sub-domain XR for a ¯ux vector function, q, as follows

Ec�XR�� �q1; q2�j
ZZ

XR

jqj2dX <1; oq1

ox1
� oq2

ox2
� ÿf :

� �
;

�9�
where f is the ``loading'' in the right hand side of the
Poisson equation. When on a part of the boundary of XR,
de®ned by �CR�q; qi � 0, it is necessary to restrict the
statically admissible space as follows:

~Ec�XR� � f�q1; q2�; q 2 Ec�XR�; qi � 0 on �CR�qg :
�10�

Γ2

Γ1

Ω

θ
γπ

∆u = -f

r

B (u) = 01

B (u) = 02

Fig. 1. Domain with a re-entrant corner and notation
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Note that if �q1; q2� � ou
ox1
; ou
ox2

� �
, the condition

oq1

ox1
� oq2

ox2
� ÿf is nothing more than the Poisson equation

itself.
In the primal weak formulation, the exact solution over

the domain X is obtained by using the weak form:

Seek u 2 H1
o�X�; s.t. B�u; v� �F�v� 8 v 2 H1

o�X� ;
�11�

where:

B�u; v� �
Z

X

X2

i�1

ou

oxi

ov
oxi

dX ;

F�v� �
Z

oXÿCD
t̂vds�

Z
X

f vdX :

�12�

By kukE �
����������������
B�u; u�p

we denote the ``energy norm'' of u.
We use the p-version of the ®nite element method for
approximating the solution of the weak form, i.e. we use a
hierarchic sequence of ®nite dimensional spaces
S1�X� � � � � � Si�X� � H1

o�X�. The Si's are linear combi-
nation of continuous piecewise polynomials of degree p on
the elements of the mesh.

The approximated ®nite element solution to the weak
form (11), ui

FE 2 Si, is obtained if the in®nitely large space
H1

o�X� is replaced by the ®nite dimensional space Si. We
denote the error in energy norm by kekE �def kuÿ u

�i�
FEkE.

Using the p-version of the FEM with the proper (known)
mesh re®nement towards the singular point, the error in
energy norm converges exponentially as the number of
degrees of freedom N��p2� is increased (see BabusÏka and
Suri 1994):

kekE � C exp�ÿdN1=3� ; d > 0 �13�
where C and d are constants. It has been also shown that in
the asymptotic range the estimates are sharp, meaning that
the � sign may be replaced by ``approximately equal'' ���.
2.2
Extracting the series coefficients
The ®rst step in the overall method is obtaining uFE over
X. This is achieved by the p-version of the FEM using a
mesh graded towards the singular point with a pre-known
factor (see SzaboÂ and BabusÏka 1991). In the post-solution
phase a circular sector sub-domain XR is considered in the
vicinity of the singular point as shown in Fig. 2. We use the
principle of minimum complementary energy over XR:

Seek q 2 ~Ec�XR� such that J�q� �def 1
2Bc�q; q� ÿFc�q�

obtains a minimum, (14)

where,

Bc�q; q� �
Z Z

XR

qT � q dX �
Z Z

XR

X2

i�1

q2
i rdrdh ;

�15�
and,

Fc�q� �
Z

oXRÿ�CR�q
û�qT � n�ds

�
Z

oXRÿ�CR�q
û�q1 cos h� q2 sin h�ds :

�16�

uFE is substituted instead of û in �16�. Because homoge-
neous boundary conditions are considered on C1 and C2,
the integral in (16) degenerates to integration along C3

alone. One of the most important considerations when
applying the principle of minimum complementary energy
formulation is the construction of the statically admissible
space ~Ec�XR�. Because the eigen-pairs, which mimic the
functional representation of the solution in the neighbor-
hood of singular points, can be computed, we exploit this
information for constructing ~Ec�XR�. This space is span-
ned by linearly independent ¯ux vectors qi obtained from
the homogeneous eigen-pairs and the particular solution
�u � �uH�i�uP�; i.e.:X1

i�1

Aiqi � qP �
X1
i�1

Ai

ouH

ox1

ouH

ox2

( )
i

�
ouP

ox1

ouP

ox2

( )

�
X1
i�1

Ai

cos h ouH

or ÿ sin h
r

ouH

oh

sin h ouH

or
� cos h

r
ouH

oh

( )
i

�
ouP

ox1

ouP

ox2

( )
:

�17�

Substituting (1) and (7) into (17) one obtains:X1
i�1

Aiqi � qP �
X1
i�1

Air
aiÿ1

ai cos hfi�h� ÿ sin hf 0i �h�
ai sin hfi�h� � cos hf 0i �h�

� �

�
X1
n�0

rn�1 �n� 2� cos hwn�h� ÿ sin hw0n�h�
�n� 2� sin hwn�h� � cos hw0n�h�

( )
:

X1
i�1

Aiqi � qP �
X1
i�1

Air
aiÿ1Fi�h� �

X1
n�0

rn�1Wn�h� �18�

Clearly the ¯ux vectors generated from �uH�i � uP satisfy
the Poisson equation. These ¯ux vectors will satisfy also
the homogeneous boundary conditions on C1 and/or C2,
only if Wn�h� are linear combinations of Fi�h�. Generally,
it is possible to construct such Wn�h� as shown in (Strang
and Fix 1973, chapt. 8).

Remark 1. As will be demonstrated in the following, for
extracting the GFIFs, one does not need to actually com-
pute Wn�h�.

Remark 2. It may seem as if the proposed method for ex-
tracting GFIFs resembles the hybrid methods reported for
example in (Atluri and Nakagaki 1986; Chow et al. 1995).
However, two major differences exist: a) whereas the hybrid

Γ2

Γ1

Γ3

Ω

ΩR

∆u = -f

R

Fig. 2. Extraction sub-domain

322



method constructs a special ®nite element which is assem-
bled in the overall FE mesh, the proposed method is a post-
solution superconvergent operation, therefore can be used
with any FE solver without having to interfere with the as-
sembly or solution of the FE equations. b) For non-homo-
geneous problems, as the ones addressed in this paper, using
the hybrid elements would require to explicitly ®nd a par-
ticular solution and add it to the trial/test spaces ± this is a
cumbersome and inef®cient process. As will be demon-
strated in the following, the present method does not need to
incorporate the particular solution in the statically admis-
sible space.

The eigen-pairs can be computed explicitly for isotropic
domains, or by the modi®ed Steklov method (Yosibash
and SzaboÂ 1995) when these are unknown explicitly (for
example at a multi-material interface, or anisotropic do-
mains).

We discretize the principle of minimum complementary
energy (14) by constructing a ®nite dimensional subspace

of ~Ec�XR�. This subspace ~EN
c �XR� of dimension N is

spanned by a ®nite number of ¯ux vectors given in (18),
i.e. i � 1; 2; . . . ;N . Employing the discretized principle of
minimum complementary energy one has to consider:

oJ�q�
oAi

� 0 i � 1; . . . ;N : �19�

A system of N equations is obtained, given in a matrix
form:

�Bc�fAg � fFcg ÿ fDg : �20�
Here fAg �def �A1;A2; . . . ;AN�T and the elements of the
compliance matrix �Bc� are:

�Bc�ij �
Rai�aj

ai � aj

Z cp

0

FT
i �h� � Fj�h�dh : �21�

For the Poisson equation in an isotropic domain the
functions Fi�h� are orthogonal in respect to the integral in
(21) (see SzaboÂ and BabusÏka 1991, Sect. 12.1.2) therefore
the compliance matrix is diagonal. The vector fDg con-
tains elements of the form:

Di �
Z R

0

Z cp

0

raiÿ1
X1
n�0

rn�1FT
i �h� �Wn�h�rdrdh

�
X1
n�0

Rai�n�2

ai � n� 2

Z cp

0

FT
i �h� �Wn�h�dh : �22�

The elements of the load vector fFcg, which correspond to
the linear form Fc�q� are:

�Fc�i � Rai

Z cp

0

uFE�h��FT
i �h� � n�dh : �23�

Substituting Eqs. (21), (22) and (23) into (20), and dividing
by the diagonal term in the compliance matrix one obtains:

Ai�R��Rÿai
2ai

R cp
0 uFE�R; h��FT

i �h� � n�dhR cp
0 jFi�h�j2dh

ÿ
X1
n�0

Rn�2ÿai
2ai

R cp
0 FT

i �h� �Wn�h�dh

�ai � n� 2� R cp
0 jFi�h�j2dh

: �24�

We examine (24) for R < 1, as R! 0. As may be noticed
only the second sum in (24) represents the particular solu-
tion uP added to the statically admissible space (of course
also uFE includes in it the particular solution). We now ad-
dress the possibility that uP is not added to the statically
admissible space: this will induce an error of the order of the
second term in (24). However, as R! 0 the ®rst term in the
right hand side is at least two orders of magnitude larger
when compared with the second term. The second term in
(24) resembles the truncation kind of error in numerical
differentiation of functions, and if n� 2ÿ ai > 0 Richard-
son extrapolation can be successfully applied to reduce it.
This suggests that the second term could be neglected and
this will contribute a relative error of an order of magnitude
O�R2� when computing A1�R�, for example. At the limit
R! 0 the second term is negligible, and does not affect the
accuracy of the extracted Ai.

The restriction n� 2ÿ ai > 0; 8n, requires that 2 > ai

if the loading is constant, or that b� 2 > ai if the loading
is of the form f � rb/�h�. Therefore, only the ®rst terms,
associated with the singular eigen-pairs could be extracted
using the proposed method.
Thus we consider the following technique for the com-
putation of the GFIFs:

a) Neglect the particular solution uP when constructing the
statically admissible space, then extract �Ai�FE by (24)
on a sub-domain of radius R1 (without considering the
second term in the right hand side).

b) Repeat step a) over a sequence of decreasing sub-do-
mains of radii Rj, Rj < Rjÿ1 < . . . < R1.

c) Use Richardson extrapolation (Ralston and Rabinowitz
1977, pp. 94±95) with the error behaving as R2ÿai to
extrapolate Ai at the limit R! 0. We can generate a
table of A1s, for example, by the recursive formula:

�A1��m�j � �A1��m�1�
jÿ1 � �A1��m�1�

jÿ1 ÿ �A1��m�jÿ1

�Rj=Rj�m�2ÿa1 ÿ 1
and the accuracy of A1 improves as j and m increase � j
corresponds to the radius Rj of the sub-domains XR

which is the row number in the generated table, and m
corresponds to the column number ± see Table 2 for
example).

The eigen-pairs used in (24) are computed numerically
using the modi®ed Steklov method as described in detail
in (Yosibash and SzaboÂ 1995).

Remark 3. In the more general case of the Poisson equa-
tion over multimaterial interface domains, or anisotropic
domains, the compliance matrix can be fully populated,
and an explicit expression for Ai as given in (24) is not
obtainable. However, computation of the singular GFIFs
by (20) neglecting uP in the statically admissible space, for
several Rjs and extrapolating to the limit is still valid due
to similar arguments (this will be shown by a numerical
example). The mathematical analysis of this case is more
cumbersome and is not provided herein.

Remark 4. The loading f may sometimes be given byPM
m�1 rbm/m�h�; bm < bm�1. For any loading with b1 > ÿ2
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the proposed Richardson extrapolation is valid with an
error behaving as Rb1�2ÿai .

Remark 5. The situation described in (8) will affect the
second term in (24), and it seems as the leading term will
be of an order of Rn�2ÿai �1� ln�R��. However, this is not
the case due to Fredholm's alternative, and the orthogo-
nality of Fi to the function Wj (associated with the par-
ticular solution in (8)) will eliminate the ln�R� function.
This will be shown in the numerical examples.

3
Numerical examples
The analysis presented in the previous section is sub-
stantiated by the computation of the ®rst one or two series
coef®cients �Ai�FE for several Poisson problems of engi-
neering importance for which analytical solutions are
available. Results for a new problem, a bi-material inclu-
sion, for which no analytic solution is available, will also
be provided. The numerical algorithm is as follows:

(a) Compute the eigenvalues associated with the homo-
geneous part of the solution, ai, and the associated
eigen-functions, by the modi®ed Steklov method
(Yosibash and SzaboÂ 1995). Using the ``shift theorem'',
based on the non-homogeneous ``loading'', determine
the smallest power b1 of r, associated with the partic-
ular solution.

(b) Obtain a ®nite element solution, uFE, for the problem
of interest having a small relative error measured in the
energy norm.

(c) Extract the series coef®cients �Ai�FE by the principle of
minimum complementary energy for several values of
integration radii R.

(d) Use Richardson extrapolation with the error behaving
as Rb1ÿai to determine the values of �Ai�FE as R! 0.

The numerical solution uFE to all Poisson problems dis-
cussed in the following is obtained by means of the p-
version ®nite element computer code Stress Check�. The
trial spaces used in the ®nite element analyses is the trunk
space (SzaboÂ and BabusÏka 1991) and the polynomial level
of the trial functions is always increased from 1 to 8. In all
examples, the integration is performed along a circle of
radius R greater than the radius of the elements having a
vertex at the singular point. This is because the ®nite el-
ement solution in the ®rst group of elements at the singular
point is not of high accuracy.

3.1
Saint Venant torsion of rods
The Saint Venant torsion problem can be formulated in
terms of Prantl's stress potential u as follows (see e.g.
(Sokolnikoff 1956, Chapter 35):

r2u � ÿ2 in X �25�
u � 0 on oX : �26�

The shear stresses are related to the stress potential via:

sx1x3
� lk

ou

ox2
; sx2x3

� ÿlk
ou

ox1
;

where l is the shear modulus, and k is the angle of twist
per unit length of the rod. Poiseuille ¯ow along a straight
duct of cross section X is described by the same system
(25) and (26) where the non-homogeneous term is the
applied pressure gradient over the viscosity of the ¯uid.

Consider a long rod with lk � 1 and a cross-section in
the shape of a circular sector of radius 1, shown in Fig. 3.
The exact solution of this problem, u � uH � uP, is (e.g.
(Givoli and Rivkin 1993)�, (Moffatt and Duffy 1980)):

uH�r; h� �
X

n�1;3;5;...

8a2ÿn=c

np�4ÿ �n=c�2� r
n=c sin�nh=c� �27�

� A1r1=c sin�h=c� � A3r3=c sin�3h=c� � O�r5=c�
�28�

uP�r; h� � r2
X

n�1;3;5...

8

np�4ÿ �n=c�2� sin�nh=c�;

c 6� 1=2; 3=2 ; �29�

uP�r; h� � r2ÿ2

p
p
4
� ln�r� cos�2h� ÿ h sin�2h�

h i
;

c � 1=2 : �30�

uP�r; h� � r2ÿ2

3p
3p
4
ÿ ln�r� cos�2h� � h sin�2h�

� �
;

c � 3=2 : �31�
Of great technical importance in fracture mechanics is the
``stress intensity factor'' de®ned by 1

c A1, thus we extract the
®rst coef®cient of the expansion (28). We demonstrate the
accuracy of the obtained results on two corner angles
cp � 1:5p, and cp � 2p (a crack in the circular domain).
Examining (28) and (29) one observes that:

u = 0

u = 0

u = 0

a = 1

Ω

θγπ

∆u = -2

r

Fig. 3. Cross-section of a rod with a re-entrant corner

� Stress Check is a trademark of Engineering Software Research
and Development, Inc. 7750 Clayton Road, Suite 204, St. Louis,
MO 63117, USA.

� The r2 ln�r� terms for c � 1=2 or 3=2 are obtainable in (Givoli
and Rivkin 1993) in a limit process.
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For c � 3=2 b1 ÿ a1 � 2ÿ 2=3 � 4=3 �32�
For c � 2 b1 ÿ a1 � 2ÿ 1=2 � 3=2

b1 ÿ a2 � 1=2 �33�
The ®nite element meshes used in the solution domains
are presented in Fig. 4. In the vicinity of the singular point
the ®nite element mesh contains two radial layers graded
in a geometric progression with the grading factor 0.15.
The quality of the ®nite element solution is summarized in
Table 1. As the p-level is increased over the elements, the
series coef®cients �Ai�FE, converge quickly. As an example
we show in Fig. 5 the convergence of �A1�FE for the rod
with the cross-section c � 2 extracted at R � 0:5.

Rod with a crack �c � 2�: Extracted values of �A1�FE and
�A3�FE as p!1 for different values of R are listed in
Tables 2 and 3 respectively, together with the Richardson
extrapolated values as R! 0. By the mathematical anal-
ysis, the error in �A1�FE behaves like R3=2 as R! 0, and the
error in �A3�FE behaves like R1=2. These powers are used
for Richardson extrapolation. Tables 2 and 3 clearly
demonstrate that the series coef®cients (equivalently the
stress intensity factors) are extrapolated with very high
accuracies, even though the relative errors at ®nite values
of R are larger than 20% . The signi®cant reduction in the

error already at the ®rst step of Richardson algorithm, and
the similarity of the results in each column, strongly
support the mathematical analysis.

Rod with a re-entrant corner �c � 3=2�: The value of A1

alone can be extracted in this case because the next term in
the series of the homogeneous solution is of the same
order as the particular solution. This example also dem-
onstrates that the ln�R� term does not affect the Richard-
son extrapolation as noted in Remark 5. Extracted values
of �A1�FE as p!1 for different values of R are listed in
Table 4, together with the Richardson extrapolated values
as R! 0. Here, the mathematical analysis predicts an
error behaving like R4=3 as R! 0. This power is used for
Richardson extrapolation. Again, Table 4 demonstrates
that the series coef®cients (equivalently the stress intensity
factors) are extrapolated with very high accuracies.

Crack

y

x

FE mesh for = 3/2γ

z

y

xz

FE mesh for = 2γ
Fig. 4. Finite element meshes
used for rod torsion problems

Table 1. Convergence of the FE solution for the rod torsion
problems

c � 3=2 c � 2

Estimated Estimated
p-level DOF kekE�X� (%) DOF kekE�X� (%)

1 4 68.64 6 63.57
2 16 22.75 23 19.06
3 31 22.24 44 18.04
4 55 9.23 77 7.73
5 88 4.65 122 4.07
6 130 2.46 179 2.34
7 181 1.40 248 1.49
8 241 0.86 329 1.00

360°, Rod in Torsion runs 1 to 8
Generalized Stress Intensity Factors, Int. Radius = 0.5

Est. Limit A1 = -4.389310 x 10 ( 0 %)-1

-0.27

-0.29

-0.31

-0.32

-0.34

-0.36

-0.38

-0.40

-0.41

-0.43

-0.45

DOF
0 70 140 210 280 350

A1
Limit_A1

Fig. 5. Convergence of A1� �FE at R � 0:5 for c � 2 as the number
of DOF increases
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3.2
Semicircular membrane with a free half-edge
It is well known that the point at which the boundary
conditions change abruptly, is singular. This example
problem treats the so-called Motz's problem, however,
unlike the classical formulation where the Laplace equa-
tion is considered, our interest is in the Poisson equation.
Consider a semicircular domain shown in Fig. 6. The so-
lution of the following problem is of interest:

r2u � ÿ1 in X �34�
u � 0 on C1 [ C2 �35�
ou

on
� ou

oh
� 0 on C3 : �36�

The exact solution in the vicinity of the singular point is
given in (BabusÏka and Miller 1984):

u�r; h� � A1r1=2 sin h=2� A2r3=2 sin 3h=2� O r2
ÿ �

;

�37�
where the ®rst two terms correspond to the homogeneous
part of the solution, the particular solution is of order
O r2� � and A1� �EX� 0:339531, A2� �EX� 0:242522. In this
example problem it is seen that the error in A1� �FE ap-
proaches zero at a rate R3=2 and the error in A2� �FE ap-
proaches zero at a rate R1=2. The ®nite element mesh used
for this example problem is shown in Fig. 7, having same
re®nement layers as previously explained. The quality of
the ®nite element solution is summarized in Table 5. Ex-
tracted values of A1� �FE and A2� �FE as p ! 1 for different

Table 2. �A1�FE at various values of R for the rod problem with a crack �c � 2� and the extrapolated values as R! 0 (The numbers in
the parentheses represent the relative error. �A1�EX � 0:6790611)

R �A1�FE �def
A
�0�
1 A

�1�
1 A

�2�
1

0.5 0.4389309882 ()35.4%)
0.6786281319 ()0.064%)

0.1 0.6571889676 ()3.22%) 0.6779644845 ()0.16%)
0.6779854708 ()0.158%)

0.05 0.6706327966 ()1.24%)

Table 3. �A3�FE at various values of R for the rod problem with a crack �c � 2� and the extrapolated values as R! 0 (The numbers in
the parentheses represent the relative error. �A3�EX � 0:48504364)

R �A3�FE �def
A
�0�
3 A

�1�
3 A

�2�
3

0.5 0.1420192005 ()70.7%)
0.4848862574 ()0.032%)

0.1 0.3315514481 ()31.6%) 0.4865664859 (0.32%)
0.4860351510 ()0.204%)

0.05 0.3767986771 ()22.3%)

Table 4. �A1�FE at various values of R for the rod problem with a re-entrant corner �c � 3=2� and the extrapolated values as R! 0
(The numbers in the parentheses represent the relative error. �A1�EX � 0:71619725)

R �A1�FE �def
A
�0�
1 A

�1�
1 A

�2�
1

0.5 0.4319778445 ()39.7%)
0.7161427486 ()0.008%)

0.1 0.6829066198 ()4.65%) 0.7160281039 ()0.24%)
0.7160334253 ()0.023%)

0.05 0.7028870438 ()1.86%)

Fig. 6. Semicircular membrane with a free half-edge ± Domain
and boundary conditions

y

xz

Fig. 7. Finite element mesh used for the semicircular membrane
with a free half-edge
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values of R are listed in Tables 6 and 7 respectively, to-
gether with the Richardson extrapolated values as R ! 0.
Tables 6 and 7 present a picture very similar to that of the
corresponding Tables 2, 3 and 4 of the previous example
problem. Again one may notice the high accuracies
achieved by the extrapolation algorithm.

A2� �FE in this example problem and A3� �FE in the pre-
vious example problem are markedly less accurate when
extracted at a given radius R, when compared with the
corresponding approximations A1� �FE. The errors are re-
lated to the term proportional to Rb1ÿai . For A1, the value
b1 ÿ a1 is larger than b1 ÿ a2, and since R < 1, the error in
A1 is smaller. However, the extrapolation algorithm pro-
vides an excellent approximation to the exact value for
both A1� �FE and A2� �FE , regardless of the error at given Rs.

Extraction of Ai at the smallest integration radius
R � 0:05 is the least accurate because the integration path
is the closest to the ®rst layer of elements surrounding the
singular point (which have the outer radius equal to
0:152 � 0:0225), therefore contains the largest numerical
error. One may gain further accuracy by adding an addi-
tional layer of elements of an outer radius
0:153 � 0:003375. Numerical experiments support last
statement.

The performance of the proposed algorithm for low
accuracy ®nite element solutions is being addressed in the
following. One may argue that the true performance must
be justi®ed by considering, for example, the ®nite element
solution at p-level � 4, with a relatively large error in
energy norm kekE � 4:66%. Doing so, we present in
Tables 8 and 9 same information as in Tables 6 and 7, only
that now A1� �FE and A2� �FE are extracted at p-level � 4.
Comparing Table 8 with 6, and Table 9 with 7 one notices
that although the ®nite element error is 4:66%, yet the
extrapolated values of A1� �FE and A2� �FE are not sensitive
and are provided with an accuracy of about 1%. This is
because of the super-convergent property of the extraction
procedure for Ai� �FE.

3.3
Bi-material inclusion
Two-dimensional bodies consisting of two or more mate-
rials perfectly bonded along all their common edges at-
tracted scant attention in the past. Lately, with the growing
interest in electronic packaging and composite materials,
more attention is focused on the solution to these prob-
lems.

Table 5. Convergence of the FE solution for the semicircular membrane with a free half-edge

p-level 1 2 3 4 5 6 7 8

DOF 8 28 52 88 136 196 268 352

Est.kekE�X� (%) 61.97 12.10 10.39 4.66 2.46 1.58 1.14 0.86

Table 6. �A1�FE at various values of R for the semicircular membrane with a free half-edge, and the extrapolated values as R! 0 (The
numbers in the parentheses represent the relative error. �A1�EX � 0:339531)

R �A1�FE �def
A
�0�
1 A

�1�
1 A

�2�
1

0.5 0.2194689364 ()35.4%)
0.3393546788 ()0.052%)

0.1 0.3286317720 ()3.22%) 0.3390853374 ()0.131%)
0.3390938547 ()0.129%)

0.05 0.3353949499 ()1.22%)

Table 7. �A2�FE at various values of R for the semicircular membrane with a free half-edge, and the extrapolated values as R! 0 (The
numbers in the parentheses represent the relative error. �A2�EX � 0:242522)

R �A2�FE �def
A
�0�
2 A

�1�
2 A

�2�
2

0.5 0.0710301494 ()70.7%)
0.2425491818 (0.011%)

0.1 0.1658435386 ()31.6%) 0.2424089315 ()0.0466%)
0.2424532826 ()0.028%)

0.05 0.1882820131 ()22.4%)

Table 8. �A1�FE at various values of R extracted at p � 4; for the semicircular membrane with a free half-edge, and the extrapolated
values as R! 0. (The numbers in the parentheses represent the relative error. �A1�EX � 0:339531)

R �A1�FE �def
A
�0�
1 A

�1�
1 A

�2�
1

0.5 0.2196941098 ()35.29%)
0.3385821606 ()0.279%)

0.1 0.3279484901 ()3.41%) 0.3376024682 ()0.568%)
0.3376334488 ()0.559%)

0.05 0.3342092988 ()1.57%)
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Let X � f�r; h� : r � 2; 0 � h � 2pg and let Xi be the
two sub-domains of X occupying the sectors 0 � h � p=2,
and p=2 � h � 2p. See Figure 8. We conisder the inclusion
problem with two kinds of loadings: constant loading
f � 1 and variable loading f � ��

r
p

.

Constant Loading: Consider the following constant loading
problem:

pi r2u � ÿ1 in Xi ; �38�
with p1 � 10 and p2 � 1, and the following Dirichlet
boundary conditions:

u � 0 on oX : �39�
The unique solution to this inclusion problem is given by
(Kellogg 1975):

u�r; h� � A1 ra1 h1�h� � A2 ra2 h2�h� � O�r2� �40�
where A1 and A2 are unknowns, and

a1 � 0:731691779; a2 � 1:268308221 �41�

h1�h� �
cos��1ÿ a�h� � c1 sin��1ÿ a�h�

0 � h � p=2;
c1 cos��1ÿ a�h� � c2c3 sin��1ÿ a�h�

p=2 � h � 2p ;

8>><>>: �42�

h2�h� �
cos��1� a�h� ÿ c3 sin��1� a�h�

0 � h � p=2;
c1 cos��1� a�h� ÿ c2c3 sin��1� a�h�

p=2 � h � 2p ;

8>><>>: �43�

c1 � 6:31818181818182, c2 � ÿ2:68181818181818,
c3 � 0:64757612580273, and a � 0:26830822130025.

The ®nite element mesh used in the solution domains
are presented in Fig. 9. In the vicinity of the singular point
the ®nite element mesh contains three radial layers, the
smallest being of radius 0.003375. The quality of the ®nite
element solution is summarized in Table 10. The extracted
value of A2� �FE is identically zero for all Rs and for all p-
levels. The values of A1� �FE as p ! 1 for different values
of R are listed in Table 11 together with the Richardson
extrapolated values as R ! 0. Based on Table 11 we may
conclude with a high level of con®dence that
A1 � 0:040940 and A2 � 0, and these values being accurate
to the sixth signi®cant digit.

Varying Loading: Consider the same problem as in (38)
only that the loading is varying:

pi r2u � ÿ ��
r
p

in Xi ; �44�

Γ2

Γ1

Ω1

Ω2

r = 2

Fig. 8. Bi-material inclusion

y

xz

Fig. 9. Finite element mesh used for the bi-material inclusion
problem

Table 10. Convergence of the FE solution for the bi-material inclusion problem with constant loading

p-level 1 2 3 4 5 6 7 8

DOF 13 53 121 217 341 493 673 881

Est.kekE�X� (%) 51.36 7.14 2.56 0.98 0.48 0.24 0.15 0.10

Table 9. �A2�FE at various values of R extracted at p � 4; for the semicircular membrane with a free half-edge, and the extrapolated
values as R! 0 (The numbers in the parentheses represent the relative error. �A2�EX � 0:242522)

R �A2�FE �def
A
�0�
2 A

�1�
2 A

�2�
2

0.5 0.0711686231 ()70.6%)
0.2394924381 ()1.25%)

0.1 0.1642157396 ()32.3%) 0.2464274901 (1.6%)
0.2442344341 (0.71%)

0.05 0.1876526726 ()22.6%)
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Same ®nite element mesh as shown in Fig. 9 is used, and
the quality of the ®nite element solution is summarized in
Table 12.

As before, the extracted value of A2� �FE is identically
zero for all Rs and for all p-levels. The values of A1� �FE as
p ! 1 for different values of R are listed in Table 13. For
this problem, the exponent of the varying load is given by
b1 � 0:5, therefore we use Richardson extrapolation with
the error behaving as b1 � 2ÿ a1 � 1:76831. The extrap-
olated values of A1 as R ! 0 are summarized in Table 13.
Based on Table 13 we may conclude with a high level of
con®dence that A1 � 0:248206 and A2 � 0, and these val-
ues being accurate to the sixth signi®cant digit.

4
Discussion and conclusions
This paper presents a numerical method for extracting the
coef®cients of the asymptotic series solution of the Poisson
equation in two dimensions in the vicinity of singular
points. The method, based on the modi®ed Steklov for-
mulation for computing the eigen-pairs, the principle of
minimum complementary energy, Richardson extrapola-
tion and the p-version of the ®nite element method, is
shown to be accurate, ef®cient and robust. Most impor-
tantly, the method is applicable to singularities associated
with re-entrant corners, abrupt change in boundary condi-
tions, multi-material inclusions and anisotropic materials.

An important step in the development of the overall
technique is understanding the structure of the singular
particular solution uP (due to the loading f ), and its in-
¯uence on the GFIFs. The recognition of the behavior of
the error in computing the GFIFs when uP is not included

in the statically admissible space enabled a simpli®ed ap-
proach for extracting the GFIFs in a limiting process.
Otherwise, one had to explicitly compute uP and add it to
the statically admissible space, resulting in a complicated
and cumbersome numerical procedure.

Numerical experiments for crack-tip singularities, re-
entrant corner singularities, abrupt change in boundary
conditions, and singularities associated with multi-mate-
rial inclusions are presented. All experiments demonstrate
that very accurate GFIFs can be extracted (relative errors
within less than 0.5% in most cases), although the inte-
gration radii are large and away from the singular point.
Thus, a strong mesh re®nement in the vicinity of the
singular point is unnecessary for obtaining excellent re-
sults, enabling an ef®cient numerical procedure.
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