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Abstract

A novel singular superelement (SSE) formulation has been developed to overcome the loss of accuracy encountered
when applying the standard finite element schemes to two-dimensional elliptic problems possessing a singularity on the
boundary arising from an abrupt change of boundary conditions or a reentrant corner. The SSE consists of an inner region
over which the known analytic form of the solution in the vicinity of the singular point is utilized, and a transition
region in which blending functions are used to provide a smooth transition to the usual linear or quadratic isoparametric
elements used over the remainder of the domain. Solution of the finite element equations yield directly the coefficients of
the asymptotic series, known as the flux/stress intensity factors in linear heat transfer or elasticity theories, respectively.
Numerical examples using the SSE for the Laplace equation and for computing the stress intensity factors in the linear
theory of elasticity are given, demonstrating that accurate results can be attained for a moderate computational effort.
© 1997 Elsevier Science B.V.
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1. Introduction

The finite element method based on the primal weak form [1, Chap. 4], referred to as the po-
tential energy formulation, or the the displacement formulation in elasticity, has become a leading
tool for the solution of boundary value problems involving elliptic equations of second order. In
many problems of practical importance, the solution possesses singularities at so-called singular
points on the boundary, due, for example, to a reentrant corner or an abrupt change in the boundary
conditions. The analytic form of the solution in the vicinity of a singular point is usually known
in the form of an asymptotic series with unknown coefficients [2, 3]. In the presence of such sin-
gularities, the standard finite element scheme, in both its 4- and p-variants, becomes very inaccurate,

* Corresponding author.

0168-874X/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved
PIT S0168-874X(96)00088-1



316 Z. Yosibash, B. Schiff! Finite Elements in Analysis and Design 26 (1997) 315-335

and reasonable engineering accuracy is often impossible, or at least very costly to obtain
[4,5, Chap. 8]. The standard finite element methods have been modified in various ways in or-
der to overcome this difficulty (see [6, 7] for surveys of the main ideas). The schemes suggested,
however, suffer from one or more of three principal disadvantages. Some employ a very fine mesh
in the vicinity of the singularities, requiring a large number of degrees of freedom, some need a kind
of “post processor” to determine the coefficients of the asymptotic series from the solution vector
(such as the effective auxiliary mapping method [8]), and some employ singular elements, which
are difficult or even impossible to incorporate into standard finite element programs.

In the following we show how, for any type of singular point in a two-dimensional domain, these
difficulties may be overcome in the A-scheme, provided only that the form of the asymptotic series
for the solution in the neighborhood of the singular point is known explicitly. We introduce a singu-
lar superelement (SSE) to replace the usual elements over a region surrounding the singular point.
This SSE is considerably different from, and much more general than the constrained superelement
presented in [9]. It is divided into two regions. Over the internal region the correct analytic form
of the solution is used explicitly for the trial functions. Over the transition region, blending func-
tions are employed to provide a smooth match between the trial functions in the internal region and
those used over the remainder of the domain. It has been designed so as to conform with linear
or quadratic elements, so that standard linear or quadratic isoparametric elements may be employed
over the remainder of the domain. The SSE can be a convex polygon of any shape, and may be
incorporated into the finite element mesh in the same way as any other element. For example, the
SSE described in [10] was incorporated successfully as a superelement into the popular commercial
finite element code MSC/NASTRAN,! see [11]. The SSE has been employed to determine stress
intensity factors for two-dimensional crack and V-notch problems in the linear theory of elasticity
[10], yielding results of high accuracy for a moderate computational effort. In the current paper,
we describe the method in detail, and present results for three “benchmark™ problems in order to
demonstrate its accuracy, efficiency and generality of application.

The method is outlined in Section 2. Details are given of the formulations for the case of the
Laplace equation (including the determination of the coefficients in the asymptotic series), and for
the calculation of the displacements and stress intensity factors for cracks under the assumptions
of linear elasticity. Numerical examples showing the accuracy and efficiency of the method are
presented in Section 3. The solution and series coefficients have been computed for the Laplace
equation over an L-shaped region and for the “Motz Problem” for this equation, and the “Mode 17
stress intensity factor has been computed for a rectangular cracked plate under tension. The results
of our computation are compared with those obtained by other methods. Our conclusions, together
with suggestions for future extensions of the SSE concept, are given in Section 4.

2. The computational scheme
Let Q2 be a two-dimensional domain with a boundary ¢(Q2 consisting of analytic simple arc curves
called edges. These edges intersect at points called vertices. We shall be interested in cases where a

boundary point is singular, either because 0€2 has a reentrant corner there, or because the boundary
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conditions change abruptly as we pass through the point. We wish to solve the Laplace equa-
tion or the Navier equations of linear elasticity over 2. We will first introduce the appropriate
variational form for the problem in the form of the minimization of the total energy. We then
formulate the usual Galerkin finite element approximation to minimize the energy over a finite-
dimensional subspace. Finally, we modify the scheme by introducing SSE covering the region sur-
rounding the boundary singularity to counteract the loss of accuracy in the neighborhood of such a
point.

2.1. The scalar problem

Consider the strong formulation of the Laplace problem:

—Vzu(an’)=O, (xay)egs (1)
subject to the boundary conditions

u=g, (xy)erv, 2)

Ju

A N

on g2, (xs }’) € > (3)

where I'P and I'N are parts of 6Q of positive measure such that I'°UTI'N = 8Q, and g, =g, =0 in
the vicinity of any singular point of interest.

The variational principle associated with (1)—(3) can be stated as follows:

Seek u EFIB(Q), which minimizes

10) = 3aw0) - @02 5 [ [(70)- (Vo192 [ goas @

where Hg(Q) = {u=d+ ¢ |d € H'(Q)}, H'(Q) being the usual Sobolev space of functions which,
together with their first-order derivatives, are square-integrable over © and y is a fixed function
satisfying the non-homogeneous boundary conditions over I'°.

We will approximate u of (4) by u"(x, y) which minimizes /(v) over E(h), a finite-dimensional
subspace of Hp(2), and will take this subspace to be one of the usual A-version. Towards this end
we select a family of finite-dimensional subspaces E(h) of Hg(£), such that E(h) are the usual
h-version finite element spaces of low-order polynomials over a mesh of elements characterized by
the largest element size of length 4. In this case we have

lim o' (x, y) = u(x, y).

(See [5, Chap. 2] for details.)
We are thus using the equivalent of the Galerkin method, in which the spaces of the trial and test
functions coincide.

2.2. The elastostatic problem
The two-dimensional strong formulation for the elastostatic problem is given by the Navier equa-

tions (see [12, p. 73]). The corresponding variational principle, associated with the elastostatic prob-
lem, analogous to (4), is given as follows:
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Seek u € Hg(Q) x Hy(Q) such that

1 et 1
I(v) = ~a(v,0) — (t,0) < ~ //([D]v)T[E][D]de —/ o7 ds (5)
2 2 Q 60
is minimized, where [F] is the material matrix and [D] is a differential operator defined as follows:
- a -
" 0
0
D&} 0 —|,
D] P
9 9
[ dy Ox

u is the vector of displacements, and ¢ is the vector of the tractions applied over the boundary JQ.

2.3. The singular superelement

Notation. Let P denote the singular point. We construct a superelement in the form of a polygonal
domain €2,,, about P in the following manner. Let S; be a disc, center P, of radius R small enough
to be contained wholly in . £z is denoted by Sz N €2 and the circular part of the boundary of Qg
by Iz. Let ©, denote the part of €, between I; and I, the outer boundary of Q,,,. We will refer
to Q2 as the inner region of the superelement, and to €, as the transition region. The remaining
domain is defined as Qo = Q — €Q,,,. See Fig. 1.

We will now describe the choice of the trial functions over these two regions and the computation
of the corresponding stiffness matrices. Let u(x, y) be the solution of the scalar boundary value
problem over €. It is well known that in the neighborhood of the singular point P, u(x, y) may be
represented by an asymptotic series (see [2]):

u=§mﬁm&mx (6)

where f; are known functions, o, are real constants, A, are expansion coefficients, and (7, 8) are polar
coordinates with origin at the singular point.

Explicit expressions for f; are provided in the following sections. For the elastostatic case, an
analogous expression for m exists, except that f; is a vector function f;, and the » may also be
complex. Usually, f; has an r-dependence of * and thus if the real part of «; is less than 1, the
value of Vf; becomes unbounded as » approaches zero, and the point P is referred to as being
a singular point. O;,, the minimum value of o;, characterizes the strength of the singularity, so
that the most singular term in the expansion for the first derivative of the solution will have an r-
dependence of r*~! as r tends to zero. It is known [4] that the solution u belongs to the fractional
Sobolev space (for details see [3], Chap. 1) H'**=(Q), and if the usual finite element scheme is
used without modification, the rates of convergence for the s-version and for the p-version are A*r

and (1/p)**n, respectively, where the errors are measured in the energy norm, ||v|g d Va(v,v),
see [4, 5] (if omin is a positive integer, then one might need to adjust these rates with logarithmic
factors, e.g. (1/p)** log p).
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Fig. 1. Domain and notation.

We construct a conforming SSE over the domain €., by choosing the trial functions as follows.
Over g, surrounding the singular point, the asymptotic expansion for the exact solution, suitably
truncated, is used as the trial function. Over €, the transition region of the SSE, blending functions
are employed to provide a smooth match between the asymptotic expansion used over 2 and the
piecewise polynomials used as trial functions over g, the remainder of Q.

As a consequence, the bilincar forms in (4) and (5) will be split into three bilinear forms,
a(v,v) = ag(v,v) + a,(v,v) + ao(v,v), over g, 2, and o, respectively.

We now outline the computation for the region Q. Over this region, the trial function space
is taken to be a linear combination of the known functions fi(r,0, ;) presented in (6), so that the
approximation over Qg is upg = Z?:(,Ai fi(r,0,2;). The (i, j) term in the stiffness matrix corresponding
to agr(u,u) is then given by

_Rerrefiof, | 10f9f L
[ak]ij—/o /—‘nﬂ/z [Egr—-!-r—z%a—e}rdrdﬂ, iLj=1,..,N. (7)

Note that the unknowns associated with [az] are the first N coefficients of the asymptotic expansion
in (6). The integrals in (7) were evaluated using 8 x 8 point tensor-product Gaussian quadrature. In
view of the fact that in some cases the leading f; (apart from the constant term) and its derivatives
are singular at » = 0, some of the calculations were repeated using adaptive quadrature (NAG



320 Z. Yosibash, B. Schiff/ Finite Elements in Analysis and Design 26 (1997) 315-335

Fig. 2. Elements in Q,.

subroutine DO1AJF) in the r-direction in order to check that the integrals had indeed been evaluated
to sufficient accuracy.

We now deal with the transition region €2,. As we wish to develop a conforming finite element
scheme, we have to ensure that £, will be covered by some kind of elements in such a way that on
I; the trial functions go over continuously to function (6), whilst on the polygon I, they should be
polynomials compatible with the trial functions adopted over €2,. This is achieved by covering €,
with a single row of elements, each possessing three straight edges and one edge in the form of a
circular arc lying on I (see Fig. 2). The elements in €, are constructed as “transfinite elements” [13]
and are mapped onto the standard element in the (&, #) plane by the bilinear blending transformation

T(En) < (&), 0(¢,n))T of the form

TEn=1-OTO,n)+ LT, + A =nT(0)+1T1)
—[(1 = &(A =mT(0,0) + (1 = HnT(0,1) + &(1 — m)T(1,0) + EnT(1,1)]. (&)
The expression T(&,0), for example, describes the mapping of side AB of the standard element onto
the side ab in the (x, y) plane (see Fig. 3). Substituting for the mappings for each of the sides and

vertices into (8), we obtain the following explicit expression for the bilinear blending transformation
in polar coordinates:

{R2 + E[RE + R} — 2R4R5 cos(B, — P1)] + 2ER4[Rs cos(fy — B1) — Ral}'?

T(é,?’]): R4 sin Bz +(R5 sinﬂ1 —R4 Sil‘lﬁz)é n
arctan (R4 cos fi; + (Rscos ff; — Ry cos [32)5)
(e — gz ) A= ©)
B+ (B — B2)E )

With this choice of T, the Cartesian coordinates x and y will be linear functions of ¢ along cd.
A typical element in €Q,, and the transformation from the standard plane is shown in Fig. 3.
The trial functions over €2, are linear or quadratic blending functions in such a way as to match
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Fig. 3. A typical element in €, and the T transformation.

polynomials over I, and functions of the form (6) over I;. These “transfinite elements” thus ensure
C° continuity across I, and I; as well as between adjacent elements of £,. In the following, the
trial functions are derived for the elements in €, for the case in which Qo is covered by linear
isoparametric elements in the neighborhood of the singular point. As we wish to calculate the stiffness
matrix a,(v,v) in terms of the standard coordinates (&,#), we will express the trial function over an
element of €2, in terms of these coordinates. Referring to Fig. 3, the edge 4B (n = 0,0<¢<1) is
mapped onto the circular arc » = R, f; <0< f,, so that 6 is a function of £ only, and the function
fi(r,0,2;) becomes fi(R,0,x) = g(&, o), say.

Let us first consider bilinear elements over Q. Over the edges bc,cd,da we will take trial
functions that interpolate linearly between the values at the vertices over each of these three edges.
Since the bilinear blending transformation, and hence its inverse, will be linear over each of these
edges, the trial function over the edges BC,CD,DA will also be a linear interpolant between the
values at the vertices. Thus, if we denote by u;,, and 1, the nodal values of the trial functions at
C and D, respectively, we have

u(é,0>=§A,-gi(£, %),
u(&,Dy=uy + (1 — g,

N
u(0,n)=(1 - '7);/41-91-(0, %),
N
u(la rl) = (1 - ’7) ;Aig[(laaf),
and the linear blended trial function for a typical element in Q, becomes

wEm) = (1 - n)iAig,-(é,ai) + (1 = &)+ un &l (10)
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Fig. 4. Standard element corresponding to a quadratic element in €,.

If biquadratic elements are being used over o, we take the trial function to be quadratic in ¢
over the edge CD in the standard plane. As the intermediate node is at the mid-point of CD and
T is linear, the intermediate node on c¢d will also be at its midpoint, and C° conformity will be
maintained over cd, i.e. between Q, and . The nodal values for the trial function for the element
in the standard space (the quadratic case) are shown in Fig. 4. The quadratic blended trial function,
is defined by

(&) =28 — 1)(& — Du(0, 1) + 4401 — (0.5, 1) + £(2¢ — Du(1, 1)
+ (21— D)(n — Du(E, 0) + 4n(1 — n)u(,0.5) + n(2n — Du(c, 1)
—[(2¢ - D(E = 1)(27 — 1)(n — Du(0,0) +4(2¢ — 1)(& — Dn(1 — n)u(0,0.5)
+ (28 = (¢ — Dn(2n — Du(0, 1) + 45(1 — £)(2n — 1)(n — 1)u(0.5,0)
+ 16&(1 — Em(1 — n)u(0.5,0.5) +4L(1 — En(2n — 1Hu(0.5,1)
+ 828 — 1)(2n — D)(n — Du(1,0) +4£(1 = OHn(1 — mu(1,0.5)
+¢(2¢ — Dn(2n — Du(1,1)].

Taking u(£,0) = ZA g:i(E, o), 1(&,0.5) to be the unique quadratic function determined by the values
of u(0,0.5), u(OS 05) 1(1,0.5) and similarly for u(&,1), u(0,7), u(0.5,1) and u(1,n) we obtain

uy(En)= Q2 — 30+ 1)§A,-g.-(f, %)

+ [t005(2E — 3E+ 1) + ugsp5(—4E + 48) + 1195(28 — E(—41* + 4n)
+ [0 (2% — 3E 4+ 1) + ugs (—4E +48) + u (28 — O127* — n). (11)
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One could use a biquadratic blending transformation instead of a bilinear one. However, experiments
with a simple elastostatic problem (the first problem in [10]), showed that this results in only
a marginal improvement in the results, and is not worth the algebraic and computational effort
involved.

The Jacobian of the transformation is

)
J“d“<a@nn>’ (12)

so that the derivatives of the trial functions can be computed in the standard space using (9) and
(12):

ou 1[61,1(39 0u69}

o J o&om  anoc
fu_ L[ duir | 13
00 J | oton  onerl (13)

Substituting (13) into the bilinear form of (4), we obtain the contribution to a,(v,v) from a single
element of Q,:

Vot fseuN [fo0N 1 sar ou\ [0y 1 sfory
LG GE) =G G (&) = (%)
Ll [0 150 ”

0Edn [0Eon  rOEon

The stiffness matrix for the whole domain €, is obtained once (10) (or (11) if quadratic elements
are used) and (12) are substituted into (14) and the contributions from all the elements of €,
summed up by the usual assembly procedure. The bilinear form q,(u,u) has as unknowns the N
coefficients of the asymptotic expansion (4;) as well as the nodal values on the polygon I, and other
internal nodal values (ugps, %0505, - - -)-

The SSE stiffness matrix will be obtained by combining the stiffness matrices corresponding to
ag(u,u) and a,(u,u), and hence will be based on two types of degrees of freedom: the nodal values
laying on I, which are common to the SSE and the outer domain o, and the coefficients of
the asymptotic expansion and some internal nodal values which are not common to €. As the
latter represent internal degrees of freedom, they can be eliminated by static condensation, leaving
a stiffness matrix for the SSE in terms of the nodal values laying on I, alone. We also store
an auxiliary matrix, which is used at the end of the calculation to recover the coefficients of the
asymptotic expansion (4;).

The formulation of the SSE bilinear form for the elastostatic problem is analogous to the scalar
elliptic problem, except for being more complicated due to existence of two displacement fields.
Explicit expressions for az(u,u) and a,(u,u) for the elastostatic problem are given in Appendix A.

Once the stiffness matrix is computed for the SSE, it can by assembled into the global stiffness
matrix for the outer domain Qy. In fact, for the scalar and elastostatic problems, the total stiffness
matrix dimension remains unchanged because the condensed SSE stiffness matrix contains nodal
values corresponding to the polygon I, only. The resulting global stiffness matrix remains symmetric,
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and only slightly more populated due to the connections between the degrees of freedom on the
polygon I,. The system of equations is solved by Gaussian elimination with pivotting.

3. Numerical examples

We illustrate the method on three problems for which previous results are available. Two of
them concern Laplace’s equation, the singularity being caused by an abrupt change in the specified
boundary conditions in the first case, and by a reentrant corner on the boundary in the second. The
third is an elastostatic problem, in which the presence of a crack results in a reentrant corner on
the domain boundary. These problems were chosen because, in each case, the domain has a simple
form which has enabled results of high accuracy to be obtained using a variety of methods which
are of less general applicability than the current scheme. We will, therefore, take these results as
benchmarks against which the accuracy of the current results may be assessed. The application of
the present scheme to more difficult geometries has been illustrated for the elastostatic case in [10],
some of the problems treated requiring superelements of more general shape than the rectangles used
herein.

3.1. The “Motz Problem” — Laplace’s equation
We consider the solution of Laplace’s equation over the region —1 <x <1, 0 < y < 1 shown in

Fig. 5 subject to the boundary conditions

{0 on —1<x<0, y=0,
“_{500 onx=1 0<y<l, (15)
du/on = 0 elsewhere on the boundary.

The discontinuity at the origin in the boundary conditions along the line y = 0 results in a singularity
at this point. The asymptotic expansion of the solution about the origin is of the form [14]

W= io car™ 2 cosf(n + 1)0]. (16)
du/On=0
Y
du/On=0| * u=500
P4
| | > |
i u=0 i Ou/On=0 |
| : i : |
- > -

Fig. 5. Domain and boundary conditions for the Motz problem.
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Mesh 1 Mesh 2 Mesh 3

Fig. 6. Meshes used for the Motz problem.

This problem was first formulated by Motz [14] in a slightly different form. He solved it by
finite differences, modifying the usual finite difference approximation in the neighborhood of the
singularity so as to take into account the form of the asymptotic expansion for the solution. The
Motz problem has served as a simple test case for many methods of dealing with singularities
in elliptic boundary problems, among them expansion in dual series [15], conversion to a bound-
ary integral equation [16], conformal transformation to a simpler domain [17], and determination
of the coefficients in the asymptotic expansion (16) by least-squares fitting of the boundary cond-
itions [18].

Accurate solutions have been obtained by various authors over a grid of points of size & = % in
both directions, and over a grid of size & = 5 over the region |x|<3i, 0<y<i. We shall refer
to these as the coarse and fine grids, respectively. The current method was applied over several
different finite element meshes which are illustrated in Fig. 6.

Six terms were included in the truncated series (16), and the superelement occupied the region
x| <%, 0<y<? with R = 0.9 x % (see Section 3.4). Ordinary Gaussian quadrature is adequate
for evaluating the integrals (7), as only non-negative integral powers of » appear in the integrand.
The mesh was designed in each case so as to facilitate the computation of the solution at the
points of the above-mentioned coarse grid. Our values over these grids were obtained in the fol-
lowing manner. For points inside the superelement we evaluated the truncated series (16) using
the values of the coefficients given by the solution program. For points outside the superelement
or on its boundary, we used the nodal values from the solution, making use of the appropriate
finite element interpolant if the grid point did not coincide with one of our nodes. In order to as-
sess the accuracy of our results we will take the results obtained by the conformal transformation
method of Whiteman and Papamichael [17] as being exact. Levin and Sideridis? have computed
this case over the coarse grid by the method of [17] and also by boundary collocation. Their re-
sults, listed to three figures after the decimal point, agree with one another and also with those
given by the Li et al. series [18], obtained by least-squares fitting over the boundary, to within a
maximum difference of 0.006. This excellent agreement makes this problem a very good bench-
mark. The conformal transformation results [17] over the fine grid are given to two digits after the
decimal point, and agree to within a maximum difference of 0.02 with the extended dual series
results of Whiteman [15], and the values obtained from the Li et al. series. In fact, the results
of the three calculations agree to all the figures given at nearly all of the points of the fine grid.

2D, Levin and A. Sideridis, A collocation technique for certain singular harmonic mixed boundary value problems,
Technical Report TR/73, Department of Mathematics, Brunel University, 1977 (unpublished).
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Table 1
Maximum error at the grid points for the Motz problem

Elements used No. of Total no. of Maximum Maximum

external d.of. error relative

d.o.f. error
Quadratic, mesh 2 101 124 0.065 0.00013
Quadratic, mesh 1 33 47 0.39 0.0008
Linear, mesh 3 92 98 0.55 0.0011
Linear, mesh 2 39 45 1.83 0.0037
Table 2

Values for the series coefficients ¢, for the Motz problem

n Li et al. Quadratic Quadratic Linear Linear
[18] mesh 2 mesh 1 mesh 3 mesh 2
0 401.162 401.166 401.202 401.379 401.605
1 87.656 87.657 87.677 87.605 87.614
2 17.238 17.236 17.366 17.143 16.670
3 —8.071 —8.061 —7.690 —8.719 —7.133
4 1.440 1.432 2.741 —1.481 —2.886
5 0.331 0.570 1.758 1.588 1.297

In Table 1 we list the maximum over all points of the two grids of the difference between the
“exact” results and those of the current method (this maximum always occurred at a point of the
coarse grid) and later we will refer to the accuracy of the series coefficients c;, which determine
the accuracy of the solution near the singular point. The maximum relative error is defined by
(uFE — uFX)/uEX | where uEX in the domain is 500. The number of degrees of freedom (d.o.f.) is
the number of nodal values in Q,, including those on the boundary of the superelement, and gives
the size of the set of linear equations to be solved. The total number of d.o.f. includes the internal
nodes of the superelement (in the quadratic case) and the series coefficients, both of which can be
recovered from the solution with the aid of the auxiliary matrix referred to in Section 2.

We see from the results listed that a quadratic element yields errors of an order of magnitude
smaller than a linear one for a given number of d.o.f. In Table 2 we list the values of the series
coefficients obtained using each of the four meshes, compared with those of Li et al. [18]. The first
three coefficients are obtained with good accuracy, and the improvement in accuracy as the number
of d.o.f. is increased or, as quadratic elements are used instead of linear ones, is more marked than
the improvement in the solution itself.
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Fig. 7. L-shaped domain and boundary conditions.

3.2. Laplace’s equation over an L-shaped domain

The domain is illustrated in Fig. 7. The boundary conditions are the following:

u=1 onx=-1, —-1<y<l,
u=20 onx=1, -1<y<0, 17)
Ou/on =0 elsewhere on the boundary.

The singularity arises from the reentrant comer of magnitude 37w/2 at the origin. The asymptotic
expansion for the solution about the origin is of the form

u= 3 e cos[(2n/3)8], —37/2 <0 <0. (18)
n=0

Computations were carried out using a mesh of quadratic rectangular elements with a quadratic
superelement around the singularity, and a linear mesh with a linear superelement, as shown in
Fig. 8. In each case, the superelement covered the part of the domain for which |x|,|y|<0.6, and
four terms were included in the series (18). Computations have also been made for this problem by
several authors using integral equation [16] or conformal transformation [19] methods, the resuits
being listed over a grid of size 0.2 x 0.2. The results obtained by the three methods agree with one
another to within a maximum difference of 0.0002. The collocation results are given to six figures
after the decimal point, and we will treat them as exact, and use them to determine the error in our
computed values at the points of this grid, our values at the grid points being computed in a manner
analogous to that used in the case of Problem 1. The results are summarized in Table 3. The error
listed is the largest error at a grid point. As the maximum value of the solution is u = 1.0, the
relative and absolute errors are identical. For this problem, the accuracy of the numerical quadrature
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Fig. 8. Meshes used for the L-shaped domain.

Table 3
Maximum error at the grid points for the L-shaped domain

Elements used No. of Total no. of  Maximum
external d.o.f. error
d.o.f.

Quadratic mesh 68 99 0.0002

Linear mesh 57 67 0.0015

Table 4

Values for the series coefficients ¢, for the L-shaped do-

main

n Quadratic Linear
mesh mesh

0 0.6667 0.6667

1 —0.4520 —0.4527

2 —0.2149 -0.2142

3 0.0000 0.0000

was checked by computing the SSE also using the adaptive scheme. The values of the solution and
the series coefficients obtained using the two schemes differed by at most 0.0001. We list our values
for the series coefficients for reference in Table 4 (the first series coefficient is the well known “flux
intensity factor”). We are not aware of any other calculations of these coefficients with which the
current results could be compared.
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3.3. Central crack in a rectangular plate — elastostatic problem

To demonstrate the accuracy, efficiency and ease of application of the method, a sample central
crack problem in a rectangular plate subjected to tension has been treated using the SSE, and the
results compared with the analytic result. We assume the material is homogeneous, isotropic and
linearly elastic.

With the usual assumptions of linear elasticity, the asymptotic series (6) can be represented as
follows [20]:

1 &= ;
uy = (uy)o + o ;Air(’_l/z)[(rc +i—2)cos(i — 1)0 — (i — 3)cos(i — 3)0]

+ BT —(k 41+ 1) sin(i — $)0 + (i — §) sin(i — 3)0]
+ Cir'[(k + i+ 1) cos(if) — i cos(i — 2)6]
+ D [—(ic + i — 1) sin(if) + i sin(i — 2)0] (19)

and

1 = . ) .
uy = ()0 + o iZZIA,-r(’“m)[(K —i—3)sin(i = )0+ (i — 3) sin(i — 3)0]

+ BTV — i — 1) cos(i — 1)0+ (i — 1) cos(i — 3)0]
+ CiF'[(k — i — 1) sin(if) + i sin(i — 2)6]
+Dir'[(k —i + 1) cos(if) + i cos(i — 2)6], (20)

where ((u1)o, (42)o) denotes (u;,u,) at ¥=0, and x and u are defined in Appendix A. If the symmetry
and loading conditions are such that only mode 1 displacements occur, then B; = D, = 0 for all i,
while for mode 2 displacements, 4, = C; = 0 for all i. The stress intensity factors K and Ky for
modes 1 and 2, respectively, are given in terms of the coefficients of the series (19) and (20) by

K] = A] V21 and KH = —B[ vV 2.

As a result of symmetry, one-quarter of the plate containing the central crack is considered. A
coarse and a refined mesh were considered as shown in Fig. 9. The dimensions of the plate are
a/b = 0.5, and h/b = 1.0, and quadratic isoparametric shape functions were used. The following
values for the essential parameters are assumed: Poisson’s ratio v = 0.33, Young’s modulus £ = 1.0,
uniform tension g, = 1, and plane stress situation. For this geometry, the non-dimensional stress
intensity factor given by Isida [21] is 1.334; this result is said to be exact to four significant figures.
We obtain the value of 1.3323 with the coarse mesh, and 1.3339 with the refined mesh shown, using
16 terms in the expansion, and with a value of 0.4 for R/a.

The results show that the present method yields accurate results for the stress intensity factor using
coarse meshes. Further examples for the use of the SSE to obtain the coefficients of the asymptotic
expansion for crack and V-notch problems, including mixed mode, and slanted cracks can be found
in {10].
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Fig. 9. Elastostatic crack problem: domain, boundary conditions and meshes employed.

3.4. Dependence of the results on the superelement parameters

Let 2/ denote the length of the longest side of the superelement. For a superelement with
given geometry, the parameters to be chosen are the ratio R/! of the radius of the circular re-
gion to the size of the superelement, and the number N of terms to be included in the truncated
series (6).

For the Laplace equation (Problems 1 and 2), the maximum error is found to be comparatively
insensitive to the value of R/! in the range 0.6—-0.9, and in particular for values between 0.75 and
0.9. For the Motz case, where the “exact” values of the series coeflicients are known, the best results
for the coefficients were obtained using a value of 0.9 for R/I. We adopted this value, therefore,
for the two problems. As regards the value of N, we took N to be 6 for the Motz problem, and
4 for the L-shaped domain. The inclusion of a larger number of terms led to no improvement, the
accuracy remaining unchanged.

For the elastostatic problem, the result of main interest is the non-dimensional stress intensity
factor, the “exact” value being 1.334, as quoted above. The current method gives the values of
1.3176, 1.3322, 1.3323 and 1.3323 for the coarse mesh, and 1.3195, 1.3338, 1.3339 and 1.3339 for
the refined mesh for N=8, 12, and 16 or 20 respectively with a value of 0.8 for R/I. As regards the
dependence on R//, with N=16, we obtain 1.3344 for R/l = 0.5, 1.3340 for R/! = 0.6, and 1.3339
for R/l in the range 0.7 to 0.9 using the refined mesh. Again, the result is insensitive to the value
of R/l in this range.

It should be noted that the optimal size for the SSE is problem-dependent. If the asymptotic series
coefficients turn out to be relatively large, then the SSE should be correspondingly large, in order to
avoid loss of accuracy. For a problem with a complicated geometry, it may be necessary to choose
the size of the SSE adaptively. This could increase the complexity of the method. On the other hand,
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such a problem would in any case require a certain amount of adaptivity in choosing the mesh over
the whole domain.

The results for all three problems indicate that accurate values for the solution and for the series
coefficients can be obtained using the quadratic superelement with quite a coarse mesh. Indeed, the
results for the fine mesh were computed mainly to show what is the ultimate accuracy which can
be achieved, the results from the coarse meshes being sufficient for all practical purposes.

4. Conclusions

Superelements incorporating blending functions have been designed to enable the finite element
schemes to deal with the difficulties caused by singularities in the solution of two-dimensional elliptic
boundary value problems arising from abrupt changes in the boundary conditions or in the direction
of the boundary. Application to benchmark problems for the Laplace equation and to linear elasticity
show the method to be both accurate and efficient. The computation yields values for the coefficients
in the asymptotic series representing the solution in the vicinity of the singular point, as well as
for the solution over the rest of the domain. The leading coefficients, which are obtained with
high accuracy, are of particular practical importance in many cases, e.g. the stress intensity factors
for linear elasticity, for which excellent results have been obtained for a variety of cases [10].
The superelements may be incorporated into standard commercial finite element codes, as described
in [11]. The use of the SSE has the following advantages over other methods which have been
suggested:

(a) The coefficients of the series are obtained directly from the computation with high accuracy
and efficiency.

(b) The SSE can be a convex polygon of any shape, and is easily incorporated in many commercial
finite element codes.

(c) Any singular displacement field of known form may be represented by the SSE in a similar
manner to those discussed herein.

(d) For a given number of degrees of freedom the SSE provides higher accuracy when compared
with many other elements (see comparison to other methods for the computation of stress intensity
factors in [10]).

The method may be extended to elliptic problems involving other types of singularities, such
as those caused by an interface between two different elastic materials for example, provided that
the form of the asymptotic series for the solution in the vicinity of the singular point is known.
In some cases, the eigenfunctions f;(»,0,%;) can not always be computed explicitly, and numerical
approximations to f; and «; (see e.g. [22] and references therein) have to be used. The use of these
approximate values will affect the accuracy of the extracted coefficients, and detailed numerical and
mathematical analysis, beyond of the scope of this paper, would need to be performed in order to
assess the overall accuracy achieved in such cases.

The SSE method has been extended to compute eigenvalues for the Laplacian over two-dimensional
domains with reentrant corners, and applied to determine cut-off frequencies for an electromagnetic
waveguide, in the manner of [23], the preliminary results being promising.
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Appendix A. SSE bilinear forms for the elastostatic problem

Denote the displacement vector by # = (u;,u;)". In the vicinity of the singular point
u =Y A; (fir,0,00) fa(r,0,0))".

Using the space spanned by above u for the trial space, the bilinear form in £y is obtained:

n=3/2 Ju,  sin 8 ou, . Ouy  costou\
aR(" ll) = / ,/TH_, { l:( 95 - —r—%) + <Sll’165’—" -+ TE)

. Ouy cosf ouy Ou;  sinf duy
rea(smo G+ ST ) (cos0 T - S5
. 0u;  cosl o Ouy  sinf duy\*
+c (smﬂﬁ + 0 + cos 8 5 6_9> rdrdé,
K+1 33—k
= » 0222/1 » C3 = U,
k—1 k—1
__E = (3 =v)/(1+v), plane stress,
h= 2(1 +v) T3 -4y, plane strain,

E is Young’s modulus and v Poisson’s ratio. The expression for the bilinear form a,(u,u) where u,.
stands for 0u/0¢ and u,, stands for du/on (over £,) is given by

clr 00 sin20 /¢0 or sin? § [ dr\*
LL {2 )
on r on on r? on

8_6)2_ sin 20 (66 0r) 3 cos® 0
" on on r

i clr ( >2+ sin 20 (@@) L sin’0 (@)
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¥
J
12 49 Lin2e (5_(9)2 _ sin26 (@ﬁ) N cos® 0 (ﬁ)z
“2:077 on ¥ on on 2
<0

n

) (@0)2 sin20(696r> sin’ 0
O —) + +

on on

+—— [sm2 0

¥

r

7
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e Ler 0(59) sin 20 <gqg> N cos® 6 (Q_r_ 2
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J ¢ r \8&a¢ 2 \o¢

+sin20 (Q@) cos? @ ((?r ar)
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