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A high-order semi-analytic finite difference scheme is presented to overcome degradation of numerical
performance when applied to two-dimensional elliptic problems containing singular points. The scheme,
called Least-Square Singular Finite Difference Scheme (L-S SFDS), applies an explicit functional represen-
tation of the exact solution in the vicinity of the singularities, and a conventional finite difference scheme
on the remaining domain. It is shown that the L-S SFDS is "pollution" free, i.e., no degradation in the
convergence rate occurs because of the singularities, and the coefficients of the asymptotic solution in the
vicinity of the singularities are computed as a by-product with a very high accuracy. Numerical examples
for the Laplace and Poisson equations over domains containing re-entrant corners or abrupt changes in the
boundary conditions are presented. c© 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14:
281–296, 1998
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I. INTRODUCTION

Standard high-order finite difference schemes (FDS) are very efficient in solving elliptic partial
differential equations (PDEs) [1–5], except for problems containing singularities, where their
high-order convergence rate deteriorates [4, 5]. Singular points may arise on the boundary from
an abrupt change of boundary conditions or a re-entrant corner, and first derivatives of the exact
solution tend to infinity as the distance from these points tends to zero. In the presence of such
singularities, standard high-order FDSs become inaccurate, and reasonable engineering accuracy
is often impossible, or at least is very costly to obtain due to the need of a highly refined mesh.
FDSs have been modified in various ways in order to overcome this difficulty, see, e.g., [6]. The
schemes suggested, however, suffer from either inefficiency due to the requirement of a large
number of grid points in the neighborhood of singularities, or they must be modified in ways
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that are very difficult or even impossible to incorporate into standard finite difference computer
programs.

This article presents a semi-analytic method for obtaining accurate solutions to elliptic prob-
lems with singularities. The method is based on the use of known expansions of the solution in
the vicinity of singular points. We show several examples where the difficulties may be overcome
by a simple yet efficient scheme, provided that the form of the asymptotic series for the solution
in the neighborhood of the singular point is known explicitly. The developed scheme overcomes
the deterioration of the high-order FDS convergence rate (due to singularities), and at the same
time provides the coefficients of the asymptotic series (which determine the analytic solution in
the vicinity of the singular point) with high accuracy. These coefficients are of major engineering
importance. We demonstrate the method on the basis of two-dimensional Laplace and Poisson
equations with analytic forcing functions on polygonal domains containing re-entrant corners or
abrupt changes of boundary conditions. These problems have been chosen because they are sim-
ple enough for demonstration purposes, yet contain all the essential properties that are common
to elliptic boundary value problems. From an engineering point of view, the Laplace and Poisson
equations describe several interesting problems such as steady state heat transfer in an unsmooth
domain, Poiseuille flow along a straight duct of cross-section containing re-entrant corners, the
Saint Venant torsion of a bar having an unsmooth cross-section, the deflection of a membrane
with a free half-edge, etc.

Similar methods to the one presented here, in the framework of boundary and finite element
methods, have been analyzed mathematically in detail in the past, and the reader is referred to
[7, 8] and the references therein. In [7, 8] the results are highly influenced by the number of
terms in the singular asymptotic seriesN , and the condition number increases considerably asN
increases. This is not the case in the present study, as will be shown in Section III.A.

The notation, preliminaries, and techniques are formulated in Section II. In Section III we
present the results of three numerical examples: the well-known Motz problem [9], and the
Laplace and Poisson equation over an L-shaped domain [10]. We conclude with summary and
conclusions in Section IV.

II. FORMULATION

A. Notations and Preliminaries

We consider the Poisson equation

∇2u(x, y) = −f(x, y) in Ω (1)

Bi(u) = 0 on Γi i = 1, 2 (2)

Bi(u) = di(x, y) on Γi i 6= 1, 2, (3)

where di(x, y) are smooth functions on the boundaries, and Bi is the trace operator for Dirichlet
boundary conditions, and ∂/∂n for Neumann boundary conditions, n denotes the outward normal
vector to the boundary. The solution to the above problem in the vicinity of a singular point takes
the form

u = uH + uP .

For polynomial functions f , or simple ones, it is possible to find explicitly a particular solution,
uP , which satisfies (1) identically.
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The analytic form of the homogeneous solution, uH (satisfying the Laplace equation∇2uH =
0), in a two-dimensional domain Ω in the vicinity of a singular point is best understood and is
given in the form of an asymptotic series with unknown coefficients [11, 12]:

uH =
N∑
i=1

S∑
s=0

M∑
m=0

Aismfism(θ)rαi+m lns(r) + usmooth , (4)

r and θ being the polar coordinates of a system located in the singular point. αi are the eigenvalues
(real numbers in the case of the Laplace problem) and fism(θ) are the eigen-functions, which
are analytic. The function usmooth belongs to the Sobolev space Hq(Ω), where q depends on N ,
and can be made as high as required providing that N is large enough. Except for special cases
(when αi is an integer, or when the multiplicity of an eigenvalue is higher than the multiplicity of
the corresponding eigen-function), S = 0. M is either 0, or a positive integer when the boundary
near the singular point (at the vertex) is curved. Herein only straight boundaries in the vicinity
of the singular point will be addressed, and the special cases where ln r terms appear will not be
treated; therefore, we consider (4) in the simplified form

uH =
N∑
i=1

Air
αifi(θ) + usmooth. (5)

The eigen-pairs are uniquely determined by the geometry, the boundary conditions along bound-
aries intersecting in the singular point, and material data. Note that if αi < 1, the corresponding
ith term in the expansion (4) for ∇u is unbounded as r → 0. In some cases, the eigen-functions
fi(θ) cannot always be computed explicitly, and numerical approximations to fi and αi (cf. [13–
16]) have to be used. We can think of the coefficientsAi of these terms as analogous to the stress
intensity factors of elasticity. We generalize this terminology, and refer to all coefficients Ai,
whether or not the corresponding terms in (4) are singular, as generalized flux intensity factors
(GFIFs). The analogous coefficients in elasticity are called generalized stress intensity factors
(GSIFs). The GSIFs are very important from an engineering point of view, because they are
related to failure theories.

Let ∂Ω = ∪iΓi, where Γi are straight lines called edges. These edges intersect at points called
vertices. The two boundaries intersecting in the singular point of interest are denoted by Γ1 and
Γ2, see Fig. 1.

When f in (1) is not a polynomial or a simple function for which uP could be found explicitly,
the following approach can be adopted. Under mild regularity restriction on f in the vicinity of
singularities, one may expand f in a series of the form

f =
∞∑
i=0

riφi(θ). (6)

By the shift theorem, the particular solution uP for the cases that i+ 2 6= αj∀i, j is

uP =
∞∑
i=0

ri+2ψi(θ), (7)

where ψi(θ) are constructed from φi(θ), by solving an ordinary differential equation in θ. Oth-
erwise, for each αj that satisfies i + 2 = αj , the series expansion (7) will contain a term of the
form

ri+2[cj ln(r)fj(θ) + ψi(θ)], (8)
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FIG. 1. Domain with a re-entrant corner and notations.

with cj chosen such that the ‘‘Fredholm’s Alternative’’ is satisfied (see [17, pp. 78–80]). It is
important to note that ψi(θ) can be constructed as a linear combination of fi(θ) as shown in [18,
Chapt. 8].

We consider polygonal domains with boundaries parallel to the Cartesian axes, so that we can
apply a finite difference grid that is free of curved boundary representation errors, and does not
require a special scheme near aligned boundaries. This enables us to concentrate on the influence
of the singularities alone on the performance of the FDS. The grid is uniform both in x and y
directions, and the distance between two adjacent grids parallel to one of the axes is denoted by h.

B. Finite Difference Scheme

Considering the Poisson Eq. (1), the high-order finite difference scheme used in our computation
is the explicit nine-point stencil with hx = hy = h, which gives a truncation error ofO(h8) over
a square mesh (i.e., a convergence rate of O(h6)). For any grid point denoted by the indices i, j,
the discretization scheme is given by [2, 5, 19]

1
6h2 [4(ui−1,j + ui,j−1 + ui+1,j + ui,j+1)

+ (ui−1,j−1 + ui+1,j−1 + ui+1,j+1 + ui−1,j+1)− 20ui,j ]

=
[
1 +

2h2

4!
∇2 +

2h4

6!

(
∇4 + 2

∂4

∂x2∂y2

)]
fi,j . (9)

The fourth-order discretization scheme based on the nine-point stencil with hx 6= hy is presented
in [20].

Neumann boundary condition implementation requires a special technique for retaining the
O(h6) order of the overall scheme. Assume that the Neumann boundary condition ∂

∂yu(x, y =
0) = g(x, y = 0) is imposed on the boundary y = 0. For any grid point on this boundary, (9)
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becomes

1
6h2 [4(ui−1,0 + ui,−1 + ui+1,0 + ui,1) + (ui−1,−1 + ui+1,−1 + ui+1,1 + ui−1,1)− 20ui,0]

=
[
1 +

2h2

4!
∇2 +

2h4

6!

(
∇4 + 2

∂4

∂x2∂y2

)]
fi,0. (10)

Grid points with the index j = −1 denote fictitious (dummy) nodes, which lie outside the
computational domain. The Taylor series expansion for a node at j = ±1 is given by

ui,±1 = ui,0 +
∞∑
m=1

(±1)m

m!
hm

∂mui,0
∂ym

. (11)

Using (11) one obtains

ui,1 − ui,−1 = 2
∞∑
m=1

h2m−1

m!
∂2m−1ui,0
∂y2m−1 . (12)

By repeated differentiation m times with respect to y of (1), and rearranging it, the following
recurrent form is obtained:

∂2m−1u

∂y2m−1 =
∂2m−3

∂y2m−3

[
f − ∂2u

∂x2

]
, m = 2, 3, · · · (13)

Assume for simplicity that f(x, y) in (13) is constant (the techniques outlined here can be gener-
alized to any analytic function f ), then, applying recursively (13) for the grids on the boundary
y = 0 yields

∂2m−1ui,0
∂y2m−1 = − ∂2

∂x2

∂2m−3ui,0
∂y2m−3 = · · · = (−1)m−1 ∂

2m−2g(xi)
∂x2m−2 , m = 1, 2, · · · (14)

Substituting (14) into (12) gives an explicit expression for the dummy nodes

ui,−1 = ui,1 − 2
∞∑
m=1

h2m−1

m!
(−1)m−1 ∂

2m−2g(xi)
∂x2m−2 . (15)

For O(h8) truncation term, four terms in the series (15) are sufficient:

ui,−1 = ui,1 − 2
4∑

m=1

h2m−1

m!
(−1)m−1 ∂

2m−2g(xi)
∂x2m−2 . (16)

Substitution of (16) for the dummy nodes in (11) provides a sixth-order accuracy discretization
when Neumann boundary conditions are applied. In the particular case where g(x) = 0 and
f(x, y) is constant, (16) reduces to ui,−1 = ui,1, and the nine-point stencil becomes

1
6h2 [4(ui−1,0 + ui+1,0 + 2ui,1) + (2ui+1,1 + 2ui−1,1)− 20ui,0] = const. (17)

It should be noted that the same procedure may be applied twice (in the neighborhood of an
intersection of two boundaries) to obtain a discretization at Neumann corners.

The FDS loses its O(h6) convergence rate in the presence of singularities, as will be demon-
strated by a numerical example. To overcome this difficulty, a new technique called Singular
Finite Difference Scheme (SFDS), which employs the analytic form of the exact solution in the
vicinity of the singularity, is developed.
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C. Singular Finite Difference Scheme

Consider for example the L-shaped domain in Fig. 1, having a singular point at vertex C. An
artificial sub-domain denoted by ΩS is considered, and the common boundary with Ω is denoted
by ΓS , see Fig. 2. The boundary ΓS is constructed along the grid points, such that ΩS is defined
as {(x, y)|(x, y) ∈ Ω, |x| < Ex, |y| < Ey}. In ΩS no grid-mesh is employed, instead, u at any
given point is represented by the analytic solution given in (5), i.e., by a series of N terms with
Ai, i = 1, . . ., N being unknowns. Only in Ω − ΩS the discretization scheme (9) is employed.
Let us say, for example, that there are NG grid points in Ω− ΩS (e.g., 99 grid points in Fig. 2).
The scheme for each grid laying on ΓS has to include at least a point in ΩS , so that the series
coefficients Ai become a part of the unknowns in the algebraic system of equations. Thus, one
obtains an under-determined system of NG equations with NG+N unknowns.

There are two possible ways for generating the N additional equations necessary to solve the
undetermined system: (a) Collocation of arbitrary points on ΓS , or (b) Least-Squares for all points
on ΓS . Although the collocation technique does not provide results of acceptable accuracy, we
describe it and demonstrate the results on an example problem in Section III.
Collocation: The solution ui,j at each grid on ΓS , satisfying the FDS (9), satisfies also (5), i.e.,
has the analytic form of the solution in the vicinity of the singular point. IfN terms are considered
in the analytic expression, one has to have at least: (a) N + 2 grid points along ΓS if Dirichlet
B.C.s are applied on both boundaries Γ1 and Γ2, (b) N + 1 grid points along ΓS if Neumann
B.C.s are applied on Γ1 or Γ2, (c) N grid points along ΓS if Neumann B.C.s are applied on both
Γ1 and Γ2. (The grid points on Γ1 and Γ2 cannot be used for collocation if Dirichlet boundary
conditions are prescribed.) Thus, additional N algebraic equations of the form

ui,j − (uP )i,j =
N∑
k=1

Akr
αk
i,j fk(θi,j) (18)

have to be added to the system of NG equations. In (18) ri,j (resp. θi,j) represents the radius
vector (resp. the angle shown in Fig. 1) from the vertex to the grid point i, j. The choice of the
grid points along ΓS for which (18) is applied is made arbitrarily, and the results are virtually
insensitive to the location of the grid points.

FIG. 2. Notations for the SFDS.
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Least Squares: Here all the grids along ΓS are considered, and at each grid it is required that Eq.
(18) be satisfied. It is essential that the number of the grid points along ΓS be greater thanN + i,
where i is either 0, 1, or 2, as explained previously. Thus, an over-determined set of equations is
obtained, such that a procedure of least squares is applied. We define:

B =
∑
i

∑
j

[
ui,j − (uP )i,j −

(
N∑
k=1

Akr
αk
i,j fk(θi,j)

)]2

, (xi, yj) ∈ ΓS . (19)

B obtains a minimum when the coefficients Ak are the best approximation to the exact values.
Thus, we have to consider:

∂B
∂Ak

= 0 k = 1, 2, · · ·N. (20)

(20) provides a system of N equations, which is added to the NG system of equations, thus
providing a complete system for the N +NG unknowns.
Empirical connection betweenN and h: For obtaining a connection between the number of terms
in the series used in ΩS and h in Ω − ΩS , it is natural to argue that the FDS truncation error
should be of the same magnitude as the series truncation error. This is equivalent to requiring
that second derivatives have the same orders of magnitude:

O(h6) = O(RαN−2), (21)

whereR is the distance to the points in ΩS that are used for the FDS, i.e.,R = O(Ex−h)(Ex ≈
Ey). From (21) the following connection is obtained:

αN = O
[
2 +

6 log(h)
log(Ex− h)

]
. (22)

Hence, one should use N terms in the series so that the next term, which is omitted, is approxi-
mately given by (22) as a function of h and Ex. It should be noted that N cannot be greater than
the number of grids along ΓS . If (22) requires a larger number of terms in the series expansion,
this number should be limited to the number of grids along ΓS .

Remark 1. An FDS results in a system of algebraic equations that may be represented in a matrix
form [K]u = b, where [K] is a sparse symmetric matrix with a low bandwidth. This enables
efficient solvers for the solution of the matrix equations. The addition of the series coefficients to
the matrix [K] increases the band-width of the generated matrix. However, if the grids on ΓS and
the grids in their vicinity are numbered properly, this does not cause a significant deterioration
in the efficiency. Herein, due to the small dimension of the matrix [K], no special numbering
strategy has been considered.

III. NUMERICAL EXAMPLES

Abilities of the L-S SFDS are illustrated on three example problems for which previous results are
available. Two of them concern the Laplace equation, the singularity being caused by an abrupt
change in the specified boundary conditions in the first case, and by a re-entrant corner on the
boundary in the second. The third is the Poisson equation over an L-shaped domain, which is of
engineering importance. These problems were chosen because, in each case, the domain has a
simple form that has enabled results of high accuracy to be obtained using a variety of methods,
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which are of less general applicability than the current scheme. We will, therefore, take these
results as benchmarks against which the accuracy of the current results may be assessed.

A. ‘‘Motz Problem’’ Laplace Equation
We consider the solution of the Laplace equation over the region−1 < x < 1, 0 < y < 1 shown
in Fig. 3 subject to the boundary conditions:

u = 0 on − 1 ≤ x ≤ 0, y = 0

u = 500 on x = 1, 0 ≤ y ≤ 1

∂u/∂n = 0 elsewhere on the boundary. (23)

The discontinuity at the origin in the boundary conditions along the line y = 0 results in a
singularity at this point. The asymptotic expansion of the solution about the origin is of the form
[9]

u =
∞∑
i=1

Air
i−1/2 cos[(i− 1/2)θ]. (24)

This problem was first formulated by Motz [9] in a slightly different form.
Loss of high-order convergence of the FDS: First, we demonstrate that when the singular point

is not properly treated, the O(h6) convergence rate is lost not only in the neighborhood of the
singularity, but also where the solution is smooth. This phenomenon, known as ‘‘pollution,’’ has
been demonstrated long ago in [21]. Due to ‘‘pollution’’, the convergence inL∞ norm, as h→ 0,
is at most O(h2αmin−ε), ε > 0 can be arbitrary small, which for the Motz problem becomes

‖uh − uEX‖L∞,Ω−ΩS
def= ‖e‖L∞,Ω−ΩS ≤ Ch1−ε. (25)

Over the whole domain we use a grid-mesh containing NGx grid points in the x-direction and
NGy grid points in the y-direction. Four different meshes are studied with (NGx,NGy) =
(11, 6), (21, 11), (41, 21), (81, 41). We define the ΩS sub-domain by Ex = Ey = 0.4. The so-
called ‘‘exact’’ solution over Ω−ΩS is obtained numerically by solving the problem on Ω−ΩS
with a (161, 81) mesh, applying on the boundary ΓS the exact series truncated after 20 terms.
We define the RMSh norm (equiv. L∞h ) as the norms corresponding to the Root-mean-square
norm discretized and evaluated at the data generated at the grid points. The pollution effect is
clearly seen in Fig. 4, where we plot the RMSh measure of the error and the error in L∞h norm

FIG. 3. Domain and boundary conditions for the Motz problem.
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FIG. 4. Motz problem—Error measures in Ω− ΩS , Ex = Ey = 0.4.

in the sub-domain Ω − ΩS , on a log–log scale. As expected, if no special treatment is applied
to the FDS in the vicinity of the singular point, although the solution in Ω − ΩS is smooth, the
convergence rate because of the ‘‘pollution’’ deteriorates considerably toO(h). It will be shown
in the following that the Least-Square SFDS is ‘‘pollution’’ free.

SFDS with Collocation: We use the collocation technique only for this example problem to
illustrate its behavior. Let us take a grid-mesh with h = 0.2 (i.e., NGx = 11, NGy = 6),
Ex = 2h and Ey = 2h (see Fig. 5). Having a system of 50 + N equations, we compute
the coefficients Ai of the asymptotic expansion (24) called GFIFs, when considering 1 then
2, 3, · · ·N coefficients in series. We summarize in Table I the firstN coefficientsAi obtained by
the collocation method, compared to the exact values from [22]. It is noticed that the convergence
of GFIFs is not monotonic as N increases, and high accuracy for even large Ns (as N = 6, for
example) is not guaranteed. Thus, unless one uses collocation for all points along ΓS , the accuracy
of the obtained values for the GFIFs cannot be guaranteed. There is also a strong dependency
of the extracted GFIFs on the sub-domain size, which is a drawback of the collocation method
in this example problem (the phenomenon has also been seen when considering a finer grid
mesh). Numerical tests conducted also indicate that the accuracy of the extracted GFIFs is very
sensitive to mesh size. For these reasons, the collocation method will be abandoned in favor of
the Least-Squares SFDS, for which results are provided in the following.

FIG. 5. Grid for the Motz problem, h = 0.2, Ex = 2h,Ey = 2h.
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TABLE I. Values for Ai for the Motz problem, obtained by collocation, h = 0.2, Ex = Ey = 2h.

N A1 A2 A3 A4 A5 A6 A7

1 230.3618
2 403.2672 76.9853
3 403.1229 90.0322 21.4352
4 400.9074 87.5280 17.0236 −8.1593
5 399.5765 86.1002 14.4975 −11.0333 −3.5263
6 397.3175 83.4513 10.9041 −16.7071 −8.1538 −5.6472
7 401.1965 87.7603 17.4580 −7.9267 1.4419 1.9505 3.5630

Exact 401.1625 87.6559 17.2379 −8.0712 1.4403 0.3311 0.2754

Least-Squares SFDS: Results obtained by employing Least-Squares (L-S) SFDS are provided.
Let us consider again a grid-mesh having h = 0.2 (i.e., NGx = 11, NGy = 6), with Ex = 2h
and Ey = 2h, as presented in Fig. 5. First, we demonstrate that when employing the L-S
SFDS, the scheme is ‘‘pollution’’ free, i.e., it regains the O(h6) convergence rate away from
the singularity. Over the whole domain we use a grid-mesh containing NGx grid points in
the x-direction and NGy points in the y-direction. Three different meshes are studied with
(NGx,NGy) = (11, 6), (21, 11), (41, 21). In the series, we useN = 8, 13, 19 terms, according
to (22). Again, we plot theRMSh measure of the error and the error inL∞h norm in the sub-domain
Ω−ΩS , on a log–log scale in Fig. 6. Figure 6 clearly demonstrates that the Least-Squares SFDS
is ‘‘pollution’’ free, i.e., the numerical scheme regained its O(h6) convergence rate in Ω− ΩS .
More importantly, the accuracy obtained with the Least-Squares SFDS has been improved by more
than three orders of magnitude, and the convergence rate over all Ω, including the neighborhood
of the singularity is at least O(h6).

Having three meshes with (NGx,NGy) = (11, 6), (21, 11), (41, 21), and Ex = 0.4, we
summarize in Table II the first six GFIFs, Ai when N is defined by (22). For example, for the
mesh (11, 6) one has to solve a system of 50 + 8 equations and for the mesh (21, 11), 185 + 13

FIG. 6. Motz problem with L-S SFDS: Error measures in Ω− ΩS , Ex = Ey = 0.4.



. . . TWO-DIMENSIONAL ELLIPTIC PROBLEMS WITH SINGULARITIES 291

TABLE II. Values for Ai for the Motz problem, obtained by Least-Squares, Ex = Ey = 0.4.

Mesh N A1 A2 A3 A4 A5 A6

(11, 6) 8 401.1263375862 87.6612836028 17.2427839136 −8.4202285208 0.6598664045 0.3589950529
(21, 11) 13 401.1624857235 87.6558868625 17.2379085673 −8.0738056263 1.4401384896 0.3307413318
(41, 21) 19 401.1624541887 87.6559199742 17.2379153112 −8.0712413252 1.4402720290 0.3310543171
Exact 401.1624537452 87.6559201951 17.2379150794 −8.0712152597 1.4402727170 0.3310548859

equations. The absolute relative error (%) of the i-th GFIF is defined by

100
|(AEX)i − (Ah)i|
|(AEX)i| .

In Fig. 7, we plot the absolute relative error of the first six GFIFs on a log–log scale. One may
notice that the convergence rate of the GFIFs is at least as fast as O(h6), and very high accuracy
(0.009% relative error) is obtained already at the coarsest mesh for A1. As expected, the higher
GFIFs are less accurate; however, from an engineering point of view only the first one or two
GFIFs are of interest, and these are extremely accurate.

Next we investigate the influence of the size of the sub-domain ΩS (characterized by the
parameters Ex,Ey) on the accuracy of the extracted GFIFs. We consider three sizes of ΩS all
with Ex = Ey: Ex = 0.4, Ex = 0.6, and Ex = 0.8. As Ex increases, the number of grid
points in Ω − ΩS , for a given h, obviously decrease and at the same time the number of terms
required in the series increases. For the mesh with Ex = 0.6 and h = 0.2, one has to solve a
system of 42 + 13(= N) equations, and for Ex = 0.6 and h = 0.1, one has to solve a system of
149 + 22(= N) equations. For example, we summarize in Table III the extracted first GFIF for
the various sizes of ΩS for different hs. The absolute relative error (percentage) of the first three
GFIFs as a function of Ex, for various hs (and corresponding Ns), is illustrated in Fig. 8. As
ΩS increases, the GFIFs are better approximated if the connection strategy in (22) is maintained.
Extremely accurate GFIFs are obtained using minimal computational resources and a simplified
L-S SFDS.

In [7] it is shown that the best approximations are obtained at N = 35, and that the stability
of that method quickly deteriorates as N grows large. To verify the sensitivity of the present
method in respect to the increase in N , we summarize in Table IV the relative errors in the first

FIG. 7. Motz problem with L-S SFDS: Convergence of the GFIFs, Ex = Ey = 0.4.
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TABLE III. Values for A1 for the Motz problem, obtained by Least-Squares, for various Ex = Ey.

Ex h 0.2 0.1 0.05

0.4 401.126337586150 401.162485723470 401.162454188717
(N = 8) (N = 13) (N = 19)

0.6 401.162613596063 401.162456095361 401.162453773681
(N = 12a) (N = 22) (N = 32)

0.8 401.162487292945 401.162454018793 401.162453748543
(N = 16a) (N = 32a) (N = 50)

aAccording to (22) N had to be larger, but the number of grids along ΓS was smaller than N .

five coefficients Ai as N increases up to 50, and the condition number of the matrix [K], for
Ex = 0.8. Table IV demonstrates that as N increases better results are obtained when coupled
with a refinement in h, and that the condition number does not increase considerably even for
N = 50.

B. Laplace Equation over an L-Shaped Domain

The domain is shown in Fig. 9. The boundary conditions are

u = 1 on x = −1,−1 ≤ y ≤ 1

u = 0 on x = 1,−1 ≤ y ≤ 0

∂u/∂n = 0 elsewhere on the boundary.
(26)

The singularity arises from the re-entrant corner of magnitude 3π/2 at the origin. The asymptotic
expansion for the solution about the origin is of the form

u =
∞∑
i=0

Air
2i/3 cos[(2i/3)θ], −3π/2 ≤ θ ≤ 0. (27)

Computations were carried out using a grid mesh of h = 0.2, with Ex = Ey = 0.4(N = 8),
and the L-S SFDS. We are not aware of any exact values for the GFIFs, except another numerical
calculation based on a singular-super-element and the h-version finite element method presented
in [23], with which the current results could be compared. We list the GFIFs obtained by the
L-S SFDS compared to those in [23] in Table V. We may conclude that the first four coefficients
presented in Table V are accurate up to the shown 4 decimal digits.

C. Poisson Equation over an L-Shaped Domain

In this subsection the Poisson equation∇2u = −1, over the domain shown in Fig. 9 is considered,
with homogeneous Dirichlet boundary conditions applied over the whole boundary. This problem
concerns the fully developed Poiseuille flow in a duct of the L-shaped cross-section. The exact
solution to this problem in the vicinity of the singular point consists of two parts: a homogeneous
part uH given by (27) (with sin instead of cos terms) and a particular solution [24]:

uP (r, θ) = r2−1
3π

[
3π
4
− ln(r) cos(2θ) + θ sin(2θ)

]
. (28)
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FIG. 8. Motz problem with L-S SFDS: Convergence of the GFIFs, for various (Ex = Ey).

u = uH + uP also represents in engineering practice the Prantl’s stress potential (see, e.g., [25,
Chapter 35]) from which the stress tensor to the Saint Venant torsion of a straight bar can be
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TABLE IV. Relative errors in Ai for the Motz problem, obtained by Least-Squares at Ex = Ey = 0.8.

N = 16, h = 0.2 N = 32, h = 0.1 N = 50, h = 0.05

eA1 (%) 8.3626e− 06 6.8200e− 08 7.9873e− 10
eA2 (%) 9.5457e− 06 3.8992e− 09 8.6381e− 10
eA3 (%) 3.2480e− 04 3.9845e− 06 5.4001e− 08
eA4 (%) 4.6258e− 03 4.8031e− 05 5.9758e− 07
eA5 (%) 2.8341e− 03 4.1819e− 05 5.9397e− 07

Cond. #a 3.31e+ 01 2.70e+ 03 1.29e+ 05

aCond. #
def
=
√
λmax/λmin, where λ is an eigen-value of [K].

obtained. This problem, for example, is of technical importance in fracture mechanics, and the
‘‘stress intensity factor’’ defined by 2

3A1 is often sought.
Exact solution to the problem of interest is not available; however, numerical tests using multi-

grid methods are reported in [10]. According to this reference, A1 = 0.40192487, which is
accurate to the fourth significant digit, andA2 = O(10−7). It is known [24] that, for the Poisson
equation (with f = 1) over the L-shaped domain, the even terms in the expansion (27) vanish.
Therefore we may expect that the computation will provide A2 = A4 = · · · = 0.

We use three grid meshes with h = 0.2, 0.1, and 0.05 with Ex = Ey = 0.4, andN computed
according to h and Ex. When applying the L-S SFDS for the Poisson equation, it is essential to
consider the particular solution (28) as outlined in (19). For the mesh with h = 0.2, for example,
one has to solve a system of 51 + 11(= N) equations. We summarize in Table VI the extracted
first three GFIFs for the various meshes used together with the number of equations to be solved.
We demonstrate that the first GFIFs are obtained accurately (up to the fifth digit) for the Poisson
problem as well, and as expected A2 ≈ 0.

FIG. 9. L-shaped domain and boundary conditions.
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TABLE V. Values for the GFIFs for the L-shaped domain.

[23] L-S SFDS

A0 0.6667 0.6667
A1 −0.4520 −0.4520
A2 −0.2149 −0.2149
A3 0.0000 0.0000

TABLE VI. Values for A1, A2 and A3 for the Poisson problem, obtained by L-S SFDS, for various grid
meshes.

h = 0.2 h = 0.1 h = 0.05
51 + 11(= N) eqs. 228 + 20(= N) eqs. 960 + 28(= N) eqs. [10]

A1 0.401,928,540 0.401,937,293 0.401,931,091 0.40192487
A2 −3.6e− 17 1.1e− 16 −1.4e− 13 −1.475e− 7
A3 0.093,666,634 0.093,650,012 0.093,648,362 Not avail.

IV. SUMMARY AND CONCLUSIONS

Semi-analytic high-order finite difference schemes have been developed for two-dimensional
elliptic boundary value problems with singularities in the solution arising from abrupt changes
in the boundary conditions, or if the boundary has sharp corners. The emphasis in developing
this scheme, called Least-Squares Singular Finite Difference Scheme (L-S SFDS), was devoted
to a simple yet efficient and accurate scheme, which is two-fold: (a) the scheme is ‘‘pollution’’
free, i.e., no degradation in convergence rate is visible because of the singularities; and (b) the
generalized flux intensity factors are computed as a by-product with a very high accuracy.

Application to test problems for the Laplace and Poisson equations show the L-S SFDS to be
both accurate and efficient. The computation yields values for the coefficients in the asymptotic
series representing the solution in the vicinity of the singular point, as well as for the solution over
the rest of the domain. The generalized flux intensity factors, which are the coefficients of the
asymptotic expansion and are of particular practical importance in many engineering applications,
are obtained with very high accuracy.

The method may be extended to elliptic problems involving other types of singularities, such
as those caused by an interface between two different elastic materials, for example, provided that
the form of the asymptotic series for the solution in the vicinity of the singular point is known.

The authors thank the anonymous referees for their valuable comments leading to improvements in
the presentation of the article.
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