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Eigenvalues for Waveguides Containing Re-Entrant
Corners by a Finite-Element Method with

Superelements
Bernard Schiff and Zohar Yosibash

Abstract—Superelements have been developed to enable the fi-
nite-element method to be used for computing accurate eigenvalues
of the Laplacian over domains containing re-entrant corners of ar-
bitrary angle. A truncated asymptotic expansion of the solution is
employed in the region of the corner, and linear blending is used
over the remainder of the superelement to provide a smooth transi-
tion to piecewise quadratics over the superelement boundary. The
superelement thus conforms with the usual triangular or quadri-
lateral isoparametric elements used over the remainder of the do-
main, and can be easily incorporated into a general finite-element
program. The scheme has been tested on various waveguides con-
taining one or more angles of size3 2 or 2 , and also on do-
mains containing various other angles, and the results agree well
with those obtained by other methods, mostly of less general appli-
cability.

Index Terms—Finite-element methods, singularities, Helmholtz
equation, eigenvalues.

I. INTRODUCTION

R IDGED AND other waveguides whose cross sections con-
tain one or more re-entrant corners, often of angle

or , are frequently used in microwave devices and circuits. It
is, therefore, important to be able to obtain accurate values for
the cutoff frequencies of the first few modes of propagation in
waveguides of this type. A variety of methods have been used
for this purpose, and some of the more accurate methods are de-
scribed in [1]–[6]. The flexibility of the finite-element method
would seem to make it ideally suited for this purpose. The stan-
dard finite-element schemes, however, yield comparatively poor
results when applied to problems containing a re-entrant corner,
due to the singular nature of the solution there. One method used
to circumvent this difficulty is to refine the mesh locally in the
neighborhood of such a corner [7]. Another approach utilizes
the known asymptotic expansion for the solution in the neigh-
borhood of the singularity, for example, by suitably modifying
the shape functions over each of the elements possessing a node
at the corner [8], [9] or by augmenting the trial function basis
by the addition of functions possessing a suitable singular be-
havior there [10], [11]. In an earlier paper [12], Schiff outlined
a method that used a combination of these two approaches. The
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basic idea was to cover the region of each re-entrant corner with
a “singular superelement,” whose stiffness matrix could be cal-
culated once and for all for a given geometry. The superelement
was constructed so as to be conformal with linear triangular or
bilinear rectangular elements, which were then employed over
the remainder of the domain. The method was applied to deter-
mine cutoff frequencies for TE and TM modes in guides con-
taining one or more re-entrant corners of angle or . This
paper embodies a wide generalization of these ideas. Firstly, the
superelements have been designed to conform with six- (trian-
gular) or eight-node (quadrilateral) isoparametric quadratic ele-
ments over the rest of the domain, enabling much higher accu-
racy to be achieved at a moderate cost. Secondly, the re-entrant
angles are not restricted to be of magnitude or , so that
the method can be applied to more complicated geometries. Fi-
nally, the trial function over the superelement has been chosen
in a different way, so as to provide a better approximation to
the true solution in the region of the corner. The present method
is described in Section II. The results obtained for various test
cases are described in Section III, and the conclusions are sum-
marized in Section IV.

II. THE COMPUTATIONAL SCHEME

The TE and TM fields for the waveguide may be derived from
potentials that satisfy the Helmholtz equation

(1)

where is the propagation constant in free space. Taking the
guide axis to be in the-direction, we assume that

and, hence, obtain the equation

(2)

where and denotes the two-dimensional
Laplacian. Thus, we wish to solve

in (3)

with boundary conditions

on (TM modes)

or

on (TE modes) (4)

where the eigenvalue is .
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Fig. 1. Typical superelement(! = 3�=2).

To solve the problem by the finite-element method, we
use a superelement over the immediate neighborhood of
each re-entrant corner and cover the remainder ofwith the
usual six-node triangular or eight-node quadrilateral quadratic
isoparametric elements. The superelement used in the previous
method [12] was composed of two regions. The inner region
was divided uniformly into rectangular elements, the trial
function over each such element being taken as the bilinear
interpolant to the asymptotic expansion, suitably truncated, for
the solution in the neighborhood of the corner. Over the second
region, the transition region, a piecewise bilinear trial function
was used to match up between the elements on the edge of the
inner region and the linear or bilinear elements adjoining the
superelement.

In the present method, the superelement is again divided into
an inner and a transition region. The geometry of a typical su-
perelement is illustrated in Fig. 1. The inner region is taken
to be a sector of a circle centered at the corner, and the trial func-
tion over this region is taken to be the asymptotic expansion for
the solution of the problem in the vicinity of the corner (instead
of an interpolant to this series in the previous method). Let us
take polar coordinate with origin at the re-entrant corner. If
the boundaries of the re-entrant corner are at and ,
then the asymptotic expansions are

(TM) (5)

(TE) (6)

where . We use a truncated form of this series con-
taining all of the terms for which for a suitable
value of .

The transition region is covered by a single ring of el-
ements, each of which has two edges that are straight lines in
radial directions, a third edge being a straight line constituting
part of the boundary of the superelement. The fourth edge lies
on a portion of the circular boundary of the inner region.
The trial function over each element of the transition region be-
haves as a quadratic (determined by the nodal values at the two

ends and the midpoint) over each straight edge, and takes on
the value of the sum of the truncated series along the curved
side. The function inside the element is obtained by quadratic
blending between the values along the four edges of the el-
ement. This superelement was originally designed to be used
when solving Laplace's equation over regions containing re-en-
trant corners, and full mathematical details of the construction
of the trial functions and the computation of the superelement
stiffness matrix are given in [13] by the authors on this topic.
The computation of the massmatrix needed for this paper is per-
formed in a similar manner. We will, therefore, here only out-
line the salient ideas. The integration over the inner region was
performed using tensor product 88 Gaussian integration. For
each element of the transition region , a quadratic isopara-
metric transformation was first used to transform the element
into a square, and the integration was then performed in the stan-
dard plane using 8 8 Gaussian quadrature. The superelement
conforms with the usual quadratic elements outside. Thus, the
trial functions would satisfy the conforming condition exactly
over the whole domain were it not for the “variational crimes”
([14, Ch. 4]) committed in the use of numerical quadrature for-
mulas and the inaccuracies inherent in the use of the six- or
eight-point isoparametric quadratic transformation used to map
each element onto the standard element.

A small library of stiffness and mass matrices for different
geometric configurations has been prepared. When solving a
particular problem, the contributions from the superelement to
the global stiffness and mass matrices are added at the assembly
stage in the same manner as for the usual types of element. The
superelements may thus be incorporated into a general finite-el-
ement program with no difficulty.

III. N UMERICAL RESULTS

We have tested the method on a variety of cases for which
accurate values for the cutoff frequencies of the first few modes
have been obtained by other methods. We now describe the
various cases treated. In each case, we list the results for two
finite-element meshes with differing numbers of degrees of
freedom (d.o.f.) in order to indicate the degree of convergence
achieved. Unless otherwise stated, we list the value of the
cutoff wavenumber, which we denote as usual by, in radians
per unit length, for each mode. The corresponding eigenvalue
for (3) is, therefore, .

A. L-Shaped Guide

The domain is illustrated in Fig. 2. For the TM modes,
highly accurate results have been obtained by Foxet al. [15]
and for some of the modes also by Fixet al. [10]. Fox et al.
use the method of “special solutions,” expanding the solution
in terms of a series of solutions of the Helmholtz equation
and determining the eigenvalues by requiring the (truncated)
series to satisfy the boundary conditions at a number of equally
spaced points on the boundary. They obtained convergence
to four digits after the decimal point with only eight terms
in the series (they were able to obtain such a high accuracy
so economically by utilizing the symmetry properties of this
particular domain). Fixet al.used finite elements with a basis of
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TABLE I
VALUES OFk FOR AN L-SHAPED GUIDE

Fig. 2. L-shaped domain.

bicubic splines augmented by the first few terms of the asymp-
totic expansion multiplied by a suitable factor to satisfy the
boundary conditions. Their results agreed with those of [15] to
at least six significant digits. Guan and Su [6] and Swaminathan
et al. [3] obtained values for the first four TM and the first four
TE modes. The former used finite differences over a uniform
mesh, employing approximately 2500 d.o.f., while the latter
used an equivalent-surface integral equation, which they solved
by the method of moments with piecewise linear functions,
obtaining the eigenvalues by an iterative technique. The current
method was applied using an L-shaped superelement around
the singularity. In Table I, we compare our values ofwith
those of previous calculations. The agreement with the results
of [10] and [15] is especially good.

B. Quadruple-Ridged Guide

The domain is shown in Fig. 3, and represents one-half of the
guide cross section, the other half being obtained by reflection
in the -axis. There are four re-entrant corners, and thus we em-
ploy four L-shaped superelements. Computations for this guide
have also been made by Dasgupta and Saha [2], using a method
developed by Montgomery [1], Gil and Zapata [9], and Webb
[11]. Montgomery's method will be described in Section III-C.
Gil and Zapata use six-node quadratic finite elements and, over
the triangles having a node at a singularity, they use a geometric
transformation to give the trial function the same behavior in
the radial direction as the leading term of the asymptotic expan-
sion for the solution. Webb used quadratic finite elements sup-
plemented by singular trial functions for the electric field, intro-
ducing a penalty term into the variational formulation to remove
spurious modes. The results of the various calculations are listed

Fig. 3. Domain for quadruple-ridged guide.

TABLE II
VALUES OFk FOR TE MODES IN THE“QUADRUPLE-RIDGED” GUIDE

in Table II. The excellent agreement between the results of the
current scheme with the finer mesh and those of Webb should
be noted. The results for the coarser scheme are very close to
those of Gil and Zapata, giving an indication of the degree of
convergence.

C. Symmetric Double-Ridge Guide

This guide has been treated by a variety of methods. The
problem is to be solved over a domain consisting of a quarter
of the guide cross section, as shown in Fig. 4. The remainder
of the guide is obtained by reflecting this domain about the-
and/or -axis. Montgomery treated this guide in detail in [1].
He developed the solution inside each rectangle of which the
domain is composed in a “modal expansion,” the modes being
those for a rectangular guide possessing the given cross sec-
tion. The coefficients in the expansions and the values of
were determined by solving an integral equation for the normal
component of the electric field over the interface between the
two regions. Israel and Miniowitz [7] solved this problem using
quintic Hermite finite elements with local mesh refinement in
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Fig. 4. Domain for symmetric double-ridge guide.

the neighborhood of the singularity, while Guan and Su [6] and
Gil and Zapata [9] employed their methods as described in Sec-
tions III-A and III-B, respectively. We solved the problem using
an L-shaped element over the neighborhood of the singularity at
the point . The values of for the first few
TE modes are listed and compared with the previous results in
Table III. It will be seen that for some of the modes, we obtained
pairs of values lying very close to one another. In each case, the
two eigenfunctions corresponding to the pair of almost identical
eigenvalues were completely different from one another, indi-
cating the presence of an almost degenerate eigenvalue. This
phenomenon was reported and explained by Montgomery in [1,
Sec. V] as follows: “Note the existence of so-called hybrid and
trough modes. Hybrid modes are considered to be basic ridged
waveguide modes of propagation. Trough modes are so named
because they are rectangular waveguide type modes which exist
in the trough region (region 2). One should also note that the
trough modes are almost degenerate for a narrow gap in respect
that the TE magnetic and electric eigenvalues are almost the
same.” Returning to our results in Table III, the trough modes
are those for which we obtain a pair of almost equal values of,
and these are exactly those modes classified as such by Mont-
gomery, as shown in diagrammatic form in [1, Fig. 3]. In Table
III, we label each eigenvalue with its symmetry type, the two
letters referring to s(ymmetry) or a(symmetry) of the eigenfunc-
tion with respect to reflection in the- or -axes, respectively. It
will be noted that the two members of a pair have identical sym-
metry with respect to the-axis, but opposite symmetry with re-
spect to the -axis. For a trough mode, being similar to a mode
for the rectangular region 2, it is not surprising to find that the
corresponding eigenfunction is comparatively small in region 1.
Thus, the contribution from this region to the energy integral is
small and there is, therefore, only a small difference between the
eigenvalues for the two possible types of boundary conditions
over the edge , . It will be seen that the

current results agree very closely with those of Israel and Min-
iowitz [7] and Gil and Zapata [9]. There is also good agreement
with the values obtained by Montgomery [1] and Guan and Su
[6].

D. Symmetric Rectangular Coaxial Guide

The domain is illustrated in Fig. 5, and represents one-half of
the guide cross section, the other half being obtained by reflec-
tion in the -axis. The dimensions in this figure are given in me-
ters. The guide has a slit along the line .
Particularly accurate calculations have been made for TE modes
in this guide. Guan and Su [6] used finite differences over a uni-
form mesh, employing approximately 15 000 d.o.f. De Leoet al.
[4] used modal expansions over the two rectangles
and . They take into account the singular nature
of the field at the tip of the slit (the point )
by including a suitable multiplicative factor in the expression
for the component of the electric field along the “interface”

between these two rectangles.
We have solved the problem using a square superelement

around the singularity at the end of the slit. The values obtained
are compared with those of previous calculations in Table IV.

The results listed in Table IV are the cutoff frequencies in
megahertz instead of the wavenumbers, in order to compare
easily with the results of other authors. There are additional
modes not listed in this table, as we have only listed those modes
for which both Guan and Su and De Leoet al.give results. Our
results using the finer mesh agree with those of De Leoet al.to
within 0.03% for the first two modes listed, while Guan and
Su's value for the first mode differs from ours by 0.5%. This is
probably due to the fact that Guan and Su's method makes no
provision for the existence of the singularity.

E. T-Septate Guide

The domain is illustrated in Fig. 6, and represents one-half
of the guide cross section, the other half being obtained by re-
flecting this domain in the -axis. The guide has slits along the
lines and ,
and , and the modes are either symmetric or antisym-
metric across the line , . Calculations
for this guide have been made by Swaminathanet al. [3], using
the method described in Section III-A, and by Shuet al. [5]
by a somewhat similar method, except that they use a different
integral equation and employ piecewise constant functions over
each segment in the method of moments.

We have solved the problem using a square-shaped superele-
ment around the singularity at the point , .
The values obtained are compared with those from previous cal-
culations in Table V. Shuet al. were apparently unable to re-
solve the difference between the two lowest TE modes. Our re-
sults altogether agree more closely with those of Swaminathan
et al.The agreement with the results of these authors for the TE
modes is, however, less satisfactory than for the other guides
listed in the previous sections. This may be due to the fact that
they had to modify their method for this case, as is mentioned
in their paper.
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TABLE III
VALUES OFk FOR TE MODES IN THESYMMETRIC DOUBLE-RIDGE GUIDE

Fig. 5. Domain for symmetric rectangular coaxial guide.

TABLE IV
CUTOFF FREQUENCIES INMEGAHERTZ FORTE MODES IN SYMMETRIC

RECTANGULAR COAXIAL GUIDE

Fig. 6. Domain for T-septate guide.

F. Accuracy of the Method

The values obtained using the finer mesh agree with the
nearest results obtained by other methods to within a maximum
difference of 0.3%, in most cases the difference being no more
than 0.12%. For the coarse mesh, the maximum difference with
the nearest other calculations was 1.5% and, in most cases,
the difference was less than 0.5%. The only exception was for
the TE modes of the T-septate guide, where the current values
differed from the nearest values (those of Swaminathanet al.)
by as much as 2.7% for both meshes. We assume that this is due
to the difficulty encountered by these authors for this particular
guide.

In order to further verify the accuracy of the method, calcula-
tions were also performed for the above-mentioned guides with
an HP-version finite-element scheme, using varying numbers
of d.o.f. The HP scheme required roughly double the number of
d.o.f. used by the current method for a given accuracy. Further
details will be given in [16].

G. Effect of the Superelement

In order to assess the degree of improvement resulting from
the inclusion of the superelements, some of the computations
were repeated with the superelement replaced by a number of
eight-node quadratic elements similar to those that were adja-
cent to the superelement in the original mesh. As a typical ex-
ample of the results obtained, we list in Table VI the percentage
errors in the frequency for the symmetric rectangular coaxial
guide discussed in Section III-D using the fine mesh with and
without the superelement. The figures listed illustrate the gen-
eral feature that the percentage improvement is largest for the
smallest eigenvalue and decreases as the eigenvalue increases.

As regards the sensitivity of the results to the detailed con-
struction of the superelement, it was found that the eigenvalues
were very insensitive to the value of , the ratio of the
radius of the inner region to that of the largest circle
that may be inscribed in the superelement. For example, in the
case of the symmetric rectangular coaxial guide, the eigenvalues
varied by less than 0.01% as varied over the range 0.9
to 0.6, and by less than 0.1% over the range from 0.9 to 0.15.
The present computations were performed with equal to
0.9 or 0.75. The number of elements into which the region
of the superelement is divided is equal to the number of ele-
ments of the outer region that are adjacent to the superelement.
Thus, increasing the number of elements in will require a
finer mesh in the neighborhood of the superelement. Therefore,
for high accuracy, we used smaller elements near the superele-
ment, while allowing larger elements further away, and divided
the region accordingly. For the results quoted in Tables I–V,
we divided into 20, 8, 12, 10 and 16 elements, respectively,
for the coarse meshes, and into 24, 12, 12, 16 and 16 elements,
respectively, for the fine meshes. This point will be discussed
more fully in [16].

H. A General Re-Entrant Angle

In order to confirm that the current method is valid for a re-en-
trant corner of any size betweenand , the method has also
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TABLE V
VALUES OFk FOR THET-SEPTATE GUIDE

TABLE VI
PERCENTAGEERRORS INCUTOFF FREQUENCIES FORSYMMETRIC

RECTANGULAR COAXIAL GUIDE WITH AND WITHOUT THE USE OF A

SUPERELEMENT FORMODESLISTED IN TABLE IV

Fig. 7. Domain for trapezoidal waveguide.

been tested on the waveguide with trapezoidal ridges considered
by Meinkeet al. [17]. Meinkeet al. use a conformal transfor-
mation to map the domain onto a rectangle, obtaining the map-
ping function in the form of an infinite series. Our computation
is carried out on the quarter of the guide cross section shown in
Fig. 7. The remainder of the guide can be obtained by reflection
in the - and/or -axes. For the TE modes, the boundary condi-
tions are that over the edgesBC, CD, DE, andEA
and or overAO andOB (thus, there are four
different types of modes). The conditions for the TM modes are
obtained from those for the TE modes by simply interchanging

and .
Again, we treated this case with a coarser and a finer mesh,

using 80 and 158 d.o.f., respectively, including the d.o.f. be-
longing to the superelement around the re-entrant corner at the
point C. For the superelements, we used , and di-
vided them into ten and 18 elements, respectively. Meinkeet
al.give the results of their calculations and also experimental
values for the first four TE modes and the lowest TM mode.
The results are compared with those obtained by the current
method in Table VII, in which the wavelengths are listed fol-
lowing [17]. It will be seen that the current results agree with
the experimental values to within 0.2% in two cases, and within

TABLE VII
VALUES FORCUTOFF WAVELENGTHS IN (MILLIMETERS) IN A GUIDE WITH

A TRAPEZOIDAL RIDGE

1% for two more. On the other hand, the results for the lowest
TE mode differ by 3.8%. The agreement with the Meinkeet al.
computational results is less favorable. We have no explanation
for the size of the discrepancies, especially in view of the fact
that the current results agree very well with those obtained by
the HP version of the finite-element scheme mentioned in Sec-
tion III-F.

The generality of the method has also been tested by deter-
mining the first three acoustic eigenfrequencies for a simplified
model of an automobile interior containing re-entrant angles of
sizes and , and satisfactory agreement was ob-
tained with the experimental values and with the results of other
calculations. Details of these calculations will be described in
[16].

IV. CONCLUSION

A superelement has been designed to overcome the loss of ac-
curacy encountered when applying the standard finite-element
schemes to obtain cutoff wave numbers for TE and TM modes
in waveguides whose cross sections contain corners with re-en-
trant angles. The results of test calculations are listed for several
waveguides whose cross sections contain one or more re-entrant
angles, using two different mesh sizes in each case. Our results,
obtained using a moderate number of d.o.f., compare well with
the most accurate values obtained by a variety of other methods.
The method has also been tested successfully on domains con-
taining various other angles to verify its suitability for re-entrant
angles of any size. The superelement is compatible with six- and
eight-point quadratic isoparametric elements, and can be easily
incorporated in standard finite-element programs. More general
methods, such as the use of edge elements, have recently been
developed for solving problems in electromagnetics in which it
is necessary to work with the field components directly rather
than with just a scalar potential (see, e.g., reference ([18, Ch.
9]) for details). Such methods can be adapted to take account
of singularities, e.g., as in Pantic-Tanneret al. [19] and Gil and
Webb [20]. We feel, however, that for the problem addressed
in this paper, the method presented has the advantage that it
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achieves high accuracy while requiring only a standard finite-el-
ement program into which superelements can be incorporated.
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