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Abstract. We present a method for the computation of the coefficients of singularities along
the edges of a polyhedron for second-order elliptic boundary value problems. The class of problems
considered includes problems of stress concentration along edges or crack fronts in general linear
three-dimensional elasticity. Our method uses an incomplete construction of three-dimensional dual
singular functions, based on explicitly known dual singular functions of two-dimensional problems
tensorized by test functions along the edge and combined with complementary terms improving their
orthogonality properties with respect to the edge singularities. Our method is aimed at the numerical
computation of the stress intensity functions. It is suitable for a postprocessing procedure in the
finite element approximation of the solution of the boundary value problem.
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1. Introduction.

1.1. The problem. The solutions of elliptic boundary problems, for example,
those arising from linear elasticity, when posed and solved in nonsmooth domains like
polygons and polyhedra, have nonsmooth parts. It is well known how to describe
these singularities in terms of special singular functions depending on the geometry
and the differential operators on one hand, and of unknown coefficients depending
on the given right-hand sides (for example, volume forces and surface tractions or
displacements) on the other hand.

Concerning the singular functions, they are extensively covered in the literature.
In many cases, like corners in two dimensions or edges in three dimensions, they can
be written analytically (see, for example, [18, 3, 29]) or semianalytically [12]. In other
cases, like polyhedral corners, there exist well-known numerical methods for their
computation (see, for example, [1, 35, 33, 36]).

Concerning the coefficients, there are two cases to distinguish: corners and edges.
1. In the case of a corner in two or three dimensions, i.e., the vertex of a cone,

the space of singular functions up to a given regularity is finite-dimensional. There-
fore only finitely many numbers have to be computed, and there exist several well-
established methods to do this. Let us mention some of them:

In the “singular function method,” also known as the Fix method in the finite
element literature, singular basis functions are added to the space of trial functions,
so that their coefficients are computed immediately as a part of the numerical solution
of the boundary value problem (see [4, 6, 8, 17, 28, 32]).

In the “dual singular function method,” one uses the fact that the coefficients
depend linearly on the solution and therefore also on the right-hand side; see [21, 23]
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where this was first developed. There exist several different ways to express these
linear functionals that extract the coefficients. One can use functionals acting on the
solution of the boundary value problem, and these can then have a simple explicit
form and can be localized. Or one can write them as functionals acting directly on
the right-hand side. These are the dual singular functions, properly speaking, and
they are solutions of a boundary value problem themselves (see [5, 15, 16, 7, 2, 34]).

2. In the case of an edge in three dimensions, the space of singular functions
is infinite-dimensional. Theoretical formulas for the extraction of coefficients then
involve an infinite number of dual singular functions in general; see [22, 26]. The
coefficients can be understood as functions defined on the edge, and their computation
now requires approximation of function spaces on the edge. There exist some papers
describing versions of the singular function method in this case. In [13], the case
of a half-space crack in three-dimensional elasticity is considered. An algorithm is
proposed and analyzed consisting of boundary elements on the crack surface combined
with singular elements that are parametrized by one-dimensional finite elements on
the crack front. This method and the corresponding error analysis are described
for smooth curved cracks in three dimensions in [31]. In [19], the simple case of a
circular edge is treated with Fourier expansion, error estimates are given, and results
of numerical computations are shown.

Every linear functional acting on the edge coefficient functions now gives rise to
a dual singular function. Such linear functionals can be the point evaluation at each
point of the edge or, more regularly, moments, i.e., scalar products with some poly-
nomial basis functions. Computing a finite number of such point values or moments,
one obtains an approximation of the coefficient function. Such a procedure has been
studied in [20] for the simple case of the Laplace equation at a flat crack. In [30]
the coefficients are given by convolution integrals which contain the dual singular
functions, and examples for the Lamé system are provided.

With the exception of the computations in the case of the simple geometries and
operators of [19] and [20], the formulas and theoretical algorithms for the extraction
of edge coefficients mentioned above have not lead to numerical implementations or
serious computational results. A first step towards an algorithm suitable for imple-
mentation in an engineering stress analysis code is described in [36], where point values
of edge coefficients are computed in the case of the Laplace equation near a straight
edge. Very special orthogonality conditions of the Laplace edge singular functions are
used to construct extraction formulas that are essentially two-dimensional.

Whereas this idea cannot be extended directly to more general geometrical and
physical situations like Lamé equations in a polyhedral domain, our paper is an exten-
sion of [36] to such situations in the practical sense of suitability for implementation
in engineering codes.

1.2. Outline. In the present paper we construct an algorithm for the approxi-
mate computation of moments of the edge coefficient functions. The algorithm has a
twofold purpose: It is sufficiently general to be applicable to real-life three-dimensional
boundary value problems and their singularities near polyhedral edges, and it is simple
enough to be implemented in the framework of professional finite element codes. In
a forthcoming paper we will show practical applications in the computation of stress
concentration coefficients in three-dimensional anisotropic elasticity.

Our paper is organized as follows:

After a more detailed description of the idea of our algorithm in this first section,
we recall in section 2 the structure of edge singularities for second-order linear Dirichlet
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boundary value problems in three dimensions. We describe how the leading term in
each singular function is obtained from a two-dimensional problem in a sector and
can be computed from the principal Mellin symbol of the partial differential operator.
For a complete description of the singular function one has to construct higher order
“shadow terms,” for which we also give formulas involving Mellin symbols of the
operator.

In section 3, the structure of dual singular functions is described first in two
dimensions and then for the case of the three-dimensional edge. The dual singular
functions have an asymptotic expansion in terms that have tensor product form in
cylindrical coordinates and are homogeneous with respect to the distance to the edge.
This form allows us to prove a certain approximate duality between finite partial sums
of these asymptotic expansions. These sums can be constructed explicitly from the
Mellin symbols of the operator, and the duality holds approximately on cylindrical
domains in the sense that the error is of the order of an arbitrarily high power of the
radius of the cylinder.

In section 4, we construct the extraction algorithm for moments of the coefficients
of the edge singularities. The algorithm requires the integration of the solution of the
boundary value problem against a smooth function on a cylindrical surface of distance
R to the edge, and it is exact modulo a given arbitrarily high power of R.

In section 5, we discuss generalizations to more general domains and boundary
conditions, and the special case of a crack.

In section 6, we compare our algorithm with possible alternatives based on other
formulas for the extraction of coefficients.

1.3. The main framework. Any three-dimensional elliptic boundary value
problem posed on a polyhedron defines infinite-dimensional singularity spaces cor-
responding to each of the edges. Each singularity along an edge E is characterized

• by an exponent α, which is a complex number depending only on the geometry
and the operator, and which determines the level of nonsmoothness of the singularity,
and

• by a coefficient aα, which is a function along the edge E.
Of great interest are the coefficients aα when Reα is less than 1, corresponding

to non-H2 solutions. In many situations, Reα < 1 when the opening at the edge is
nonconvex. For example, α can be equal to 1

2 in elasticity problems in the presence
of cracks. Sometimes in such a situation the coefficients are called stress intensity
factors. Herein we propose a method for the computation of these coefficients, which
can be applied to any edge (including a crack front) of any polyhedron.

For the exposition of the method we use a model domain Ω where only one edge E
is of interest (in particular, E will be the only possible nonconvex edge). Nevertheless
this method applies, almost without alteration, to any polyhedron; see section 5.

As model domain, we take the tensor product Ω = G×I, where I is an interval, let
us say [−1, 1], and G is a plane bounded sector of opening ω ∈ (0, 2π] and radius 1 (the
case of a crack, ω = 2π, is included). See Figure 1. The variables are (x, y) in G and z
in I, and we denote the coordinates (x, y, z) by x. Let (r, θ) be the polar coordinates
centered at the vertex of G so that G = {(x, y) ∈ R

2 | r ∈ (0, 1), θ ∈ (0, ω)}. The
domain Ω has an edge E which is the set {(x, y, z) ∈ R

3 | r = 0, z ∈ I}.
The operator L is a homogeneous second-order partial differential N ×N system

with constant real coefficients, which means that

L =
3∑
j=1

3∑
i=1

Lij∂i∂j with ∂1 =
∂

∂x
, ∂2 =

∂

∂y
, ∂3 =

∂

∂z
,
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Fig. 1. The domain of interest Ω.

with coefficient matrices Lij in R
N×N . We moreover assume that the matrices Lij

are symmetric. Therefore L is formally self-adjoint.
We assume moreover that L is associated with an elliptic bilinear form B, i.e.,

that for any u and v in H2(Ω)N and any subdomain Ω′ ⊂ Ω there holds∫
Ω′

Lu · v dx = B(u, v) +

∫
Γ′

TΓ′u · v dσ

=

∫
Ω′

u · Lv dx+
∫

Γ′

(
TΓ′u · v − u · TΓ′v

)
dσ,

(1.1)

where TΓ′ is the Neumann trace operator associated with L via B on the boundary
Γ′ of Ω′. Our aim is the determination of the edge structure of any solution u of the
problem

u ∈ H1
0 (Ω) ∀v ∈ H1

0 (Ω) B(u, v) =

∫
Ω

f · v dx,(1.2)

where f is a smooth vector function in C∞(Ω)N . Away from the end points of the
edge, the solution u can be expanded in edge singularities S[α ; aα] associated with the
exponents α and the coefficients aα. These singularities S[α ; aα] are the sums of terms
in tensor product form ∂jzaα(z) Φj [α](x, y), where only the generating coefficients aα
depend on the right-hand side f of problem (1.2).

1.4. The extraction method. In this paper, we construct for each exponent
α a set of quasi-dual singular functions Km[α ; b], where m is a natural integer, which
is the order of the quasi-dual function, and b a test coefficient. We then extract not
the pointwise values of aα, but its scalar product versus b on E with the help of the
following antisymmetric internal boundary integrals J [R] over the surface

ΓR :=
{
x ∈ R

3 | r = R, θ ∈ (0, ω), z ∈ I
}
,
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depending on the radius R:

J [R](u, v) :=

∫
ΓR

(
TΓR

u · v − u · TΓR
v
)
dσ.(1.3)

Roughly, and with certain limitations (see Theorem 4.3 and its extensions in section 5),
we find that for the lowest values of Reα, there holds

J [R](u,Km[α ; b]) =

∫
I

aα(z) b̄(z) dz +O (Rm+1
)

as R → 0,(1.4)

which allows a precise determination of
∫
I
aα b̄ by extrapolation in R and a recon-

struction of aα by the choice of a suitable set of test coefficients b.
One of the fundamental tools for the proof of (1.4) consists of algebraic relations

based on integration by parts in the domains Ωε,R, where for any ε and R with
0 < ε < R we denote by Gε,R the annulus

Gε,R := {(x, y) ∈ R
2 | r ∈ (ε,R), θ ∈ (0, ω)}

and by Ωε,R the tensor domain Gε,R × I. We note that

∂Ωε,R = Γε ∪ ΓR ∪ (Gε,R × ∂I).

Finally we also denote by G∞ the infinite sector of opening ω and by Ω∞ the infinite
wedge G∞ × I.

2. Edge singularities. Edge singularities are investigated in several works. Let
us quote Maz’ya and Plamenevskii [24], Maz’ya and Rossmann [27], Dauge [14], and
Costabel and Dauge [9]. Here, as a model problem, we concentrate on the simplest
case of a homogeneous operator with constant coefficients.

The structure and the expansion of edge singularities rely on the splitting of the
operator L into three parts,

L =M0(∂x, ∂y) +M1(∂x, ∂y) ∂z +M2 ∂
2
z ,

where M0 is an N ×N matrix of second-order partial differential operators in (x, y),
M1 is an N ×N matrix of first-order partial differential operators in (x, y), and M2

is a scalar N ×N matrix.
We can check that for any smooth function a(z) in I and any sequence (Φj)j≥0

of functions of (x, y) satisfying the relations


M0Φ0 = 0,
M0Φ1 +M1Φ0 = 0,
M0Φj +M1Φj−1 +M2Φj−2 = 0, j ≥ 2,

in G∞,(2.1)

the series

u ∼
∑
j≥0

∂jza(z) Φj(x, y)

formally satisfies the equation Lu ∼ 0 in Ω∞. If, moreover, all derivatives of a are
zero in −+1 and if the Φj satisfy the Dirichlet conditions on ∂G∞, then u ∼ 0 on ∂Ω∞.
In order to provide a more precise meaning, we need a description of solutions of the
system of equations (2.1).
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2.1. Two-dimensional leading singularities. The first terms Φ0 are the so-
lutions of the Dirichlet problem in the infinite sector:{

M0Φ0 = 0 in G∞,
Φ0 = 0 on ∂G∞.

(2.2)

From the general theory we know that the solutions of problem (2.2) are generated
by functions having the particular form in polar coordinates (r, θ)

Φ0 = rαϕ0(θ), α ∈ C.(2.3)

Since it is homogeneous of degree 2, the systemM0 can be written in polar coordinates
in the form

M0(∂x, ∂y) = r−2M0(θ; r∂r, ∂θ).

With the ansatz (2.3), the system (2.2) becomes{ M0(θ;α, ∂θ)ϕ0 = 0 in (0, ω),
ϕ0 = 0 on 0 and ω.

(2.4)

The operator ϕ �→ M0(θ;α, ∂θ)ϕ acting from H1
0 (0, ω) into H−1(0, ω) is the Mellin

symbol of M0, and we denote it by M0(α).
The system (2.4) has nonzero solutions, i.e., M0(α) is not invertible, only for a

discrete subset A = A(M0) of C. We call the numbers α ∈ A the edge exponents.
The ellipticity of L implies the ellipticity of M0, and as a consequence, any strip

Reα ∈ (ξ1, ξ2) contains at most a finite number of elements of A. As the coefficients
of M0 are real, if α belongs to A, then ᾱ also belongs to A. Moreover we have the
general property that

M0(α)
∗ = M∗

0(−ᾱ),

where M0(α)
∗ is the adjoint of M0(α) and M∗

0 denotes the Mellin symbol of the
adjoint M∗

0 of M0. Now M0 is formally self-adjoint: M
∗
0 =M0, and there holds

M0(α)
∗ = M0(−ᾱ).

By the Fredholm alternative, this implies that if α belongs to A, then −ᾱ also belongs
to A.

The operator valued function α �→ M0(α)
−1 is meromorphic on C. If

(H1) ∀α ∈ A, α is a pole of degree 1 of M−1
0 ,

then any solution of (2.2) is a linear combination of solutions of type (2.3) with α ∈ A
and ϕ0 a nonzero solution of (2.4). For simplicity we assume hypothesis (H1) and will
explain in what follows the implications if it does not hold.

2.2. Further two-dimensional generators for singularities. The second
equation of system (2.1) with Dirichlet conditions reduces to finding Φ1 such that{

M0Φ1 = −M1Φ0 in G∞,
Φ1 = 0 on ∂G∞,

(2.5)
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where Φ0 = rαϕ0(θ) as determined in the previous subsection. Since it is homogeneous
of degree 1, the system M1 can be written in polar coordinates in the form

M1(∂x, ∂y) = r−1M1(θ; r∂r, ∂θ).

Therefore, M1Φ0 = rα−1M1(θ;α, ∂θ)ϕ0 and an ansatz like (2.3) for the solution of
problem (2.5) is

Φ1 = rα+1ϕ1(θ),(2.6)

with ϕ1 solution of the Dirichlet problem{ M0(θ;α+ 1, ∂θ)ϕ1 = −M1(θ;α, ∂θ)ϕ0 in (0, ω),
ϕ1 = 0 on 0 and ω;

(2.7)

in other words, ϕ1 solves M0(α + 1)ϕ1 = −M1(α)ϕ0. Therefore, if α + 1 does not
belong to A, the previous problem has a unique solution. This is why we assume
hypothesis (H2):

(H2) ∀α ∈ A, ∀j ∈ N, j ≥ 1, α+ j �∈ A.

If (H2) holds, then for each solution Φ0 = rαϕ0 of problem (2.4), we obtain by
induction a unique sequence (Φj)j≥0 solution of (2.1) with Dirichlet conditions in the
form

Φj = rα+jϕj(θ),

where ϕj solves

M0(α+ j)ϕj = −M1(α+ j − 1)ϕj−1 −M2ϕj−2 .(2.8)

We recall that M2, being a scalar matrix, has the same expression in Cartesian coor-
dinates as in polar coordinates (viz. M2 =M2).

2.3. Three-dimensional singularities. Assuming hypotheses (H1) and (H2),
for any α ∈ A with Reα > 0, let pα denote the dimension of the kernel of M0(α) and
let Φ0[α, p], for p = 1, . . . , pα, be a basis of kerM0(α). Moreover, for any j ≥ 1, let
Φj [α, p] be the solution of (2.7) or (2.8) (also called “shadow singularities”) generated
by Φ0[α, p].

For any integer n ≥ 0 we call “singularity at the order n” any expression of the
form

Sn[α, p ; a] :=

n∑
j=0

∂jza(z) Φj [α, p](x, y),(2.9)

where a belongs to Cn+2(I).
By construction, there holds

LSn[α, p ; a] = ∂n+1
z a (M1Φn +M2Φn−1) + ∂n+2

z aM2Φn,(2.10)

whence we have the following lemma.
Lemma 2.1. For any α ∈ A, Reα > 0, and a ∈ Cn+2(I) we have

LSn[α, p ; a] = O (rReα+n−1
)
;(2.11)

i.e., r−Reα−n+1LSn[α, p ; a] is bounded in Ω. Moreover Sn[α, p ; a] = 0 on ∂G∞×I.
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3. Dual singular functions. We first recall and reformulate well-known facts
about the dual singular functions for two-dimensional problems (cf. Maz’ya and
Plamenevskii [21, 23, 25], Babuška and Miller [2], Dauge et al. [15, 16]) and then
extend these notions in the framework of our edge problem, so that we obtain what
we call “quasi-dual singular functions” (compare with the extraction functions in
[1] by Andersson, Falk, and Babuška) as opposed to exact dual singular functions;
cf. Maz’ya and Plamenevskii [22], Maz’ya and Rossmann [26] (pointwise duality), and
Lenczner [20] (Sobolev duality).

3.1. Two-dimensional dual singular functions. The two-dimensional oper-
ator is the homogeneous second-order operator M0 with real coefficients. We develop
its symbol M0(α) in powers of α (of degree 2):

M0(θ;α, ∂θ) = N0(θ; ∂θ) + αN1(θ; ∂θ) + α2N2(θ).(3.1)

Since M0 is self-adjoint, we can deduce that

N0 and N2 are self-adjoint and N1 is anti-self-adjoint.(3.2)

Lemma 3.1. Let α, β be in A and let ϕ, ψ be in the kernels of M0(α), M0(β),
respectively. Then there holds the identity

(α+ β̄)

∫ ω

0

(N1 + (α− β̄)N2

)
ϕ · ψ dθ = 0.(3.3)

Proof. We start with the duality relation:

0 =

∫ ω

0

ϕ · M0(β)ψ =

∫ ω

0

M0(β)
∗ϕ · ψ =

∫ ω

0

M0(−β̄)ϕ · ψ.

Then we use the identity

M0(−β̄) = M0(α)− (β̄ + α)N1 + (β̄
2 − α2)N2.

From M0(α)ϕ = 0, we obtain

0 =

∫ ω

0

M0(−β̄)ϕ · ψ =
∫ ω

0

(− (β̄ + α)N1 + (β̄
2 − α2)N2

)
ϕ · ψ

= −(α+ β̄)

∫ ω

0

(N1 + (α− β̄)N2

)
ϕ · ψ.

Lemma 3.2. Let α, β, ϕ, and ψ be as in Lemma 3.1.
(i) If −β̄ �= α, then

∫ ω

0

(N1 + (α− β̄)N2

)
ϕ · ψ = 0.(3.4)

(ii) If −β̄ = α, then the left-hand side of (3.4) becomes

∫ ω

0

(N1 + 2αN2

)
ϕ · ψ =

∫ ω

0

(
d

dα
M0(α)

)
ϕ · ψ,(3.5)
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and, if we moreover assume hypothesis (H1), then for any basis
(
ϕ[α, p]

)
p
of kerM0(α)

there exists a unique dual basis
(
ψ[α, p]

)
p
of kerM0(−ᾱ) such that∫ ω

0

(N1 + 2αN2

)
ϕ[α, p] · ψ[α, q] = δp,q.(3.6)

Proof. (i) is a straightforward consequence of Lemma 3.1.
(ii) Identity (3.5) is clear. Concerning (3.6), we first note that since M0(α)

∗ =
M0(−ᾱ), the dimension of the kernel of M0(α) is equal to the codimension of the
closure of the range of M0(−ᾱ). On the other hand, as for any α′ ∈ C \ A, M0(α

′)
is invertible, and since M0(α)− M0(α

′) is a compact operator, M0(α) is a Fredholm
operator of index 0. As a consequence,

dimkerM0(α) = dimkerM0(−ᾱ).

In order to obtain (3.6) it suffices now to prove that if ϕ ∈ kerM0(α) satisfies

∀ψ ∈ kerM0(−ᾱ),

∫ ω

0

(N1 + 2αN2

)
ϕ · ψ = 0,

then ϕ = 0. If this does not hold, thanks to (3.5) there exists ϕ ∈ kerM0(α) such
that

∀ψ ∈ kerM0(−ᾱ),

∫ ω

0

(
d

dα
M0(α)

)
ϕ · ψ = 0.

By the Fredholm alternative, there exists ϕ′ such that

M0(α)ϕ
′ +

d

dα
M0(α)ϕ = 0.

As a consequence the function

α′ �−→ (α′ − α)−2 M0(α
′)
(
ϕ+ (α′ − α)ϕ′)

has an analytic extension in α. This contradicts hypothesis (H1) according to which
M−1

0 has a pole of order 1 in α.
We end this subsection with a relation between the expression in the left-hand

sides of (3.4) and (3.6) and a trace obtained by integration by parts.
Considering the Green formula (1.1) in the domain Ωε,R for functions u and v,

which are zero on the two faces θ = 0 and θ = ω of Ω, we have contributions on the
parts ΓR and Γε of the boundary of Ωε,R, where r = R and r = ε, respectively. We
denote by T (r) the Neumann trace operator on Γr. It has the form

T (r) = T (r, θ; ∂r, ∂θ, ∂z) = r−1T0(θ; r∂r, ∂θ) + T1(θ) ∂z .(3.7)

We also have contributions of the lateral sides Gε,R × ∂I. Denoting by T∂I the
Neumann trace on these sides, we have the Green formula∫

Ωε,R

Lu · v − u · Lv dx =

∫
I

∫ ω

0

T (R)u · v − u · T (R)v R dθ dz

−
∫
I

∫ ω

0

T (ε)u · v − u · T (ε)v εdθ dz

+

∫
Gε,R×∂I

T∂I u · v − u · T∂I v dσ.

(3.8)
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Applying the above identity to functions u and v independent of z (and zero on the two
sides θ = 0 and θ = ω), we note that the contributions on the two sides Gε,R × {−+1}
cancel out because the two Neumann operators T−+1 which compose T∂I are opposite
to each other. Thus we obtain∫

Gε,R

M0u · v − u ·M0v dxdy =

∫ ω

0

T0(R)u · v − u · T0(R)v dθ

−
∫ ω

0

T0(ε)u · v − u · T0(ε)v dθ,

(3.9)

where T0(R) denotes T0(θ;R∂r, ∂θ).
Lemma 3.3. Let α and β be complex numbers and let ϕ and ψ belong to H1

0 (0, ω)
N .

Set Φ := rαϕ(θ) and Ψ := r−β̄ψ(θ). For any R > 0 there holds∫ ω

0

T0(R)Φ ·Ψ− Φ · T0(R)Ψ dθ = Rα−β
∫ ω

0

(N1 + (α+ β)N2

)
ϕ · ψ dθ .(3.10)

Proof. Formula (3.9) and the splitting (3.1) of M0 = r2M0 yield for any ε < R∫
Gε,R

((N0 + r∂rN1 + (r∂r)
2N2

)
Φ ·Ψ − Φ · (N0 + r∂rN1 + (r∂r)

2N2

)
Ψ
)

1
r dr dθ

=

∫ ω

0

T0(R)Φ ·Ψ− Φ · T0(R)Ψ dθ

−
∫ ω

0

T0(ε)Φ ·Ψ− Φ · T0(ε)Ψ dθ.

Since N0 is self-adjoint, integration by parts gives∫ R

ε

((N0 + r∂rN1 + (r∂r)
2N2

)
Φ ·Ψ − Φ · (N0 + r∂rN1 + (r∂r)

2N2

)
Ψ
)

1
r dr

=
[N1Φ ·Ψ+ (r∂r)N2Φ ·Ψ− Φ · (r∂r)N2Ψ

]R
ε
.

We have

N1Φ ·Ψ+ (r∂r)N2Φ ·Ψ−N2Φ · (r∂r)Ψ = rα−β
(N1ϕ · ψ + αN2ϕ · ψ + ϕ · βN2ψ

)
,

and as N2 is self-adjoint (cf. (3.2)), we finally obtain

(N1ϕ · ψ + (α+ β)N2ϕ · ψ)(Rα−β − εα−β
)

=

∫ ω

0

T0(R)Φ ·Ψ− Φ · T0(R)Ψ dθ

−
∫ ω

0

T0(ε)Φ ·Ψ− Φ · T0(ε)Ψ dθ.

Now the right-hand side of the above equality also has the form c(α, β)(Rα−β−εα−β),
and we deduce (3.10) for any α �= β. Since, for fixed β, ϕ, ψ, and R, both members
of (3.10) depend continuously on α, we deduce (3.10) for α = β by continuity.

3.2. Three-dimensional dual singular functions. We assume hypotheses
(H1) and (H2), and for any α ∈ A, Reα > 0, we choose a basis ϕ[α, p], p = 1, . . . , pα,
of kerM0(α). Then we denote by ψ[α, p], p = 1, . . . , pα, the corresponding dual basis
according to Lemma 3.2. We recall that we have denoted rαϕ[α, p] by Φ0[α, p] and
that associated singularities at the order n are defined in (2.9).
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Following the same lines, we set

Ψ0[α, p] := r−ᾱψ[α, p],

and for any integer n ≥ 0, we define the “quasi-dual singular function at the order n”
by

Kn[α, p ; b] :=

n∑
j=0

∂jzb(z)Ψj [α, p](x, y),(3.11)

where b belongs to Cn+2(I) and the sequence (Ψj)j≥0 is defined by induction as
solution of (2.1) in the form

Ψj = r−ᾱ+jψj(θ),

where ψj solves

M0(−ᾱ+ j)ψj = −M1(−ᾱ+ j − 1)ψj−1 −M2ψj−2.(3.12)

Of course, Kn[α, p ; b] is but Sn[−ᾱ, p ; b] (generated by Ψ0). Therefore by (2.11)
there holds, for any α ∈ A, Reα > 0, and b ∈ Cn+2(I),

LKn[α, p ; b] = O (r−Reα+n−1
)
.(3.13)

In the next proposition we state that the singularities Sn[α, p ; a] and the quasi-dual
singular functions Kn[β, q ; b] are in duality with each other (modulo a remainder) if
linked by the following antisymmetric sesquilinear form:

J [R](u, v) :=

∫
ΓR

(
Tu · v − u · Tv

)
dσ =

∫
I

∫ ω

0

(
Tu · v − u · Tv

) ∣∣
r=R

R dθ dz,(3.14)

where T = T (R) is the radial Neumann trace operator (3.7).
Proposition 3.4. Let α, β ∈ A with Reα, Reβ > 0. We assume that hypotheses

(H1) and (H2) hold. For an integer n ≥ 0, let the coefficients a and b be in Cn+2(I).
We assume moreover that ∂jzb = 0 for j = 0, . . . , n − 1 on ∂I. Then for any R > 0
there holds

J [R]
(
Sn[α, p ; a] ,Kn[β, q ; b]

)
= δα,β δp,q

∫
I

a(z) b̄(z) dz +O (RReα−Re β+n+1
)
.

(3.15)

Proof. We use the Green formula (3.8) on Gε,R for

u = Sn[α, p ; a] and v = Kn[α, q ; b].

Since u = O (rReα
)
and v = O (r−Re β

)
, (2.11) and (3.13) imply

∫
Ωε,R

Lu · v − u · Lv dx = O
(∫ R

ε

rReα−Re β+n−1 rdr

)
.

With formula (2.10), we even obtain the more precise expression

∫
Ωε,R

Lu · v − u · Lv dx =
2n∑

k=n−1

γk

∫ R

ε

rα−β+k rdr ,
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with coefficients γk independent of R and ε. As a consequence of hypothesis (H2) we
know that α− β + k is different from −1 for k = n, . . . , 2n+ 1. Thus

∫
Ωε,R

Lu · v − u · Lv dx =
2n+2∑
k=n+1

λk
(
Rα−β+k − εα−β+k

)
,

with coefficients λk independent of R and ε. For the boundary integral J [r](u, v)
(3.14), we omit the mention of (u, v). Thus the Green formula (3.8) gives

J [R]− J [ε] +

∫
Gε,R×∂I

T∂Iu · v − u · T∂Iv rdr dθ =

2n+2∑
k=n+1

λk
(
Rα−β+k − εα−β+k

)
.

As T∂I is of the form r−1T∂I,0(θ; r∂r, ∂θ) + T∂I,1(θ) ∂z (cf. (3.7)), and as the ends ∂I
are zeros of order n of b, we are left with

T∂Iu·v−u·T∂Iv = T∂Iu·∂nz bΨn−u·∂nz b
(
r−1T∂I,0Ψn+T∂I,1Ψn−1

)−u·∂n+1
z b T∂I,1Ψn.

Integrating on Gε,R × ∂I and using the structure of Ψj , we obtain as before

T∂Iu · v − u · T∂Iv =

2n+2∑
k=n+1

λ′
k

(
Rα−β+k − εα−β+k

)
.

From the last three equalities we obtain

J [R]− J [ε] =

2n+2∑
k=n+1

λ′′
k

(
Rα−β+k − εα−β+k

)
.(3.16)

It remains to expand J [r] in homogeneous parts: we have

J [r] =
2n+1∑
k=0

Jkr
α−β+k(3.17)

with (cf. (3.7))

Jk =
∑
j+�=k

∫
I

∫ ω

0

∂jza ∂
�
z b̄
(
T0(θ;α+ j, ∂θ)ϕj · ψ� − ϕj · T0(θ;−β + 1, ∂θ)ψ�

)
dθdz

(3.18)

+
∑

j+�=k−1

∫
I

∫ ω

0

(
∂j+1
z a ∂�z b̄ T1(θ)ϕj · ψ� − ∂jza ∂

�+1
z b̄ ϕj · T1(θ)ψ�

)
dθdz.

Combining (3.16) with (3.17) we obtain

2n+1∑
k=0

Jk(R
α−β+k − εα−β+k) =

2n+2∑
k=n+1

λ′′
k

(
Rα−β+k − εα−β+k

)
.

By identification of terms, we immediately deduce that

∀k ≤ n, Jk(R
α−β+k − εα−β+k) = 0.



A QUASI-DUAL FUNCTION METHOD 1189

Therefore

∀k ≤ n such that α− β + k �= 0, Jk = 0.

By hypothesis (H2), the number α− β + k can be 0 only if k = 0. Therefore

∀k, 1 ≤ k ≤ n, Jk = 0 and ∀α, β ∈ A, α �= β, J0 = 0.

In order to obtain (3.15), it remains to study J0 when α = β. Formula (3.18) yields,
for J0,

J0 =

∫
I

∫ ω

0

a b̄
(
T0(θ;α, ∂θ)ϕ0[α, p] · ψ0[α, q]− ϕj [α, p] · T0(θ;−β, ∂θ)ψ0[α, q]

)
dθdz.

Applying Lemma 3.3 for α = β we have

J0 =
(∫

I

a b̄ dz
)(∫ ω

0

(N1 + 2αN2

)
ϕ[α, p] · ψ[α, q] dθ

)
,

and with the orthogonality relation (3.6) we deduce that

J0 = δp,q

∫
I

a b̄ dz.

Note that in formula (3.18), we can integrate by parts in z without any boundary
contribution for k ≤ n, because ∂jzb = 0 for j = 0, . . . , n− 1 on ∂I. Therefore

Jk =
(∫

I

a ∂kz b̄dz
)
Hk[α, p ; β, q],(3.19)

where

Hk[α, p ; β, q] =
∑
j+�=k

∫ ω

0

(−1)j
(
T0(θ;α+ j, ∂θ)ϕj · ψ� − ϕj · T0(θ;−β + 1, ∂θ)ψ�

)
dθ

(3.20)

−
∑

j+�=k−1

∫ ω

0

(−1)j
(
T1(θ)ϕj · ψ� + ϕj · T1(θ)ψ�

)
dθ.

As a consequence of the proof of Proposition 3.4 we have

∀α, β ∈ A, ∀p, q, ∀k ∈ N, Hk[α, p ; β, q] = δk,0 δα,β δp,q.(3.21)

Later on, we will use formula (3.21), and not Proposition 3.4, to extract the singularity
coefficients of a true solution of problem (1.2).

4. Extraction of singularity coefficients. In this section, we first describe
asymptotic expansions of the solution u of problem (1.2). The right-hand side f is
C∞(Ω), and we suppose in a preliminary step that f ≡ 0 in a neighborhood of the
edge E. The expansions of u show edge singularity coefficients aα,p along the edge
E. We propose a method based on the duality formula (3.15) to determine these
coefficients.
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4.1. Expansion of the solution along the edge. The edge expansions are
valid only away from the sides G × ∂I. This is the reason why we introduce for any
δ ∈ (0, 1) the subinterval

Iδ = (−1 + δ, 1− δ)

and consider the subdomains G× Iδ. We need the introduction of weighted spaces to
describe the remainders in the expansions. For ξ ∈ R, let

Vη(G× Iδ) :=
{
v ∈ C∞(G× Iδ) | ∀m ∈ N

3, r−η+|m|∂m
x v ∈ L∞(G× Iδ)

}
.

Then the following theorem holds; cf. [27].
Theorem 4.1. Let δ ∈ (0, 1) and η > 0 be given. Then for any α ∈ A such

that Reα ∈ (0, η) and for any p ∈ {1, . . . , pα}, there exists a unique coefficient aα,p ∈
C∞(Iδ) such that

u−
∑

α, 0<Reα<η

∑
p

Sn
[
α, p ; aα,p

] ∈ Vη(G× Iδ),(4.1)

where n = n(α) is the smallest integer such that Reα+ n > η.
Letting δ tend to 0, this clearly defines unique coefficients aα,p in C∞(I) such

that for any δ (4.1) holds with aα,p
∣∣
Iδ
. But this does not imply that (4.1) holds

in Ω, because in general the remainders on G × Iδ depend on δ and their norms
blow up as δ → 0. This is due to the presence of corner singularities at the corners
c−+ := (0, 0,−+1). We have to analyze these corner singularities in order to obtain
uniform estimates in Ω.

4.2. Corner exponents. We describe the situation in a neighborhood of the
corner c+ and particularize the notation by the superscript +. A similar situation
holds for the other corner c−. Let K+ be the infinite cone coinciding with Ω in
a neighborhood of c+. Let S

+ denote the sphere of radius 1 centered at c+, ρ+ the
distance to c+, and ϑ+ the coordinates on S

+. Thus (ρ+, ϑ+) are spherical coordinates
centered at c+. Finally, let S+ denote the intersection S

+ ∩K+. The operator L can
be written in these spherical coordinates as

L = (ρ+)−2L+(ϑ+; ρ+∂ρ+ , ∂ϑ+),

which defines the Mellin symbol γ �→ L+(γ) of L at c+, where L+(γ) is the operator
φ �→ L+(ϑ+; γ, ∂ϑ+)φ acting from H1

0 (S
+) into H−1(S+). We denote by G+ the set

of γ ∈ C such that L+(γ) is not invertible. We call these γ the corner exponents. We
introduce the analogue of hypothesis (H1) for L+:

(H3) ∀γ ∈ G+, γ is a pole of degree 1 of (L+)−1.

For each γ ∈ G+, we denote by φ[γ, q], q = 1, . . . , qγ , a basis of kerL
+(γ).

We need a new family of weighted spaces: Let us introduce r+ on S+ as the
distance to the corner (r = 0, z = 0) of S+ corresponding to the edge E and extend
it by homogeneity: r+(x) = r+

(
ϑ+(x)

)
. Note that we have the equivalence

r+(x) � r(x)/ρ+(x).(4.2)

In the same way we define r̃+ on S+ as the distance to the two other corners of S+,
(r = 1, θ = 0, z = 1) and (r = 1, θ = ω, z = 1), and extend r̃+ by homogeneity. We
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define for ξ > − 1
2 and η > 0

Vξ, η(Ω+) :=
{
v ∈ C∞(Ω+) |

∀m ∈ N
3, (ρ+)−ξ+|m| (r+)−η+|m| (r̃+)|m|∂m

x v ∈ L∞(Ω+)
}
,

with Ω+ = G× (0, 1). There holds the corner expansion for any fixed ξ > − 1
2 :

u−
∑

γ, −1/2<Re γ<ξ

∑
q

cγ,q (ρ
+)γφ[γ, q](ϑ+) ∈ Vξ, 0(Ω+),(4.3)

where the coefficients cγ,q are complex numbers. Note that the remainder in (4.3)
is flat with respect to the “distance” ρ+ to the corner c+ and not with respect to
the edge E. Thus, the expansions (4.1) and (4.3) give complementary and seemingly
independent information about the structure of u.

In fact, we will use this result only to obtain the optimal corner regularity of u
without splitting u into regular and singular parts at this corner. We define the set

of exponents G− attached to the corner c− in a similar way as G+. We define ξ−+
1 as

ξ−+
1 = min

{
Re γ | γ ∈ G−+ and Re γ > − 1

2

}
.(4.4)

The choice ξ = ξ+
1 is the best possible so that the corner expansion in (4.3) is empty.

There holds

u ∈ Vξ+1 , 0(Ω
+) and u ∈ Vξ−1 , 0(Ω

−).(4.5)

4.3. Edge expansion up to the corner. Relying on [14, Chap. 17] we can
expand u along the edge E while taking its corner regularity into account. Near c+

the edge coefficients will themselves belong to weighted spaces of the type Vξ(0, 1) on
the half-edge {z ∈ (0, 1)} (here ρ+ coincides with 1− z),

Vξ(0, 1) :=
{
a ∈ C∞(0, 1) | ∀m ∈ N, (ρ+)−ξ+m ∂mρ+a ∈ L∞(0, 1)

}
,

and near c− the coefficients will belong to a space Vξ(−1, 0) where the weight function
is ρ−(z) = 1 + z instead of ρ+.

Theorem 4.2. Let η > 0 be given. Then for any α ∈ A such that Reα ∈ (0, η)
and any p = 1, . . . , pα, the coefficient aα,p appearing in the splitting (4.1) belongs to
Vξ+1−Reα(0, 1) and there holds

u−
∑

α, 0<Reα<η

∑
p

χ(r+)Sn
[
α, p ; aα,p

]
=: u+

reg,η ∈ Vξ+1 , η(Ω
+),(4.6)

where χ is a smooth cut-off function which is 1 in a neighborhood of 0, r+ = r+(x)
is defined in (4.2), and n = n(α) is the smallest integer such that Reα + n > η.
Similarly, aα,p

∣∣
(−1,0)

belongs to Vξ−1−Reα(−1, 0) and there holds

u−
∑

α, 0<Reα<η

∑
p

χ(r−)Sn
[
α, p ; aα,p

]
=: u−

reg,η ∈ Vξ−1 , η(Ω
−).(4.7)
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4.4. Extraction of edge coefficients. Our main goal is the determination
and the computation of the edge coefficients aα,p—at least those corresponding to the
smallest values of Reα. These coefficients are defined via the expansion (4.1), and
a sharp estimate of both the coefficients and the remainder is given in Theorem 4.2.
The method for extracting them is based on the use of the antisymmetric bilinear
form J [R](u, v) defined in (3.14), where v is chosen as Kn[β, p ; b] for a certain range
of β ∈ A and of test edge coefficients b. The choice of the order n will determine
the order of the error, which is a positive power of R. We introduce a last technical
hypothesis

(H4) ∀α ∈ A, Reα ≥ 0, ξ+
1 − Reα �∈ N, ξ−1 − Reα �∈ N.

The main result of our work is the following.
Theorem 4.3. Let u be the solution of problem (1.2) with a smooth right-hand

side f , which is zero in a neighborhood of the edge E. We assume the hypotheses
(H1)–(H4). The function u admits the edge expansion (4.1) for all δ > 0. Let β ∈ A
with Reβ > 0. We fix an integer n ≥ 0 such that

n ≥ Reβ − ξ1 − 1 with ξ1 = min{ξ+
1 , ξ−1 } ,(4.8)

where we recall that ξ+
1 defined in (4.4) is attached to the corner c+ and ξ−1 is its

analogue for the corner c−. Let m be an integer m ≥ n and finally let b ∈ Cm(I) be
such that ∂jzb(−+1) = 0 for all j = 0, . . . , n− 1. Then there holds

J [R]
(
u,Km[β, p ; b]

)
=

∫
I

aβ,p(z) b̄(z) dz +O
(
Rmin{n+ξ1 ,m+η1}−Re β+1

)
(4.9)

as R → 0, where

η1 = min
{
Reα | α ∈ A and Reα > 0

}
.(4.10)

Before starting the proof, we give a corollary of identity (3.21). For this, we first
introduce the decomposition of the bilinear form J [R] according to the splitting (3.7)
of the radial traction T :

J0[R](u, v) :=

∫
ΓR

(
T0u · v − u · T0v

)
R−1dσ =

∫
I

∫ ω

0

(
T0u · v − u · T0v

) ∣∣
r=R

dθ dz

and

J1[R](u, v) :=

∫
ΓR

(
T1u · v − u · T1v

)
dσ =

∫
I

∫ ω

0

(
T1u · v − u · T1v

) ∣∣
r=R

R dθ dz.

Lemma 4.4. Let α, β ∈ A. Let m ∈ N and integers 0 ≤ n ≤ m, 0 ≤ k ≤ m.
Let b ∈ Cm(I) such that ∂jzb(−+1) = 0 for all j = 0, . . . , n − 1. Let a ∈ Vξ(−1, 1). If
ξ + n− k + 1 > 0, then∑

j+�=k

J0[R]
(
∂jzaΦj [α, q] , ∂

�
zbΨ�[β, p]

)
+

∑
j+�=k−1

J1[R]
(
∂jzaΦj [α, q] , ∂

�
zbΨ�[β, p]

)
= δk,0 δα,β δp,q

∫
I

a(z) b̄(z) dz.

This lemma is merely a consequence of identity (3.21). Indeed, the assumptions
about a and b ensure that (i) all integrals in z are convergent, and (ii) integrations by
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parts in z (to have all derivatives on b) do not produce any boundary contribution.
Therefore we can separate the integrals over I and (0, ω) as in (3.19). The integrals
over (0, ω) are zero (or 1) thanks to (3.21), which correspondingly yields the lemma.

Proof of Theorem 4.3. Relying on the decompositions (4.6)–(4.7) of u, we split
the integral J [R]

(
u,Km[β, p ; b]

)
into several pieces, I0+ I+

1 + I+
2 + I−1 + I−2 + I3, and

estimate each of them.
• We first assume that m > n+ ξ1 − η1.
(A) We define I0 as

I0 =
∑
α, q, k

ξ1−Reα+n−k+1>0

( ∑
j+�=k

J0[R]
(
∂jzaα,q Φj [α, q] , ∂

�
zbΨ�[β, p]

)

+
∑

j+�=k−1

J1[R]
(
∂jzaα,q Φj [α, q] , ∂

�
zbΨ�[β, p]

))
,

where the coefficients aα,q are those of expansion (4.6). The assumptions of Lemma 4.4
are fulfilled because of the following:

(a) The inequality ξ1 −Reα+ n− k + 1 > 0 implies that k < ξ1 −Reα+ n+ 1,
which is ≤ n + ξ1 − η1; since we have assumed that m > n + ξ1 − η1, then
k ≤ m.

(b) By Theorem 4.2, aα,q belongs to the weighted space Vξ+1 −Reα(0, 1) in the part

of the edge which belongs to Ω+, and similarly in Ω−; therefore the inequality
ξ1 −Reα+ n− k+ 1 > 0 is the assumption η+ n− k+ 1 > 0 of Lemma 4.4.

Moreover, the assumption n ≥ Reβ−ξ1−1 implies that the triple (α = β, q = p, k = 0)
belongs to the sum defining I0. Therefore

I0 =

∫
I

aβ,p(z) b̄(z) dz.

(B) We define I+
1 as

I+
1 =

∑
α, q, k

ξ+1 −Reα+n−k+1>0

( ∑
j+�=k

J0[R]
(
(χ(r+)− 1)∂jzaα,q Φj [α, q] , ∂�zbΨ�[β, p]

)

+
∑

j+�=k−1

J1[R]
(
(χ(r+)− 1)∂jzaα,q Φj [α, q] , ∂�zbΨ�[β, p]

))
.

Let us define z+ as 1 − z. The domain of integration of the terms in I+
1 is ΓR ∩

supp(χ(r+)− 1) and is contained in a set of the form{
x ∈ R

3 | r = R, θ ∈ (0, ω), z+ ∈ (0, cR)},
where c is a positive constant.

Each term in I+
1 can be estimated by a product of three terms:

(i) an integral in z+ over (0, cR) of a function depending on z+ but not on R or
θ;

(ii) an integral in θ over (0, ω) of a function depending on θ but not on R or z+;
(iii) a power of R corresponding to the restriction on ΓR of a power of r.
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We observe the following:

(i) The integral over (0, cR) is
∫ cR
0
(z+)ξ

1
+−Reα+n−k dz+, which isO(Rξ1+−Reα+n−k+1

)
since ξ1

+ − Reα+ n− k + 1 > 0.
(ii) The integral over (0, ω) does not depend on R.
(iii) The power of R is RReα−Re β+k.
Therefore

I+
1 = O

(
Rξ

1
++n−Re β+1

)
.

The corresponding part I−1 in the neighborhood of c− has a similar bound.
(C) We define I+

2 as

I+
2 =

∑
α, q, j, �

ξ+1 −Reα+n−j−�+1<0

�≤m, Reα+j<n+ξ+1 +1

( ∑
j+�=k

J0
+[R]

(
χ(r+) ∂jzaα,q Φj [α, q] , ∂

�
zbΨ�[β, p]

)

+
∑

j+�=k−1

J1
+[R]

(
χ(r+) ∂jzaα,q Φj [α, q] , ∂

�
zbΨ�[β, p]

))
,

where J0
+ and J1

+ are the contributions over Ω+ of J0 and J1.
As for I+

1 , each term of I+
2 can be estimated by the product of three terms

(i)–(iii). The only difference is that the integral (i) in z+ is over (cR, 1) instead of

(0, cR) and is equal to
∫ 1

cR
(z+)ξ

1
+−Reα+n−k dz+, which is still O(Rξ1+−Reα+n−k+1

)
since ξ1

+ −Reα+ n− k + 1 is < 0. The power (iii) of R is the same; thus we obtain,
as above, that

I+
2 = O

(
Rξ

1
++n−Re β+1

)
.

(D) We set η := n+ ξ+
1 + 1. We check that

I0 + I+
1 + I−1 + I+

2 + I−2 =
∑
α, q, j

Reα+j<η

J [R]
(
χ(r+) ∂jzaα,q Φj [α, q] ,K

m[β, p ; b]
)
.

But according to Theorem 4.2

u+
reg,η := u−

∑
α, q, j

Reα+j<η

χ(r+) ∂jzaα,q Φj [α, q] ∈ Vξ+1 , η(Ω
+),

and similarly for the other corner. Therefore it remains to estimate

I3 := J [R]
(
u+

reg,η ,Km[β, p ; b]
)

and, more precisely, each contribution J [R]
(
u+

reg,η, ∂
�
zbΨ�

)
for 1 = 0, . . . ,m. Since

u+
reg,η belongs to Vξ+1 , η(Ω

+),

u+
reg,η = O

(
(ρ+)ξ

+
1 (r+)η

)
= O

(
(ρ+)ξ

+
1 −η rη

)
and ∇u+

reg,η = O
(
(ρ+)ξ

+
1 −η rη−1

)
.

For the bounding of J [R]
(
u+

reg,η , ∂
�
zbΨ�

)
, we split the integral over ΓR into (a) the

contribution on z+ ∈ (0, R), and (b) the contribution on z+ ∈ (R, 1), and we estimate
each piece by a product of three terms as we did before.
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(a) When z+ ∈ (0, R), the distance ρ+ is equivalent to R on ΓR. Therefore the

weight over u+
reg,η is equivalent to Rξ

+
1 in that region. Part (i) is the integral∫ R

0
(z+)n−� dz+ = O(Rn−�+1

)
, and the power (iii) of R is Rξ

+
1 −Re β+�. Their

product is Rn+ξ+1 −Re β+1.
(b) When z+ ∈ (R, 1), the distance ρ+ is equivalent to z+ on ΓR. Therefore the

weight over u+
reg,η is equivalent to (z

+)ξ
+
1 −η rη in that region. Part (i) is the

integral
∫ 1

R
(z+)ξ

+
1 −η+n−� dz+ = O(Rξ+1 −η+n−�+1

)
(since ξ+

1 −η+n−1+1 < 0),

and the power (iii) of R is Rη−Re β+�. The product of both is Rξ
+
1 +n+1−Re β .

Gathering all the previous results of parts (A)–(D), we obtain formula (4.9) in
the case m > n+ ξ1 − η1.

• Whenm < n+ξ1−η1, we follow the same lines with the corresponding changes:

For I0 we reduce the sum by the extra condition that k ≤ m, and the same for I−+
1 . The

conclusions are still the same. For I+
2 the sum is augmented by the set of (α, q, j, 1)

such that ξ+
1 −Reα+ n− j − 1+1 > 0 and j + 1 > m. The new terms do not satisfy

the same estimates as the old ones since the corresponding contribution (i) in z+ is
now O (1). As the power (iii) of R is still RReα−Re β+j+�, we obtain that

I+
2 = min

{
O(Rξ1++n−Re β+1

)
,O (RReα−Re β+j+�

)}
,

where the min is taken over (α, j, 1) such that ξ+
1 − Reα + n − j − 1 + 1 > 0 and

j + 1 > m. The minimum of Reα + j + 1 is attained for α = β1 and j + 1 = m + 1,
whence

I+
2 = O (Rη1−Re β+m+1

)
.

We have proved formula (4.9) in the case m < n+ ξ1 − η1.
Remark 4.5. (i) Formula (4.9) is, of course, still valid if hypotheses (H1)–(H4)

are only assumed to hold for the exponents which are used in the proof, namely,
Reβ < η = n+ ξ1 + 1 for (H1), (H2), and (H4) and Re γ = ξ+

1 for (H3).
(ii) If we discard hypotheses (H3) and (H4), we can still prove a formula like (4.9),

up to the possible multiplication of the remainder by | logMR| for some integer M .
(iii) We still obtain formula (4.9) if we relax the assumption on the right-hand

side so that f is no longer supposed to be zero in the neighborhood of the edge, but
only flat up to a specified order, in relation to what is needed in the proof of (4.9):
it suffices that f belongs to the weighted spaces Vξ1−2 , η−2(Ω

+) and Vξ1−2 , η−2(Ω
−),

with ξ1 defined in (4.8) and η = n+ ξ1+1. Then the edge expansion up to the corner
(4.6) still holds with such a right-hand side, which makes part (D) of the proof of
(4.9) still valid.

Remark 4.6. The assumptions about the test edge coefficients b can be slightly
relaxed.

(i) Instead of the boundary conditions ∂jzb(−+1) = 0 for any j = 0, . . . , n − 1, we
may assume that (1 − z)−n+j(z + 1)−n+j∂jzb ∈ L∞(I) for j ≤ m, and the statement
of Theorem 4.3 can be extended to noninteger n.

(ii) We may assume that b is only Cm−1(I) globally and piecewise Cm on a finite
partition of I.

5. A wider range of applications for quasi-dual methods. We extend the
results of Theorem 4.3 to any edge of a general polyhedron and discuss the case of
cracks (where ω = 2π). We also evaluate the limitation of the convergence rate in R
when the right-hand side is not flat along the edge.
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5.1. The domain. By a slight modification we can adapt our method to the
determination of edge singularities along any edge of a three-dimensional polyhedron,
that is, a domain Ω with plane faces and, therefore, straight edges.

Let E be an edge of Ω. E is an open segment whose end points c+ and c− are
corners of Ω. We choose cylindrical coordinates (r, θ, z) adapted to Ω around E:

E =
{
x ∼ (r, θ, z) | r = 0, z ∈ (−h2 , h2 )

}
,

where h is the length of E. There exists a conical neighborhood1 Θ of E such that

Ω ∩Θ = {x ∼ (r, θ, z) | r = (0, 1), ω ∈ (0, ω), z ∈ (−h2 , h2 )
} ∩Θ,

where ω is the opening of Ω along the edge E.
We still define, for any R < 1, the internal cylinder ΓR as

ΓR =
{
x ∼ (r, θ, z) | r = R, ω ∈ (0, ω), z ∈ (−h2 , h2 )

}
.

But it may happen that even for small R, ΓR is not included in Ω. Then we define
the reduced internal cylinder Γ̆R as

Γ̆R =
{
x ∼ (r, θ, z) | r = R, ω ∈ (0, ω), z ∈ (−h2 + kR, h2 − kR)

}
,

where k > 0 defines the conical neighborhood Θ. In other words, for any R ≤ R0,
Γ̆R = ΓR ∩Θ.

On the same model as (3.14), we define

J̆ [R](u, v) :=

∫
Γ̆R

(
Tu·v−u·Tv

)
dσ =

∫ h
2 −kR

−h
2 +kR

∫ ω

0

(
Tu·v−u·Tv

) ∣∣
r=R

R dθ dz.(5.1)

Then defining the sets G−+ of corner exponents at c−+ as before, but now on the polyhe-

dral cones K−+ coinciding with Ω in neighborhoods of c−+, and defining ξ−+
1 in the same

way, we have expansions2 (4.6)–(4.7), and there holds, with the same assumptions as
in Theorem 4.3,

J̆ [R]
(
u,Km[β, p ; b]

)
=

∫ h
2

−h
2

aβ,p(z) b̄(z) dz +O
(
Rmin{n+ξ1 ,m+η1}−Re β+1

)
.(5.2)

The proof follows exactly the same steps as the proof of (4.9). The parts I0, I
−+
1 ,

and I−+
2 are still defined by integrals over ΓR. We modify only part (D), noting that,

thanks to the condition on the support of χ, the expansion (4.6) now gives

J̆ [R](u,Km[β, p ; b]) = J̆ [R](u+
reg,η,K

m[β, p ; b]) + I0 + I+
1 + I−1 + I+

2 + I−2 .

The conclusion follows by the same arguments as before.

1In cylindrical coordinates, Θ has the form

Θ =
{
x ∼ (r, θ, z) | r = (0, R0), ω ∈ (0, ω), z ∈ (−h

2
+ kr, h

2
− kr)

}
,

with a k > 0 and R0 > 0.
2With the cut-off function χ chosen so that in the cylinder r ≤ R0, the support of x �→ χ(r−

+
)

is contained in the conical neighborhood Θ. The subdomains Ω+ and Ω− correspond to the regions
z > 0 and z < 0, respectively.
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5.2. In the presence of cracks. We now consider the case where the opening
ω is equal to 2π. This means that the model domain Ω is the cylinder of radius 1
with an internal boundary formed by the plane rectangle

Σ = {x ∈ R
3 | x ∈ (0, 1), y = 0, z ∈ I}.

This case is in principle included in our analysis. But the special situation of the
singularity exponents prevents hypothesis (H2) from being satisfied: By the result
of [10], the set A of singular exponents is included in the set of half-integers and,
moreover,

∀j̄ ∈ N, dimkerM0(
1
2 + j̄) = N,(5.3)

where we recall that N is the size of the system L. But our method can still be applied
in this case! We are going to explain why.

The first place where we use (H2) is for the definition of the shadow singularities
Φj [α, p]. The general theory gives that Φj [α, p] can be found in the form of a finite
sum of the form rα+j

∑
logqr ϕj,q(θ). But in this situation of cracks, it is proved in

[11] that the logarithmic terms are absent. But still, the solution of (2.8), though
existing, is not unique. This circumstance will help in the second place where we use
(H2).

We used (H2) to prove (3.21), in particular that Hk[α, p ;β, q] = 0 for all α and β
in A when k �= 0.

Lemma 5.1. For all j̄ ∈ N, p = 1, . . . , N , and j ≥ 1 let the singularities Φ0[
1
2 +

j̄, p] and their shadows Φj [
1
2 + j̄, p] be fixed. The dual singularities Ψ0[

1
2 + 1̄, q] are

still determined according to Lemma 3.2, and there exists a choice of the shadows
Ψ�[

1
2 + 1̄, q] such that there holds (cf. (3.20) and (3.21))

∀j̄, 1̄ ∈ N, ∀p, q ≤ N, ∀k > 0, Hk[
1
2 + j̄, p ; 1

2 + 1̄, q] = 0.(5.4)

Proof. By the proof of Proposition 3.4, we know that for any choice of the Ψ�[β, q],
the identity Hk[α, p ;β, q] = 0 holds as soon as α− β + k �= 0, i.e., in our case, when
1
2 + j̄ − 1

2 − 1̄+ k �= 0. Thus it remains to prove (5.4) when j̄ − 1̄+ k = 0.

Let 1̄ and q be fixed. The proof uses induction over k. For k = 1, j̄ = 1̄− 1. Let
us fix a particular solution ψ̆1[

1
2 + 1̄, q] of (3.12). Any solution of (3.12) is the sum of

ψ̆1[
1
2 + 1̄, q] and of an element of kerM0(− 1

2 − 1̄ + 1) = kerM0(− 1
2 − j̄). A basis of

this kernel is the set of ψ0[
1
2 + j̄, p′], p′ = 1, . . . , N . Therefore H1[

1
2 + j̄, p ; 1

2 + 1̄, q] is
the sum of a fixed contribution and of a linear combination of the contributions of the
ψ0[

1
2 + j̄, p′], i.e., of H0[

1
2 + j̄, p ; 1

2 + j̄, p′]. By Lemma 3.2, we can determine elements
of the kernel kerM0(− 1

2 − j̄) so that H1[
1
2 + j̄, p ; 1

2 + 1̄, q] = 0 for all p = 1, . . . , N .

For a general k, we assume that the Ψ�[
1
2 + 1̄, q] are determined for 1 < k and

have to prove (5.4) for j̄ = 1̄− k. We isolate the contribution j = 0, 1 = k in Hk, and
the proof is similar to the case k = 1.

5.3. The right-hand side. Let us consider now a standard smooth right-hand
side f ∈ C∞(Ω). Then f belongs to the weighted spaces V0,0(Ω

+) and V0,0(Ω
−). With

ξ+
0 = min{ξ+

1 , 2} and ξ−0 = min{ξ−1 , 2},(5.5)

there holds, for η = 2,

f ∈ Vξ+0 −2 , η−2(Ω
+) and f ∈ Vξ−0 −2 , η−2(Ω

−).(5.6)
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Thus a general smooth interior right-hand side alters the asymptotics of the solution
only in the region of exponents Reα ≥ 2 and Re γ ≥ 2. The corresponding parts in
the asymptotics of u (either polynomial or singular) are no longer orthogonal in the
sense of the bilinear form J [R] versus the standard singularities associated with a zero
(or flat) right-hand side.

In connection with Remark 4.5(iii), we see that in order to take (5.6) into account,
we first have to replace ξ1 by ξ0 := min{ξ+

0 , ξ−0 } in the statement of Theorem 4.3 and
investigate the consequences on the estimates of the limitation η = 2.

We assume that m > n + ξ0 − η1. We make changes in the general proof of
Theorem 4.3 in the same spirit as at the end of this proof: For I0 we reduce the sum

by the extra condition that Reβ + k < 2, and the same for I−+
1 . Thus we require that

Reα < 2 so that the triple (β = α, q = p, k = 0) belongs to the sum defining I0. The
conclusions are still the same.

For I+
2 the sum is augmented by the set of (β, q, j, 1) such that ξ+

1 − Reβ + n−
j − 1+ 1 > 0 and Reβ + j + 1 ≥ 2. The new terms do not satisfy the same estimates
as the old ones since the corresponding contribution (i) in z+ is now O (1). As the
power (iii) of R is still RRe β−Reα+j+�, we obtain

I+
2 = min

{
O(Rξ1++n−Reα+1

)
,O (RRe β−Reα+j+�

)}
,

where the min is taken over (β, j, 1) such that ξ+
1 − Reβ + n − j − 1 + 1 > 0 and

Reβ + j + 1 ≥ 2.
We have also to consider I3 anew with the constraint that η = 2. Part (a) of the

estimate is the same, but concerning part (b), we now have to deal with the possibility
that ξ+

0 − η+ n+1 = ξ+
0 − 2+ n+1 may be ≥ 0. In this case, the contribution (i) is

O (1) and the contribution (iii) is Rη−Reα = R2−Reα.
Let Q[R](u,Km[α, p; b]) be the remainder J [R](u,Km[α, p; b])−∫

I
aα,p(z) b̄(z) dz.

Theorem 5.2. Let u be the solution of problem (1.2) with a smooth right-hand
side f ∈ C∞(Ω). We assume the hypotheses (H1)–(H4). Let α ∈ A with Reα ∈ (0, 2).
We fix an integer n ≥ 0 such that

n ≥ Reα− ξ0 − 1.(5.7)

Let m be an integer m ≥ n and let b ∈ Cm(I) be such that ∂jzb(−+1) = 0 for all
j = 0, . . . , n− 1. Then there holds

Q[R]
(
u,Km[α, p ; b]

)
= O

(
Rmin{1 , n+ξ1 ,m+η1}−Reα+1

)
.(5.8)

Remark 5.3. If f is zero on the edge E, then f belongs to V1,1(Ω−+) and the above
statement can be improved by replacing everywhere 2 by 3, including in the definition

(5.5) of ξ−+
0 , and we obtain the following estimate for the remainder:

Q[R]
(
u,Km[α, p ; b]

)
= O

(
Rmin{2 , n+ξ1 ,m+η1}−Reα+1

)
.(5.9)

5.4. Other boundary conditions. In a way similar to that described in detail
for Dirichlet boundary conditions, we can treat other self-adjoint boundary conditions
such as Neumann conditions or mixed conditions in several forms, i.e., Dirichlet on
certain faces and Neumann on the others, or of mixed type for systems, where, for
example, in elasticity some components of the displacement are prescribed to 0 and
the complementing components of the traction are also prescribed.
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We may also consider transmission conditions based on a coercive bilinear form
B with piecewise constant coefficients.

Once the correct Mellin symbols M0 and L−+ are defined, we consider their re-
spective spectra A and G−+ and everything works in the same way, mutatis mutandis.
But we have to emphasize that the sets of exponents A and G−+ may systematically
contain (small) integers. For example, if we consider a Neumann problem, 0 always
belongs to A and G−+, which implies that α1 = 0 (and, in general, ξ1 = 0), though
this zero exponent corresponds to a “singular function” Φ0 which is constant.

Also the consideration of nonzero boundary data in the neighborhood of the
edge would introduce more perturbation in the orthogonality relations between the
asymptotics of the solution and the standard singularities associated with a zero right-
hand side.

6. Other methods and formulas: A comparison. Inspired by [26] and [20]
we can provide other families of formulas for the determination of the edge coefficients.
We present them and then compare them with each other. All of them are valid in
the extended framework of polyhedral domains as in section 5.1.

6.1. Pointwise dual formulas. Adapting [26] we find the formula, valid for
any solution u of (1.2) with smooth Lu = f , sufficiently flat near the edge E: For
each fixed z0 ∈ I,

aα,p(z0) =

∫
Ω

Lu ·Kz0 [α, p] dxdy dz.(6.1)

The three-dimensional dual function (x, y, z) �→ Kz0 [α, p](x, y, z) is defined as

Kz0 [α, p] := Ψ
3D
z0 [α, p]−Xz0 [α, p],

where the following hold:
1. Ψ3D

z0 [α, p] is a dual three-dimensional “corner” singularity at (0, 0, z0) consid-
ered the vertex of a cone: With ρ0 the distance to the point (0, 0, z0), and ϑ0

the corresponding spherical coordinates, Ψ3D
z0 [α, p] has the form

Ψ3D
z0 [α, p](ρ0, ϑ0) = ρ−1−ᾱ

0 ψ[α, p](ϑ0)

and satisfies on the infinite wedge WI coinciding with Ω in the conical neigh-
borhood Θ {

LΨ3D
z0 [α, p] = 0 in WI ,

Ψ3D
z0 [α, p] = 0 on ∂WI .

It does not belong to H1 in any neighborhood of z0 due to its strong singu-
larity in ρ−1−ᾱ

0 . The spherical pattern ψ depends only on the wedge WI and
the operator L, but not on the particular point z0 since we have supposed
that the operator has constant coefficients.

2. Xz0 [α, p] is the correction in H1(G), solution of{
LXz0 [α, p] = 0 in Ω,

Xz0 [α, p] = Ψ3D
z0 [α, p]

∣∣
∂Ω

on ∂Ω.
(6.2)

Note that Xz0 strongly depends on z0, because the trace of Ψ
3D
z0 [α, p] on ∂Ω

depends on z0.
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6.2. Global dual formulas. In the same spirit as formulas (6.1)–(6.2), we can
also obtain exact formulas for moments of the coefficients: For test functions b ∈
C∞
0 (I) (or, more generally, b as in Theorem 4.3 with n large enough)∫ 1

−1

aα,p(z) b(z) dz =

∫
Ω

Lu ·Kb[α, p] dxdy dz.(6.3)

Here Kb[α, p] := Km[α, p; b] − Xb[α, p], where Km[α, p; b] is defined in (3.11) with
m > Reα − 1 (i.e., so that LKm[α, p; b] belongs to H−1(Ω); see (3.13)) and Xb[α, p]
is the correction in H1(G), solution of{

LXb[α, p] = LKm[α, p; b] in Ω,

Xb[α, p] = Km[α, p; b]
∣∣
∂Ω

on ∂Ω.
(6.4)

Compare with [20], where the case L = ∆ with m = 0 is considered.
An alternative to (6.3) in the spirit of [15] is the following mixed formula:∫ 1

−1

aα,p(z) b(z) dz =

∫
Ω

Lu · χKm[α, p; b]− u · L(χKm[α, p; b]) dxdy dz.(6.5)

Here the cut-off χ can be taken as in the expansions (4.6)–(4.7), i.e., χ(x) = χ(r+)
in Ω+ and χ(x) = χ(r−) in Ω−. Simpler cut-off can be used if Ω contains a cylinder
of the form {x, r < r0, 0 < θ < ω, z ∈ I}: then χ = χ(r) with χ(r) ≡ 1 for r < r0/2
and ≡ 0 for r ≥ r0.

6.3. Comparison. Formula (6.1) yields exact pointwise values for the edge co-
efficient, provided the right-hand side is smooth enough to ensure the continuity of
the coefficient and flat enough to cancel any Taylor part of degree ≤ Reα in the
solution u. This formula makes use of the right-hand side only and does not need the
computation of u. But its main drawback is its own computation. The determination
of the dual spherical pattern ψ[α, p] is seldom explicit and difficult in general: In ad-
dition to the Laplace operator, this is done only for the Lamé system under Neumann
boundary conditions for a crack situation (ω = 2π); see [30]. Moreover the solution of
the three-dimensional problem (6.2) is necessary for each value of z0 where we want to
have the value of the coefficient aα,p. Finally, the application of formula (6.1) requires
the computation of a volume integral.

Formula (6.3) yields exact evaluation of the moment of the coefficient against
the test function. It has the following advantages over (6.1): the continuity of the
coefficients is no longer necessary; the basic function Km[α, p; b] is easier to deter-
mine (one-dimensional problems on (0, ω)) and less singular than Ψ3D

z0 . But it is
still necessary to solve as many three-dimensional problems (6.4) as values of test
functions b.

Formula (6.5) is closer to the idea of the quasi-dual formulas, since it is no longer
necessary to solve three-dimensional problems for the determination of the dual func-
tionals, but it does require the knowledge of the solution u. Still (6.5) is a volume
integral, and the determination of the cut-off terms χKm[α, p; b] and L(χKm[α, p; b])
is not obvious.

The quasi-dual formulas (4.9) and (5.2) need the determination of the same basic
functions Km[α, p; b] and the computation of the solution u itself, but no other three-
dimensional solution. It requires only one (or a few) surface integrals, away from the
edge where the functions Km[α, p; b] are the most singular. Each determination of
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J [R]
(
u,Km[β, p ; b]

)
does not provide the exact value of the moment of aα,p against b

but its value modulo a (known) power of R, which allows a Richardson extrapolation
of the limit from the computation of J [R]

(
u,Km[β, p ; b]

)
for 3 values of R.

The works [34] in two dimensions and [36] in three dimensions also introduce an
extraction method based on integration over a circular arc of radius R, followed by
Richardson extrapolation in R. They are successfully implemented in an engineering
stress analysis code. In a certain sense, they are precursory to our present method,
with the following important distinction: In these two references the antisymmetric
duality pairing J [R] is replaced by a simple scalar product involving only the angular
part of the singular functions. This possibility exists only for the Laplace operator
due to its natural separation of variables (see [36]) and for the Lamé equations in two
dimensions (see [34]). In order to reach a wide generality, we are led to deal with
the universal duality pairing J [R]. On the other hand, the extraction done in [36]
yields pointwise values of the coefficients. Extracting moments is more suitable to the
regularity properties of the edge coefficients near corners and to the approximation
by finite elements.
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