
The Poisson Equation with Local Nonregular
Similarities
Alexander Yakhot, Zohar Yosibash

Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical
Engineering, Ben–Gurion University of the Negev, Beer–Sheva 84105, Israel

Received 18 June 2000; accepted 30 October 2000

Moffatt and Duffy [1] have shown that the solution to the Poisson equation, defined on rectangular domains,
includes a local similarity term of the form: r2log(r)cos(2θ). The latter means that the second (and
higher) derivative of the solution with respect to r is singular at r = 0. Standard high-order numerical
schemes require the existence of high-order derivatives of the solution. Thus, for the case considered by
Moffatt and Duffy, the high-order finite-difference schemes loose their high-order convergence due to the
nonregularity at r = 0. In this article, a simple method is outlined to regain the high-order accuracy of these
schemes, without the need of any modification in the scheme’s algorithm. This is a significant consideration
when one wants to use a given finite-difference computer code for problems with local nonregular similarity
solutions. Numerical examples using the modified scheme in conjunction with a sixth-order finite difference
approximation are provided. c© 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 336–346,
2001
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I. INTRODUCTION

Many numerical schemes, aimed at solving partial differential equations describing conservation
laws of fluid dynamics, heat transfer, and solid mechanics, involve the solution of the Poisson
equation. Finite-difference approximations to the Poisson equation lead to large sparse systems
of linear equations, requiring time-consuming algorithms for their solution. One of the remedies
to this situation is the use of high-order schemes that provide higher accuracy on coarse meshes,
and employ fast methods for the solution of the system of equations. In [2], for example, fast
and stable direct methods have been developed for solving Poisson’s difference equations over a
rectangular domain. Recently, a high-order scheme for the solution of the Poisson equation over
a rectangle (2-dimensional domain) has been presented in [3]. This scheme, and many other high-
order standard schemes, loose their high-order accuracy for a wide variety of Poisson problems
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that contain singular points, i.e., distinct points at which one of the derivatives of the exact solution
is infinity. Herein, a simple method is outlined to regain the high-order accuracy of these schemes,
without the need of any modification in the scheme’s algorithm. This is a significant consideration
when one wants to use a given finite-difference computer code for problems with local similarity
solutions.

Consider the Poisson equation over a 2-dimensional domain Ω:

∇2w = −β0 in Ω, (1)

where β0 is a given constant. Homogeneous Dirichlet boundary conditions are imposed on the
boundary ∂Ω:

w = 0 on ∂Ω. (2)

Moffatt and Duffy [1] have shown that, if the boundary has a sharp corner of angle 2α (see
Fig. 1), then the solution is w(0)(r, θ), depending only on r, θ and α (i.e., independent of the
‘‘remote’’ geometry):

w(0)(r, θ) = −β0r
2

4

(
1 − cos2θ

cos2α

)
, (3)

where a polar coordinate system (r, θ) is located in the corner with θ = 0 along the bisector.
For the specific angle 2α = π

2 , the similarity solution (3) ‘‘explodes,’’ which requires special
treatment.

To resolve this case, Moffatt and Duffy [1] considered the general solution to (1) satisfying
w = 0 on θ = ±α:

w = w(0) +
∞∑
n=0

Anr
λncosλnθ, (4)

where

λn = (2n+ 1)
π

2α
, n = 0, 1, 2, ... (5)

FIG. 1. Notations.
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Generally speaking, the coefficientsAn depend on the domain geometry and boundary condition
away from the origin. For the ad hoc problem, when the domain is bounded by the lines θ = ±α
and the circular arc r = a, the coefficients An are determined by the condition w = 0 on r = a,
and, in particular,

A0 =
2β0a

2−λ0

αλ0(λ2
0 − 4)

. (6)

Rewriting (4) for the special case with 2α = π
2 + ε and considering the limiting case ε → 0 yields

[1]

w = ws +
∞∑
n=1

Anr
λncosλnθ, (7)

where

ws = −β0r
2

π

[π
4

+ log(r)cos2θ − θ sin 2θ
]
. (8)

(The derivation in [1] leads to the expression with log( ra ). The term with log(a), which is a
particular solution of Laplace’s equation, is omitted in (8) to detach a purely local similarity
solution independent of the global geometry.)

The solution (8) consists of the particular solution to (1) (−β0r
2/4) and the local similarity

solution, which is a solution to Laplace’s equation. The leading term of the local similarity solution
near r = 0 is of the form: r2log(r)cos2θ. The latter means that the second (and higher) derivative
ofwwith respect to r is singular at r = 0, though this singularity is compensated by other terms of
the Laplacian operator to provide the solution to (1). We call this singularity a hidden singularity,
because it is not anticipated in general: the solution and its first-order derivative are finite, but its
higher-order derivatives become infinite at the vicinity of a singular point at the boundary.

The term regular (or holomorphic) is used for functions that are expandable in the Taylor
series, i.e., for functions that are differentiable with all their derivatives. To denote the singularity
of high-order derivatives of the similarity solution (8), we use the term nonregular. We recall that
the leading term of the similarity solution depends on the right-hand side of the Poisson equation,
and the expression (8) has been ad hoc obtained for (1). In the Appendix, we consider a special
case with another type of nonregular similarity solution.

High-order numerical schemes are based on the Taylor series expansion of the solution, and,
therefore, require the existence of high-order derivatives of the sought solution. Thus, for the case
2α = π/2 considered above, standard high-order finite-difference schemes, as the one developed
in [3], loose their high-order convergence due to the hidden singularity at r = 0. The singularity
of the high-order derivatives contaminates the global accuracy of the numerical solution. For
example, a high-order scheme, which requires existence of the fourth-order derivative of the
solution, would fail for the problem at hand. For instance, in [3] this case has been considered
and the numerical solution, obtained with the sixth-order scheme, did not show the sixth-order
accuracy.

Herein, a simple method is outlined to regain the high-order accuracy of the scheme developed
in [3], and similar schemes, for solving the Poisson equation without the need of any modification
in the scheme’s algorithm.
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II. NUMERICAL METHOD

Consider the Poisson equation on a square domain: Ω = {(x, y)|0 ≤ x ≤ 2, 0 ≤ y ≤ 2}:

∇2w = f(x, y), (9)

where f(0, 0) = −β0 6= 0. The later means that the sought solution to (9) possesses the nonregular
similarity property at the corner (0, 0).

For the sake of simplicity, we assume that f(x, y) is symmetric about x = 1 and y = 1. Thus,
the boundary conditions are

w(0, y) = w(x, 0) = 0
∂w

∂x

∣∣∣∣
y=1

= 0,

∂w

∂y

∣∣∣∣
x=1

= 0. (10)

The solution w(x, y) can be decomposed into singular and regular parts:

w(x, y) = ws(x, y) + wR(x, y), (11)

where the similarity nonregular solutionws is given in (8) andwR is an unknown regular function.
Substituting (11) into (9), we obtain the Poisson equation for wR:

∇2wR = f(x, y) + β0, (12)

subject to the Dirichlet (at walls)

wR(0, y) = wR(x, 0) = 0, (13)

and Neumann (symmetry)

∂wR
∂x

∣∣∣∣
x=1

= −∂ws
∂x

∣∣∣∣
x=1

def= p(y),
∂wR
∂y

∣∣∣∣
y=1

= −∂ws
∂y

∣∣∣∣
y=1

def= q(x) (14)

boundary conditions. Using (8) for the definitions of p(y) and q(x), we find:

p(x) =
1
π

[2tan−1(x) + xln(1 + x2) + x],

q(y) =
1
π

[2tan−1(y) + yln(1 + y2) + y]. (15)

Finally, solving (12) subject to the boundary conditions in (13)-(14) for the regular function
wR by high-order schemes ensures high-order accuracy convergence. Once wR is found, the
overall solution w is constructed by (11).

In this study, we apply the high-order discretization scheme described in [3] for the Poisson
equation defined on a rectangular domain. Let a square Ω = {0 ≤ x ≤ 1, 0 ≤ y ≤ 1} be a
2-dimensional computational domain. The grid points on the domain are defined by two discrete
equally spaced point sets:

ωx
def= {x(i) = ihx, i = 1, 2, ..., Nx; (Nx − 1)hx = 1}, (16)
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ωy
def= {y(j) = jhy, j = 1, 2, ..., Ny; (Ny − 1)hy = 1}. (17)

The nodes (1, j), (i, 1) and (Nx, j), (i,Ny) are boundary nodes, where the Dirichlet and
Neumann boundary conditions are imposed, respectively (see Fig. 2). The finite-difference
equation for (12) on a 9-point discretization stencil is of the form

a(wR)i,j + bS
(xy)
i,j + cS

(x)
i,j + dS

(y)
i,j = rf+β0 , (18)

where

S
(xy)
i,j

def= (wR)i−1,j−1 + (wR)i−1,j+1 + (wR)i+1,j−1 + (wR)i+1,j+1

S
(x)
i,j

def= (wR)i−1,j + (wR)i+1,j , S
(y)
i,j

def= (wR)i,j−1 + (wR)i,j+1

rψ
def= ψij +

1
4!

(h2
x + h2

y)(D
2
x +D2

y)ψij +
2
6!

(h4
xD

4
x + 4h2

xh
2
yD

2
xD

2
y + h4

yD
4
y)ψij

+
1
4!

(h2
x − h2

y)(D
2
x −D2

y)ψij +
3

2 · 6!
(h2
x − h2

y)
2D2

xD
2
yψij .

The scheme coefficients are

a = −2
(

1
h2
x

+
1
h2
y

)
+ 4b, b =

2
4!

(
1
h2
x

+
1
h2
y

)
,

c =
1
h2
x

− 2b , d =
1
h2
y

− 2b.

To apply the discrete Poisson equation (18) on the symmetry lines i = Nx and j = Ny , one
needs the values ofwR at the fictitious (dummy) points of the computational domain: (wR)Nx+1,j
and (wR)i,Ny+1. Using the sixth-order approximation to the Neumann boundary condition de-
rived in [4], we have:

FIG. 2. Computational domain and boundary conditions.
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(wR)Nx+1,j = (wR)Nx−1,j + 2hxp(y) − 2
3!
h3
x

d2p

dy2 +
2
5!
h5
x

d4p

dy4 , (19)

(wR)i,Ny+1 = (wR)i,Ny−1 + 2hyq(x) − 2
3!
h3
y

d2q

dx2 +
2
5!
h5
y

d4q

dx4 . (20)

The equations (18)-(20) together with (15) complete the formulation of the high-order dis-
cretization scheme for the Poisson equation (12). The solution to the original Poisson equation
is defined by the known similarity nonregular solution ws, added to the regular solution wR.
The truncation error for the suggested scheme is of the sixth-order O(h6) on a square mesh
(hx = hy = h) and of the fourth-order O(h4

x, h
2
xh

2
y, h

4
y) on an unequally spaced mesh [3].

III. NUMERICAL EXAMPLES

In this section, we present numerical results obtained using the suggested high-order method,
compared to the standard high-order method. The results are compared with exact solutions
when available. Using a square mesh (hx = hy = h Nx = Ny = N ), the suggested method
is expected to provide the sixth-order O(h6) accuracy. In order to conduct accurate comparison
and because the expected errors are very small (less than O(10−12)), we use double-precision
accuracy in our computations. The system of algebraic equations is solved by the Gauss–Seidel
iteration method with a convergence tolerance ε = 10−14. Two examples are considered, the first
with a constant right-hand side in the Poisson equation, and the another with a smooth function
on the right-hand side being constant at the origin, thus exciting the ‘‘hidden singularity’’ in the
solution.

A. Example 1: f(x, y) === −−−βββ0 === const, duct flow

This example describes Poiseuille flow of an incompressible fluid, forced under a pressure differ-
ence to move in a rectangular duct of constant cross-sectional shape: 0 ≤ x ≤ 2a, 0 ≤ y ≤ 2b.
The boundary conditions are given in (10), only that y = 1 should be replaced by y = b, and
x = 1 should be replaced by x = a. The exact solution for this well-known problem is readily
derived by the method of separation of variables and in the literature there are different forms of
this solution. We use the solution in the form

w(x, y) =
∞∑
m=1

Um(x) sin(λmy), (21)

Um(x) =
4β0

π(2m− 1)λ2
m

[
1 − coshλm(x− a)

coshλma

]
, λm =

π(2m− 1)
2b

. (22)

In the practical computation of the exact reference solution, we chose the number of terms
in the series to make the remainder smaller than 10−14. To illustrate the rate of convergence of
the proposed method compared to the standard method, we plot in Fig. 3 the error of the finite
difference solution vs. the grid spacing (h). We define the discrete RMS norm as follows:

‖e‖rms = ‖w − w(h)‖rms def=

√√√√ 1
(Nx − 1)(Ny − 1)

Nx,Ny∑
i,j=1

[
wij − w

(h)
ij

]2
, (23)
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FIG. 3. Convergence rates of the standard and modified finite-difference schemes for Example 1. [Color
figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

where w(h)
ij is the finite difference solution at grid points i, j for the grid spacing h. The exact

solution wij is evaluated from (22) at each point (xi, yj) coinciding with the i, jth node. We
consider a square (a = b = 1) duct, and equally spaced grid points, hx = hy = h = 1/N . The
high-order scheme developed in [3] generates an accuracy of approximately O(h3) and not of
O(h6) because of the nonregular similarity at the origin, as predicted. On the other hand, Fig. 3
clearly illustrates that the modified method regains the sixth-order convergence rate: the slope of
the error curve is equal to 6.

B. Example 2: f(x, y) = cos(ωωωxy), ωωωxy = π
2 x(2 −−− x)y(2 −−− y), 0 ≤≤≤ x ≤≤≤ 1, 0 ≤≤≤ y ≤≤≤ 1

Herein we consider a problem with a smooth function on the right-hand side of the Poisson
equation, which is equal to a constant at the origin (0, 0). The latter excites the nonregular
similarity in the exact solution. The boundary conditions are as given in (10). Because an exact
solution for this example is not available, we obtain a numerical reference solution, which, for all
practical purposes, can be considered as the exact solution for the problem at hand. The high and
sufficient accuracy of the reference solution is obtained as follows. For different grid spacings h,
we compute numerical solutions, using both the standard and modified high-order methods. We
define the following integral:
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I(h) =

√∫∫
Ω

(
w(h)

)2
dxdy. (24)

Due to consistency of the considered problem, the value of I(h) converges to a constant as the
mesh size h → 0. In Table I, we summarize the values of I(h). The numerical integration used
the seventh-order Newton–Cotes formula [5] to capture the sixth-order accuracy of the modified
scheme. The results obtained with N = 33 for the modified scheme (i.e., h = 0.03125 and the
expected error is h6 ≈ 10−9) are considered by us as the reference (‘‘exact’’) for comparison.

Table I shows that the numerical solution obtained by the modified method with N = 33 or
the one obtained with the standard method withN = 513, where the integral is identical up to the
eighth digit could be considered as the reference solution. We computed the RMS norm of the
errors obtained using the modified as well as the standard high-order scheme in [3]. These are
shown in Fig. 4. Again, it is clearly seen that the standard high-order method does not perform
satisfactorily, while the modified high-order scheme regains the sixth-order convergence rate: the
slope of the error curve is equal to 6.

IV. APPENDIX: HIGH-ORDER LOCAL NONREGULAR SIMILARITIES

Consider the Poisson equation over a 2-dimensional domain Ω (see Fig. 1):

∂2w

∂r2
+

1
r

∂w

∂r
+

1
r2
∂2w

∂θ2
= f(r, θ) in Ω (A1)

subject to homogeneous Dirichlet boundary conditions on the boundary ∂Ω. We assume that the
boundary has a sharp corner of angle 2α. Thus, (r, θ) are polar coordinates with the origin at the
corner as shown in Fig. 1.

Imposing the boundary condition w = 0 at θ = ±α, leads to the following set of eigenvalues
and eigenfunctions:

λn = (2n+ 1)
π

2α
, {cosλnθ}, n = 0, 1, 2, ... (A2)

Let us assume that the right-hand of (A1) may be represented as a series of the form

TABLE I. Values of I(h) computed using the modified and standard methods.

N h I(h)-modified meth. I(h)-standard meth.

5 0.25000 0.0064403219 0.006103699
9 0.12500 0.0064028003 0.006319438

17 0.06250 0.0064024646 0.006381731
33 0.03125 0.0064024584 0.006397282
65 0.01563 0.006401164

129 0.00781 0.006402134
257 0.00391 0.006402377
513 0.00195 0.006402438
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FIG. 4. Convergence rates of the standard and modified finite-difference schemes for Example 2. [Color
figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

f(r, θ) =
∞∑
n=0

Cnr
λn−2cos(λn − 2)θ. (A3)

The solution of (A1) then is

w(r, θ) =
∞∑
n=0

w(n) +
∞∑
n=0

Anr
λncosλnθ, (A4)

wherew(n) is the particular solution to (A1) corresponding to the n-th term of the series (A3). The
second series in (A4) is the superposition of Laplace’s equation solutions, where the coefficients
An depend on the domain’s global geometry.

It will be shown that considering only the first two terms in (A3) is sufficient, namely:

f(r, θ) = C0 + C1r
4cos4θ. (A5)

It is readily seen that the corresponding particular solutions are

w(0)(r, θ) = C0
r2

4

(
1 − cos2θ

cos2α

)
, w(1)(r, θ) = C1

r6

20

(
cos4θ +

cos6θ
cos6α

)
, (A6)
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where 2α = π
2 − ε. These solutions are nonregular for θ = ±α = ±π

4 . The solution w(0) has
been addressed in the article and analyzed in detail in [1]. Herein we consider w(1).

For the sake of developing the limiting case α → π
4 , we assume that the domain is bounded by

the lines θ = ±π
4 and the circular arc r = a. The coefficientsAn are determined by the condition

w = 0 on r = a. Using the ortogonality of the eigenfunctions (A2), we obtain

An = (−1)n+1 2C1a
6−λnλn

α(λ2
n − 16)(λ2

n − 36)
. (A7)

Expressing λ1 from (A1) as λ1 = 6 + 12ε
π and adding the second term (n = 1) of the series in

(A4) to the solution w(1), we find

w(r, θ) = w(1)
s +

∞∑
n=2

Anr
λncosλnθ, (A8)

where

w(1)
s (r, θ) = C1

r6

20

{
cos4θ − 1

3ε

[
cos6θ −

( r
a

) 12ε
π

cos

(
6 +

12ε
π

)
θ

]}
. (A9)

Finally, at the limit ε → 0 (i.e., 2α = π
2 ), the local similarity solution reads

w(1)
s (r, θ) = C1

r6

5π

[π
4
cos4θ + log(r)cos6θ − θ sin 6θ

]
. (A10)

(The derivation of (A10) from (A9) leads to the expression with log( ra ). The term with log(a),
which is a particular solution of Laplace’s equation, is omitted in (A10) to detach the purely local
similarity solution independent of the global geometry.)

In general, the local similarity solution w(n)
s , corresponding to the n-th term of the series in

(A3), could be expressed in terms of the complex variable z = r(cosθ + isinθ):

w(n)
s (r, θ) =

Cn
π(λn − 1)

[π
4
rλncos(λn − 2)θ + Real(zλn logz)

]
, (A11)

where

logz = log(r) + iθ, λn = 2(2n+ 1), n = 0, 1, 2, ... (A12)

The second term in (A11), being the real part of an analytical function (everywhere, except
at the origin), is a harmonic function. This term provides homogeneous boundary conditions on
θ = ±π

4 , and is responsible for the nonregularity of the similarity solution w(n)
s at the origin.

Separating the real part of zλn logz in (A11) yields

w(n)
s (r, θ) =

Cnr
λn

π(λn − 1)

[π
4
cos(λn − 2)θ + log(r)cosλnθ − θ sinλnθ

]
. (A13)

In the Table II, we list the first terms of the series (A3) and nonregular terms of the corresponding
similarity solutions.



346 YAKHOT AND YOSIBASH

TABLE II. Right-hand side of Poisson’s equation and corresponding nonregular terms.

n λn f (n) - RHS of Eq. (A3) w
(n)
s - non-regular term

0 2 1 r2 log(r)cos(2θ)
1 6 r4cos(4θ) r6 log(r)cos(6θ)
2 10 r8cos(8θ) r10log(r)cos(10θ)

For n = 1 and n = 2, it can be seen that only specific high-order schemes, the sixth- and
tenth-order, respectively, are affected by the right-hand side of the Poisson equation listed in the
Table II.
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