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SUMMARY

The eigen-frequencies of elastic three-dimensional thin plates are addressed and compared to the eigen-
frequencies of two-dimensional Reissner–Mindlin plate models obtained by dimension reduction. The
qualitative mathematical analysis is supported by quantitative numerical data obtained by the p-version
&nite element method.

The mathematical analysis establishes an asymptotic expansion for the eigen-frequencies in power
series of the thickness parameter. Such results are new for orthotropic materials and for the Reissner–
Mindlin model. The 3-D and R–M asymptotics have a common &rst term but di?er in their second
terms.

Numerical experiments for clamped plates show that for isotropic materials and relatively thin plates
the Reissner–Mindlin eigen-frequencies provide a good approximation to the three-dimensional eigen-
frequencies. However, for some anisotropic materials this is no longer the case, and relative errors of
the order of 30 per cent are obtained even for relatively thin plates. Moreover, we showed that no shear
correction factor is known to be optimal in the sense that it provides the best approximation of the R–M
eigen-frequencies to their 3-D counterparts uniformly (for all relevant thicknesses range). Copyright ?
2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The accurate computation of eigen-frequencies of elastic domains, is of high engineering
importance because the smallest frequencies have to be higher compared with any frequency
of a dynamically applied load. Otherwise resonance may occur, resulting in the ampli&cation
of the eigen-mode and &nally the destruction of the elastic structure.

This is of particular importance in three-dimensional thin domains, such as three-dimensional
plates, where the smallest eigen-frequencies are proportional to the thickness. It has been
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22 M. DAUGE AND Z. YOSIBASH

shown in References [1; 2] that for isotropic thin plates, the smallest frequencies are associ-
ated with bending modes. Therefore, we address herein these bending eigen-frequencies in a
fully three-dimensional domain.

Due to the complexity of a three-dimensional eigen-analysis, much attention has been given
historically to the derivation of plate models, which can be understood as an application of
dimensional reduction principles. These plate models are aimed to approximately solve the
three-dimensional bending eigen-problem by a two-dimensional formulation. In engineering
practice the Reissner–Mindlin (R–M) plate model is frequently used as an approximation of
the 3-D thin plate domain, and is assumed to be valid for thicknesses of plates under 5%
compared with other dimensions.

In this paper, our aim is a twofold investigation of the quality of approximation of 3-D
eigen-frequencies by R–M eigen-frequencies:

1. By a theoretical asymptotic analysis, we obtain after [2; 3] a power series expansion in
the thickness parameter � of both 3-D eigen-frequencies and R–M eigen-frequencies.

2. By a numerical implementation, we quantify the deviation from R–M with respect to
3-D, in a variety of situations for small but non-zero �’s.

The outcome of point 1. is that the 3-D and R–M eigen-frequency asymptotics have the
same /rst terms as �→ 0, namely � times the corresponding eigen-frequency �1 of the limit
Kirchho?–Love model (K–L). But the second terms in the asymptotics, as far as lateral
clamped boundary conditions are considered, are always di1erent: indeed we prove in this
paper that this second term for the 3-D eigen-frequency has the form �2 times a positive
quantity �2, whereas for the R–M model, the term in �2 is zero.

Thus, from a strictly mathematical point of view, the R–M approximation is not better
than the K–L approximation, and in both the cases, this is an order 1 approximation. From
a practical point of view, the order of magnitude of the quantity �2 with respect to �1 is
of importance, since the relative error of approximating a 3-D plate by the R–M model is
equivalent to ��2=�1 as � approaches zero, but is still non-zero.

The quantity �2 is a coupling term between inner (boundary layer) and outer (regular) parts
of a two-scale expansion of eigen-vectors. Moreover, in �2 there is a multiplicative factor cb

which depends only on the material law of the 3-D plates. For example, for isotropic materials,
we show that this factor is an increasing function of the Poisson coeKcient �. For special
non-isotropic materials, we show that this factor is much larger.

That is why we extend the results of References [2; 3] to orthotropic materials. The mul-
tiplicative factor appears now as a density along the lateral boundary. We also present the
corresponding construction of R–M model, and the asymptotics of eigen-frequencies. What
is known about asymptotics for the R–M model is References [4; 5] where it is proved that
in the loading case, there is no boundary layer at order 1, but that it starts at order 2.
This is exactly the reason for the absence of the term of order �2 in the eigen-frequency
asymptotics.

Numerical experiments with clamped plates are provided. These results quantify the in-
Luence of the material law and the shape of the mid-surface on the R–M eigen-frequencies
as compared to their 3-D counterparts. It is shown that for isotropic materials and relatively
thin plates, the di?erence is very small, whereas for orthotropic materials the di?erence in
the &rst eigen-frequency of the R–M plate model and the corresponding eigen-frequency of
the fully 3-D plate can be as large as 30%. Moreover, we showed that no shear correction
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factor is known to be optimal in the sense that it provides the best approximation of the R–M
eigen-frequencies to their 3-D counterparts uniformly (for all thicknesses range).

In Section 2 we provide the mathematical description of the plate models (3-D and R–M
model), and in particular summarize the asymptotic behaviour of the eigen-frequencies (in
terms of �). Details about the mathematical analysis on the derivation of the asymptotics of
the eigen-frequencies for orthotropic 3-D plates is given in Appendix A and for orthotropic
R–M model in Appendix B. The model problems used in the numerical experimentation
are described in Section 3, followed by the numerical results in Section 4. Summary and
conclusions are given in Section 5.

2. 3-D PLATE VIS REISSNER–MINDLIN PLATE MODEL

2.1. Eigen-frequencies of the 3-D plate

Consider a thin elastic domain O of thickness 2� as shown in Figure 1, de&ned as follows:

O =!× (−�;+�); with ! ⊂ R2 a regular domain

The co-ordinates are x= (x1; x2; x3) and the mid-surface ! lies in the plate x1–x2, while x3 is
in the normal direction. As a representative case we restrict our attention to clamped boundary
conditions on the lateral edges. More precisely, we assume that the upper and lower surfaces
of the plate, i.e. !×{±�}, are traction free, and that the lateral edges of the plate 9!× (−�; �)
are clamped, i.e. u= 0. Here u= (u1(x); u2(x); u3(x))T, denotes the displacement &eld.

We denote by e the engineering notation of the linear strain tensor. Accordingly, we use
the index notation: (e1; e2; e3; e4; e5; e6) = (e11; e22; e33; 2e23; 2e13; 2e12) where eij = 1

2(9iuj +9jui),
and 9i ≡ 9=9xi.

Orthotropic (or isotropic) homogeneous materials are considered, hence the stress tensor �
is given by Hooke’s law

�= [C] e (1)

Figure 1. Typical plate of interest and notations.
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where [C] is a 6× 6 (positive) symmetric matrix associated with the 3-D material constituting
the domain, in the form

[C] =


C11 C12 C13 0 0 0

C22 C23 0 0 0
C33 0 0 0

C44 0 0
C55 0

C66

 (2)

In case the material is isotropic then

C11 =C22 =C33 =
E(1 − �)

(1 + �)(1 − 2�)
; C12 =C13 =C23 =

E�
(1 + �)(1 − 2�)

and

C44 =C55 =C66 =
E

2(1 + �)

Here E is the Young modulus and � is the Poisson ratio.
Denoting the material density by �, the sought vibration eigen-frequencies � of the three-

dimensional plate are the solutions of the following weak eigen-problem:

Seek �¿0 and 0 	= u∈V(O); such that ∀v∈V(O)∫ ∫
!

∫ �

−�
e(u)T[C]e(v) dx1 dx2 dx3 = �2

∫ ∫
!

∫ �

−�
� uT · v dx1 dx2 dx3

(3)

where

V(O) = {v∈ [H 1(O)]3; v= 0 on 9!× (−�; �)}
H 1(O) being the usual Sobolev space.

The eigen-frequencies form an increasing sequence n 
→ ��
n of positive numbers where we

agree to repeat each eigen-frequency according to its multiplicity. There is no &nite accumu-
lation point. The superscript � indicates that we &x the mid-surface ! and that we consider
the eigen-frequencies as functions of the thickness �.

Let S be the transverse symmetry operator de&ned for u= (u1; u2; u3) by

u S
−→ ((x1; x2; x3) 
→ (u1(x1; x2;−x3); u2(x1; x2;−x3);−u3(x1; x2;−x3))) (4)

We note that ∫ ∫
!

∫ �

−�
�uT · v dx1 dx2 dx3 =

∫ ∫
!

∫ �

−�
�(Su)T · Sv dx1 dx2 dx3

and that for orthotropic materials∫ ∫
!

∫ �

−�
e(u)T[C] e(v) dx1 dx2 dx3 =

∫ ∫
!

∫ �

−�
e(Su)T[C]e(Sv) dx1 dx2 dx3

We deduce that each eigen-space determined by (3) can be split as the direct sum of a bending
subspace (i.e. where the elements u satisfy Su=−u, in other words u are anti-symmetric in
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respect to the mid-plane !) and a membrane or stretching subspace (where u satisfy Su= u).
Therefore for each &xed �, each eigen-frequency in the sequence (��

n) is either bending or
membrane.

2.2. Isotropic 3-D plate

For ease of presentation we &x the material density � ≡ 1. For isotropic materials it has
been shown in References [1; 2] that for each &xed rank n, for � small enough ��

n is a
bending eigen-frequency and that ��

n=� tends to the nth eigen-frequency, denoted by �KL
n , of

the Kirchho1–Love dimensionally reduced model

LKL :=
ER2

3(1 − �2)
:H 2

0 (!)−→H−2(!) (5)

In Reference [2] it is proved that ��
n has a power series expansion in terms of �, i.e. there

exist real coeKcients �n;i for i¿1 such that for any k

��
n = ��n;1 + �2�n;2 + · · · + �k�n; k + O(�k+1) (6)

Here, of course, �n;1 coincides with �KL
n . Following the analyses of Reference [2] (and see

also Reference [3;Section 8]) we &nd the &rst two terms of the expansion of the scaled
eigen-values S�

n

S�
n := (��

n=�)
2 = Sn;0 + �Sn;1 + · · · + �kSn; k + O(�k+1) (7)

The &rst term Sn;0 is the nth eigen-value of the Kirchho?–Love model, i.e. (�KL
n )2. As for

the second term Sn;1, it is equal to

Sn;1 =
E
3

∫
9!

cb(�)|(92
1 + 92

2)�n;0|2 ds (8)

where �n;0 ∈H 2
0 (!) is the nth eigen-function† of the Kirchho?–Love model LKL normalized in

L2(!), and cb is a coupling constant related to the structure of the &rst boundary layer term
in the expansion of 3-D eigen-vectors. This coupling constant is positive and depends only
on �. See details in Appendix A.

We immediately deduce that �n;2 = Sn;1=(2
√

Sn;0), and obtain

�n;2 =
E

6�n;1

∫
9!

cb(�)|(92
1 + 92

2)�n;0|2 ds (9)

2.3. Orthotropic 3-D plate

Stricto sensu, the eigenvalue expansion (7) is not known for non-isotropic plates. Nevertheless,
for clamped lateral boundary conditions, it is possible to use all constructions in Reference [2]
and to extend the results of isotropic plates to orthotropic plates. Details are provided in
Appendix A.

†When �KL
n is a multiple eigen-frequency of LKL, according to the constructions of Reference [2], extra criteria

have to be applied for the determination of �n; 0: the pair (�n; 0;Sn; 1) has to be an eigen-pair of a &nite positive
symmetric eigen-problem, see Appendix A.
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We still &x the density to � ≡ 1. Then for &xed n, the nth eigen-frequency has a power series
expansion with respect to � in the form (6) where �n;1 = �KL

n with the nth eigen-frequency �KL
n

of the Kirchho1–Love dimensionally reduced model LKL associated with material matrix [C]
on !, cf. Reference [6]:

LKL :H 2
0 (!) −→H−2(!)

� 
−→ 1
3 (C̃1194

1 + C̃2294
2 + 2(C̃12 + 2C̃66)92

192
2)�

(10)

where for i; j∈{1; 2; 6}, C̃ij is de&ned as

C̃ij =Cij − Ci3Cj3

C33
(11)

Thus, according to (6), ��
n=�→ �n;1, as �→ 0, i.e. the nth eigen-frequency over � must approach

a constant value as the plate thickness tends to zero. This will be visualized by numerical
examples.

As for the second term �n;2 in (6), it has an expression like (9) but with a positive coupling
function de&ned on 9! and depending on the material matrix [C]:

�n;2 =
1

2�n;1

∫
9!

cb([C]; s)|(92
1 + 92

2)�n;0|2 ds (12)

Therefore we expect, as noted in Reference [3], that � 
→ ��
n=� is increasing for � small

enough. This will be visualized by numerical examples.

2.4. Eigen-frequencies of the Reissner–Mindlin plate model

For completeness of presentation, we provide herein the derivation of the weak eigen-problem
for the R–M plate model made of orthotropic materials.

The displacement &eld under the R–M assumptions can be represented as
u1

u2

u3

=


−x3�1(x�)
−x3�2(x�)

w(x�)

 (13)

where the index � denotes the values {1; 2} corresponding to the in-plane variables. The
in-plane functions �1(x�) and �2(x�) have the physical interpretation of rotations, while the
function w(x�) denotes the deLection of the mean surface of the plate. R–M displacement
&eld assumption implies that normals to the mean surface ! remain straight lines after
deformation, but not necessary normals. Thus, the strain vector e is

e1

e2

e3

e4

e5

e6


=



−x391�1

−x392�2

0
(92w − �2)
(91w − �1)

−x3(92�1 + 91�2)


(14)

and as noted e3 = 0.
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The second important assumption for constructing the R–M plate model, is that �3 is
negligible. Therefore one introduces the constraint �3 = 0 in the model. Writing (1) in
index notation, we obtain

�i =Cijej; i; j = 1; : : : ; 6 (15)

Due to the constraint �3 = 0, i.e. C3jej = 0, we substitute e3 by −∑
k �=3 C3kek=C33 in (15)

except for i = 3, and we obtain

�i =
∑
j �=3

(
Cij − Ci3C3j

C33

)
ej; i; j = 1; 2; 4; 5; 6 (16)

We note that for i; j = 1; 2; 6, the new material coeKcients Cij − Ci3C3j=C33 are nothing else
than C̃ij already introduced in notation (11). Based on (16) we obtain a modi&ed Hooke’s
law, connecting the stress vector (�1; �2; �4; �5; �6) with the strain vector (e1; e2; e4; e5; e6). The
5× 5 material matrix [C̃] = (C̃ij)i; j = 1;2;4;5;6 obtained is

[C̃] =



C11 − C2
13

C33
C12 − C13C23

C33
0 0 0

C22 − C2
23

C33
0 0 0

C44 0 0
C55 0

C66


(17)

To account for a correction in the shear stresses �13 and �23 to better represent the fully 3-D
stresses, the material matrix entries C̃44 and C̃55 are changed by introducing the so-called shear
correction factor �:

C̃44 =�C44; C̃55 =�C55

By properly choosing �, either the energy of the R–M solution, or the deLection w can be
optimized with respect to the fully 3-D plate. The smaller the �, the smaller the inLuence of
� on the results. For the isotropic case two possible �’s are (see details in Reference [7]):

�Energy =
5

6(1 − �)

�DeLection =
20

3(8 − 3�)

For modal analysis, it is not clear that an optimal value of � is available. A value of �= 5=6
is frequently used in engineering practice. It is important to note that for orthotropic materials
the value of � is set to 1.

De&ning the vector R= (�1(x�); �2(x�))T and the vector W= (�1(x�); �2(x�))T, and assuming
�≡ 1 as in the previous subsections, we can introduce the following two bi-linear forms for
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the R–M plate model:

A(R; w; W; v) =
�3

3

∫ ∫
!
C̃1191�1 91�1 + C̃12(91�1 92�2 + 92�2 91�1)

+ C̃2292�2 92�2 + C̃66(92�1 + 91�2)(92�1 + 91�2) dx1 dx2

+ �
∫ ∫

!
C̃44(92w − �2)(92v− �2) + C̃55(91w − �1)(91v− �1) dx1 dx2 (18)

M(R; w; W; v) =
�3

3

∫ ∫
!
(�1�1 + �2�2) dx1 dx2 + �

∫ ∫
!
wv dx1 dx2 (19)

Using the above de&nitions, the weak eigen-problem for the clamped R–M plate model is

Seek �̃¿0 and 0 	= (R; w)∈VRM(!)

such that

A(R; w; W; v) = �̃2M(R; w; W; v); ∀ (W; v)∈VRM(!) (20)

where

VRM(!) = {(R; w)∈ [H 1(!)]3; �1 =�2 =w = 0 on 9!}

The solution of (20) provides the Reissner–Mindlin eigen-frequencies, which form for each
� an increasing sequence denoted by (�̃�

n)n, where we perform the same convention of repeating
according to the multiplicity as before.

By similar (and much easier) constructions than in Reference [2], we can prove that the
nth R–M eigen-frequency has a power series expansion in �

�̃�
n = ��̃n;1 + �2�̃n;2 + · · · + �k �̃n; k + O(�k+1) (21)

Here, the &rst coeKcient �̃n;1 is equal to its counterpart �n;1 in (6), i.e. the nth K–L eigen-
frequency.

In the 3-D eigen-frequency asymptotics (6), the presence of a non-zero second coeKcient
�n;2 is a consequence of the presence of the in-plane boundary layer components U1

� at the
second rank in (A2). But, for the clamped R–M model, it is known, see References [4; 5],
that the boundary layer series starts one rank further. That is why we can prove, see Appendix
B, that

�̃n;2 = 0 (22)

Therefore, from the asymptotic expansion point of view, the approximation of the 3-D eigen-
frequencies by R–M eigen-frequencies is only correct at the order 1.
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3. FRAMEWORK OF NUMERICAL INVESTIGATION

Of major interest is the question whether the R–M eigen-frequencies are a good approximation
of the 3-D eigen-frequencies. To address this question we de&ne the relative error for the nth

eigen-frequency as follows:

!�
n

def=
��
n − �̃�

n

��
n

(23)

Relying on the previous qualitative mathematical theory, it is now natural for us to address
the following questions:

(a) How close are the R–M eigen-frequencies to their 3-D counterparts? Which shear cor-
rection factor should be used so as to obtain the ‘best’ eigen-frequencies for the R–M
plate models? How small should the ratio between � and the other plate dimensions be
so that the R–M eigen-frequencies approximate the 3-D ones well?

(b) From asymptotics (12) and (22), we see that

!�
n �

��n;2

�n;1

Thus the question is how big is ��n;2 compared with �n;1 for small, but non-zero �?
Especially, are there material properties so that �n;1 is of the same order of magnitude
as ��n;2 for a given small �?

(c) In this connection, what is the inLuence of the geometrical shape of the plate boundary
and the material properties on �n;2?

To address the above questions, which are of a quantitative nature, three-dimensional plates
are considered and analysed from the numerical approximation point of view by the p-version
of the &nite element method.

3.1. Three-dimensional plates

We consider a rectangular plate, with or without a circular hole, having dimensions of
2× 1× 2�, as shown in Figure 2. The lateral boundaries of the plate are clamped, u= 0
along AEFG, and in the case of the plate with the hole as well, the boundaries along the cir-
cular hole are clamped. Since only bending eigen-frequencies are sought, we have to consider
anti-symmetric modes with respect to x3. This is accomplished by taking only the upper half
of the plate �¿x3¿0 as the computational domain, with anti-symmetric boundary condition
u1 = u2 = 0 on the entire mid-surface x3 = 0. The &rst bending eigen-frequency of the whole
plate is symmetric with respect to x1 = 1 and x2 = 1=2 therefore, it is exactly the one obtained
as the &rst eigen-frequency of the one-eighth computational domain. Thus, we further reduce
the computational cost and compute the &rst three eigen-frequencies which are symmetric
along x1 = 1 and x2 = 1=2. The computational domain is therefore one-eighth of the original
plate, the shaded domain ABCD (resp. ABCC ′D for the plate with a circular hole), with
clamped boundary conditions along the lateral boundaries AB and AD (and CC ′ respectively),
symmetric boundary conditions along the other two lateral boundaries, i.e. u1 = 0 along BC
and u2 = 0 along CD (resp. C ′D), and anti-symmetric boundary conditions on the plane x3 = 0.

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:21–48
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Figure 2. Rectangular plate under consideration.

Four di?erent material properties are investigated, two of which are isotropic and the other
two orthotropic. For all the cases the density is taken as �= 1.

Name Young Modulus E Poisson ratio �
Isotropic 0.854 0.382
Almost incompressible 1 0.49

Name C11 =C22 C12 C13 =C23 C33 C44 =C55 =C66

Strongly orthotropic 11 9.9 1 0.1 1
Orthotropic 3 1.5 1 0.5 1

A three-dimensional p-version &nite element model is constructed having two elements in
the thickness direction, x3, and three elements in the x1 and x2 directions. In the neighbourhood
of the edges, the mesh is graded so that there is an element of dimension � each. The &nite
element model is constructed parametrically so that the value of � may vary, and we change
it from 0:1 to 0:001. For the plate with a circular hole, three radii are analysed: R= 0:2; 0:3
and 0:4. In Figure 3 the mesh used for the various problems of interest is presented for plates
of half-thickness �= 0:1.

The p-level over each element has been increased from 1 to 8 and the trunk space has been
used (see Reference [8]). For the rectangular plate (with 18 hexahedral elements) there are
4068 degrees of freedom at p= 8, and the eigen-frequencies are converged to within a relative
error of less than 0:5 per cent at p= 8 for most �. An advantage of using p-version &nite
element methods is the possibility of having ‘needle elements’ in the boundary layer zone with
aspect ratios as large as 1000 without signi&cant degradation in the numerical performance.
An exponential convergence rate is obtained (due to the use of high-order elements) and the
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Figure 3. Finite element meshes for 3-D analysis with �= 0:1.

Figure 4. Finite element meshes for 3-D analysis with �= 0:01.

convergence of the eigen-frequencies (the &rst three of them) has been examined in order to
evaluate the reliability of the numerical results.

In Figure 4 we present the &nite element mesh for the case where �= 0:01. As may be
noticed the boundary layer elements are changed according to the plate thickness. Although
almost not visible, there are two elements across the thickness and one element each of
dimension � in the neighbourhood of the boundary.
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Figure 5. Finite element meshes for the rectangular R–M plate model.

All &nite element computations are done within the &nite element code Stress Check‡.

3.2. R–M plate models

Finite element models of mid-surfaces of the 3-D plate have been constructed similar to the
3-D meshes, where one fourth of the plate has been considered for computing the symmetric
eigen-frequencies. Again, a layer of one element along the plate boundary of width equal to
� is present. An example of the meshes for the R–M plate with �= 0:1 and 0:01 is shown in
Figure 5. One can specify three di?erent shear correction factors used in conjunction with the
R–M plate model made of an isotropic material: �Energy; �DeLection or �= 1. For orthotropic
material only �= 1 is available in the code that we use. Again, we increase the polynomial
degree over each element from 1 to 8 and observe an exponential convergence in the eigen-
frequencies (usually less than 0:1 per cent relative error for most � values at p= 8 with 2816
degrees of freedom).

4. QUANTITATIVE COMPARISON BETWEEN 3-D AND R–M
EIGEN-FREQUENCIES

We give the results of numerical experimentations in the rectangular plate for the four di?er-
ent material laws introduced in the previous section. Then we provide a few results on the
inLuence of the shape of the mid-surface.

4.1. The standard isotropic material

This subsection is devoted to the rectangular plate with the ‘isotropic’ material properties.
We investigate which of the three �s, used for the R–M plate model, provide the closest
eigen-frequencies compared with their 3-D counterparts. We plot the &rst three symmetric
eigen-frequencies=� vs the plate half thickness � in Figure 6.

‡ Stress Check is a trade mark of Engineering Software Research and Development, Inc., 10845 Olive Blvd., Suite
170, St. Louis, MO 63141, U.S.A.
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Figure 6. First three symmetric eigen-frequencies for ‘isotropic’ rectangular plate:
3-D vs R–M model with di?erent �’s.

As expected by the mathematical analysis, indeed �n=�→ �n;1 as �→ 0, and also �̃n → �n

regardless of the � used.
To better visualize the di?erence between �̃n and �n we provide in Figure 7 the relative

error !�
1 for the &rst eigen-frequency for the three choices of �. The representation of relative

errors !�
2 and !�

3 for the second and third eigen-frequencies is very similar.
At the observation scale of Figure 7, it seems that �DeLection is the ‘best’ � from the three

investigated, in the sense that �̃n is the closest to �n for all investigated �. Again at this
observation scale, no linear dependence is visible (we cannot ‘see’ �n;2).

Using �DeLection for the ‘isotropic’ material, the relative error for the &rst three eigen-
frequencies is negligible (less than 0.12%) for thin plates with a slender ratio of less than
1 per cent, and for moderately thick plates (thickness about 5% compared to other plate
dimensions) is smaller than 0.2%.

Now, if we magnify the ordinates of Figure 7 by a factor 100, we obtain Figure 8, where
the expected increase of the eigen-frequency with � (due to the non-zero factor �1;2) is clearly
visible. In this ‘asymptotic’ region, the shear correction factor �Energy is the best one.

4.2. Almost incompressible materials

The numerical values of the function � 
→ cb(�), see Appendix A, suggest that the di?er-
ence between �n and �̃n should be much more pronounced as � approaches 0.5. Herein we
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Figure 7. Relative error for the &rst eigen-frequency: 3-D vs R–M model with di?erent �’s.

investigate the rectangular plate discussed in Section 4.1 only with ‘almost incompressible’
material properties. In Figure 9 we provide the relative error for the &rst eigen-frequency
with the di?erent shear correction factors. Comparing with Figure 7 one can note the more
pronounced di?erence between the R–M and 3-D eigen-frequencies as expected. In this case,
a relative error of almost 0.6% is obtained for the &rst eigen-frequency at �≈ 0:03.

We magnify the ordinates of Figure 9, to obtain Figure 10. Here again we see, as in the
case of isotropic material in Figure 8, that in the ‘asymptotic’ region, the shear correction
factor �Energy is the best one.

4.3. Orthotropic materials

We herein investigate the inLuence of the material law (orthotropicity) on the eigen-frequen-
cies, based on the rectangular plate model. The material properties are those de&ned as ‘or-
thotropic’, and in Figure 11 we present the &rst symmetric three eigen-frequencies over �
vs � for the 3-D and R–M plate. The relative error is presented in Figure 12. The relative
error for the &rst eigen-frequency is around 5% at �≈ 0:07, and increases up to 8% around
�≈ 0:18. Although the behaviour of the eigen-frequencies compared to the ‘isotropic’ plates is
the same, we obtain herein a relative error which is larger by an order of magnitude compared
to the isotropic case.

Plotting the relative error vs � (not logarithmic scale), for �¡0:03, a linear curve for �→ 0
is visible as seen in Figure 13, supporting the asymptotic behaviour (6).
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Figure 8. Zoom view of the relative error for the &rst eigen-frequency:
3-D vs R–M model with di?erent �’s.

Figure 9. Relative error for the &rst eigen-frequency: 3-D vs R–M model with di?erent �’s
of ‘almost incompressible material’.

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:21–48



36 M. DAUGE AND Z. YOSIBASH

Figure 10. Zoom view of relative errors for the &rst eigen-frequency
of ‘almost incompressible material’.

Figure 11. First three symmetric eigen-frequencies for ‘orthotropic’
rectangular plate: 3-D vs R–M model.

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:21–48



EIGEN-FREQUENCIES IN THIN ELASTIC PLATE MODELS 37

Figure 12. Relative error of the &rst three symmetric eigen-frequencies: 3-D vs R–M model
made of ‘orthotropic material’.

Figure 13. Relative error (linear graph) of the &rst three symmetric eigen-frequencies: 3-D vs R–M
model made of ‘orthotropic material’.
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Figure 14. First three symmetric eigen-frequencies over � for ‘strongly orthotropic’
rectangular plate: 3-D vs R–M model.

4.4. Strongly orthotropic materials

For the ‘strongly orthotropic’ plate, the boundary layer e?ect on the eigen-frequencies should
be the most pronounced. In Figure 14 we present the &rst three symmetric eigen-frequencies
over � vs �, as obtained from the 3-D analysis compared to those obtained by the R–M plate
analysis with �= 1. The 3-D eigen-frequencies over � clearly tend to a limit as �→ 0, and the
values of �n=� increase as � increases up to �≈ 0:05. The relative error is presented in Figure
15. A very large relative error of 25% is visible for the &rst eigen-frequency at �= 0:1. This
is a signi&cant deviation whereas the R–M model underestimates the ‘true’ 3-D by 25%, and
is attributed to the boundary layer e?ect.

4.5. The e1ect of the shape of 9!

The mathematical analysis demonstrates that the 3-D eigen-frequencies are clearly sensitive
to the shape of the mid-surface boundary. To quantify this e?ect we analyse the rectangular
plate having a hole in its centre of increasing radii, as presented in Figure 3. Since the
most pronounced e?ect between the 3-D and R–M plate eigen-frequencies is observed for the
‘strongly orthotropic’ material, we herein use the same material properties. The lowest (&rst)
eigen-frequency over � vs � is plotted in Figure 16 for the rectangular plate without the whole,
and for the plate with a hole of radius R= 0:2; 0:3; and 0.4.
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Figure 15. Relative error of the &rst three symmetric eigen-frequencies: 3-D vs R–M model made of
‘strongly orthotropic material’.

Figure 16. First eigen-frequency for a ‘strongly orthotropic’ plate with a hole of
di?erent radii: 3-D vs R–M model.
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Figure 17. Relative error of the &rst eigen-frequency for a ‘strongly orthotropic’
plate with a hole of di?erent radii.

The inLuence of the hole (the boundary layer e?ect is increased) is better seen when
observing the relative error in the &rst eigen-frequency as a function of � in Figure 17.

One can note that for the plate with a hole with R= 0:3 the relative error may be beyond
30% for �≈ 0:07. On the other hand, there does not seem to be a clear connection between
the length of the clamped boundary layer and the increase in the relative error. In fact, the
relative error is larger for the plate without the hole in comparison with the plate having
a hole of radius R= 0:2, however, the situation is reversed when comparing the rectangular
plate with the one having a hole of radius R= 0:3.

5. SUMMARY AND CONCLUSIONS

The eigen-frequencies computed by using the Reissner–Mindlin plate model are frequently
used in engineering practice as an approximation to the three-dimensional plate eigen-
frequencies for relatively thin elastic plates. In this paper, we have explicitly provided the
asymptotic behaviour of the eigen-frequencies as the thickness of the plate goes to zero, both
for the R–M and 3-D plates made of either isotropic or orthotropic materials. The results for
R–M and 3-D orthotropic plates are new. The 3-D and R–M asymptotics have a common
&rst term but di?er in their second terms.

The qualitative mathematical description is supported by quantitative numerical data ob-
tained by the p-version &nite element method for clamped plates. It was shown that for
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isotropic materials and relatively thin plates the Reissner–Mindlin eigen-frequencies provide a
good approximation to the three-dimensional eigen-frequencies. It was also demonstrated that
for isotropic materials, no shear correction factor is known to be optimal in the sense that
it provides the best approximation of the R–M eigen-frequencies to their 3-D counterparts
uniformly (for all thicknesses range).

For some orthotropic materials we have shown relative errors between the R–M eigen-
frequencies and their 3-D counterparts of an order of 30% even for relatively thin plates.
This imposes a serious question mark on the relevance of the R–M eigen-analysis for plates
made of orthotropic material. We also studied the inLuence of the shape of the mid-surface
boundary on the errors in R–M eigen-frequencies.

APPENDIX A: 3-D EIGEN-VALUES—ASYMPTOTICS FOR ORTHOTROPIC PLATES

Herein, the results and constructions of Reference [2], which are valid for isotropic materials,
are adapted to orthotropic materials. We explain in detail the formula for the second term in
the asymptotics, which is left implicit in Reference [2].

A.1. Third-order ansatz

Let X3 := x3=� be the scaled transverse variable. Let (r; s) be boundary &tted co-ordinates along
9! in the mid-plane, with r the inward distance to 9! and s an arc-length co-ordinate along
9!. Then −9r is the outward normal derivative along 9!. Let furthermore R := r=� be the
scaled distance to the boundary 9!.

For � small enough, there exists a 3-D eigenvector u� = (u�
1; u

�
2; u

�
3) associated with ��

n with
a two-scale asymptotic expansion (outer and inner expansion terms) starting with

u�
3 = �[�] + �2

(
X 2

3

2
− 1

6

)
(C1392

1 + C2392
2)�[�]

C33
+ �2(U1

3�[�])(s; R; X3) + O(�3) (A1)

and for the in-plate components, �= 1; 2

u�
� =−�X39��[�] + �2(U1

��[�])(s; R; X3) + O(�3) (A2)

where the ‘generator’ �[�] = �[�](x1; x2) = �0+��1+�2�2+· · · is a (scalar) formal series solution
of the dimensionally reduced eigenvalue equation (A3) below, and U1 : � 
→ (U1�)(s; R; X3) is
a three-component boundary layer operator.

The PDE operator P(91; 92) in the second term of (A1) can be found in the asymptotics
for monoclinic materials in Reference [6;Section 2:3]. Note that for isotropic materials, this
operator reduces to

C1392
1 + C2392

2

C33
=

�
1 − �

(92
1 + 92

2)

The equation to be satis&ed by �[�] in ! has the form

L[�]�[�] = S[�]�[�] in ! (A3)
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Here L[�] is an operator formal series
∑

j¿0�
jLj. The term of order 0 is L0 =LKL de&ned in

(5), cf. [6;Section 2:3] and L1 = 0. The solution of eigen-problem (A3) provides the series
S[�] (terms of the asymptotics of S�

n) as de&ned in (7). Equation (A3) is completed by
boundary conditions on 9! which can also be written as a formal series equation in the form
,[�]�[�] = 0.

A.2. The /rst two eigen-problems for the generator

As we are interested in S0 and S1, it is enough to consider the &rst two terms in �[�], say
�0 + ��1. The boundary conditions on �0 + ��1 are obtained by considering ansatz (A1)–(A2),
and looking for zero Dirichlet traces up to the order �2.

Considering the &rst terms in (A1) and (A2), we see that the boundary conditions on �0

are �0 = 0 and 9r�0 = 0 on 9!. With the &rst relation obtained from (A3) we have

LKL�0 = S0�0 in ! and �0; 9r�0 = 0 on 9! (A4)

In order to obtain the boundary conditions for the next term in the asymptotics, �1, one has
to recall the procedure for obtaining the &rst boundary layer term U1�0.

Let B(91; 92; 93) and G(91; 92; 93) be the interior operator and the traction operators on the
upper and lower faces of the plate, associated with the left-hand side of (3). Let moreover,
(n1(s); n2(s)) be the components of the inward unit normal to 9!. Then there holds

91 = n19r + n29s and 92 = n29r − n19s on 9!

For each &xed s∈ 9!, the leading boundary layer operators are de&ned as

B(s; 9R; 9X3) :=B(n1(s)9R; n2(s)9R; 9X3) in the half -strip (0;∞) × (−1; 1)

and

G(s; 9R; 9X3) :=G(n1(s)9R; n2(s)9R; 9X3) on upper and lower faces (0;∞) × {±1}

For each &xed s∈ 9!, there exists a unique exponentially decreasing three-component vector
’1(R; X3) =’1(s;R; X3) and two real numbers ,b = ,b(s) and ,′b = ,′b(s) such that the mixed
boundary value problem in the half-strip

B(s) = 0 in (0;∞) × (−1; 1)

G(s) = 0 on (0;∞) × {±1}
 = − (0; 0;

X 2
3

2
− 1

6
)T on {0} × (−1; 1)

has a solution of the form (when written in normal-, tangential-to-9! and vertical local
components)

 =’1 + ,b

−X3

0
R

 + ,′b

0
0
1


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Then the &rst boundary layer operator � 
→U1� is de&ned by

(U1�)(s; R; X3) =
(C1392

1 + C2392
2)�

C33

∣∣∣∣
9!

(s)’1(s;R; X3)

and the boundary conditions on �1 are obtained by requiring that the Dirichlet trace of
components (A1) and (A2) of ansatz is a O(�2) and O(�3), respectively:

�1 = 0; 9r�1 =
(C1392

1 + C2392
2)�0

C33

∣∣∣∣
9!

(s),b(s) on 9! (A5)

These boundary conditions have to be combined with the second equation arising from (A3):

LKL�1 = S0�1 + S1�0 (A6)

A.3. Solution of the /rst two eigen-problems for the generator

The &rst eigen-problem is (A4). Its solutions are obviously the eigen-pairs (�0;S0) of the
fourth-order operator LKL with Dirichlet conditions. Let us &x such a S0 and let E be the
corresponding eigen-space.

The solution of the next eigen-problem (A5), (A6) is subject to compatibility conditions
since LKL − S0 is not invertible. The Fredholm alternative can be formulated by integrating
by parts Equation (A6) against any element �′0 ∈E, that is

0 =
∫ ∫

!
LKL�1�′0 − S0�1�′0 − S1�0�′0 d x1d x2 (A7)

where we integrate by parts four times the term
∫∫

LKL�1�′0. Since �′0 belongs to H 2
0 (!) and

�1 to H 1
0 (!), we are left with the only term −∫

9! 9r�1 P′�′0, where P′ is the second-order
operator§

P′(s; 91; 92) = 1
3(n2

1C̃1192
1 + n2

2C̃2292
2 + 2(C̃12 + 2C̃66)n1n29192)

Further, we know from (A5) that

9r�1 = ,b(s)P(91; 92) =
C1392

1 + C2392
2

C33
�0

Then from (A7), together with the equations LKL�′0 = S0�′0 we deduce

0 =
∫
9!

,b(s)P�0 P′�′0 ds +
∫ ∫

!
S1�0�′0 d x1d x2 (A8)

§We have used the relations 9��1 = n�9r�1 valid on 9! for �= 1; 2, since 9s�1 = 0 on 9!.
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Figure 18. The ‘constant’ cb(�) as a function of � for isotropic materials.

Using that for any element �∈H 2
0 (!), there holds 9�9��= n�n�92

r on 9!, and setting

cb([C]; s) := − ,b(s)
n4

1C̃11 + n4
2C̃22 + 2(C̃12 + 2C̃66)n2

1n
2
2

3
n2

1C13 + n2
2C23

C33
(A9)

we obtain that, to be associated with a pair (�1;S1), an element �0 ∈E has to satisfy for all
�′0 ∈E ∫

9!
cb([C]; s)92

r �0 92
r �

′
0 d s= S1

∫ ∫
!
�0�′0 d x1 d x2 (A10)

which means that (�0;S1) is an eigen-pair of the symmetric eigen-problem (A10). The pos-
itivity of the function −,b(s) can be proved by the same arguments as in [9;Section 6:2].
The positivity of the other functions in (A9) constituting cb results from the positivity of the
material matrix [C].

Noting that for �∈H 2
0 (!), there holds 92

r �= R� on 9!, we obtain formula (12) in the case
when S0 is a simple eigenvalue. For isotropic materials, the ‘constant’ cb(�) introduced in
(8) is plotted for �∈ [0; 0:5) in Figure 18. It resembles the one plotted in Reference [3].

For non-isotropic materials, cb([C]; s) also depends on s via the orientation of the material
&bres with respect to the boundary at point s. Considering (n1; n2) = (cos /; sin /), we may
consider cb([C]) as a function cb([C]; /) of /. For both orthotropic and strongly orthotropic
materials used in our computations, the function /=0 
→ cb([C]; /) is plotted for /=0∈ [0; 1] in
Figure 19. We note that cb takes larger values for the orthotropic material than for isotropic
materials, and still larger values for the strongly orthotropic material. The period 1=2 is due
to the symmetries of our materials.

The computations for Figures 18 and 19 are carried out with the Finite Element library
MZelina [10].
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Figure 19. The function /=0 �→ cb([C]; /) for both orthotropic materials.

APPENDIX B: R–M EIGEN-VALUES—ASYMPTOTICS FOR
ORTHOTROPIC PLATES

In this appendix, we describe the &rst steps of the asymptotic analysis for the R–M eigen-
pairs, solution of (20). In order to have simpler formulations of the underlying operators,
introducing no essential restriction we assume

C̃44 = C̃55 = 1

On the other hand, we de&ne the following 2 × 2 bi-dimensional elasticity system MKL:

R 
→MKLR=
1
3

C̃1192
1�1 + C̃129192�2 + C̃66(92

2�1 + 9192�2)

C̃2292
1�2 + C̃129192�1 + C̃66(92

1�2 + 9192�1)
(B1)

We note that the system MKL has the following relation with the K–L operator LKL de&ned
in (5):

div MKL∇=LKL (B2)

Then eigen-problem (20) can be written in the form−�3MKLR− �(∇w − R) = 1
3�

3�̃2R

−� div(∇w − R) = ��̃2w
(B3)

with the Dirichlet boundary conditions

�1 =�2 =w = 0 on 9!
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Setting �̃2 = �2S, we obtain that (B3) is equivalent to−�2MKLR− (∇w − R) = 1
3�

4SR

−div(∇w − R) = �2Sw
(B4)

As there are only even powers of � in (B4) we start with even Ans[atze: for S,

S = S0 + �2S2 + · · ·
and for R and w

R= R0 + �2R2 + �4R4 + · · · and w =w0 + �2w2 + �4w4 + · · ·
Using these Ans[atze in (B4) and identifying the powers of � we &nd systems of equations
on Sk , Rk and wk , the &rst three ones of which are{ −(∇w0 − R0) = 0

−div(∇w0 − R0) = 0
(B5)

{−MKLR0 − (∇w2 − R2) = 0

−div(∇w2 − R2) = S0w0

(B6)

{−MKLR2 − (∇w4 − R4) = 1
3 S0R0

−div(∇w4 − R4) = S0w2 + S2w0

(B7)

Here follow all the equations satis&ed by S0; S2, R0; R2; w0 and w2 so that (B5)–(B7) hold:

R0 = ∇w0 (B8)

R2 = ∇w2 + MKL∇w0 (B9)

(LKL − S0)w0 = 0 (B10)

(LKL − S0)w2 = S2w0 + (1
3S0R + div MKLMKL∇)w0 (B11)

Equations (B8) and (B10) combined with the boundary conditions w0 = 0 and R0 = 0 are
solved by the eigen-pairs (w0;S0) of the operator LKL with Dirichlet boundary conditions
w0 = 0 and 9nw0 = 0 on 9!.

As for equation (B11), for any pair of &xed traces g and h, we can &nd|| (w2;S2) satisfying
(B11) together with the boundary conditions w2 = g and 9nw2 = h on 9!. In order to satisfy
the Dirichlet conditions R2; w2 are zero on 9!, and taking (B9) into account, we may choose

g= 0 and h= − 9nMKL∇w0 (B12)

||If S0 is a simple eigenvalue of LKL. The case of multiple eigenvalues has to be treated like above, see Appendix A.
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Then w2 and the normal component of R2 are zero on 9!. As for the tangential component of
R2, since 9sw2 = 0 on 9!, its trace is equal to the tangential component 4 of MKL∇w0, which
has no reason to be zero.

In the isotropic case, the trace �24 of the tangential component of R0 + �2R2 is compensated
by the &rst boundary layer term in the expansion of the eigen-vector: this term has the form
�2(�; �W )(s; R), where we recall that R is the scaled variable r=�. Here, we simply obtain that
W = 0, the normal component \n of � is zero, and for each s∈ 9! the tangential component
\s(s; ·) is the exponentially decreasing solution of the boundary value problem on R+:

−C̃6692
R\s + \s = 0; ∀R¿0; and \s(s; 0) = − 4(s) (B13)

This &ts perfectly with the loading case in References [4; 5].
In the general orthotropic case, we do not have any more this uncoupling between normal

and tangential components of �. The &rst boundary layer term still has the form �2(�; �W )
(s; R) and the triple (�; W )(s; ·) solves the system

R(s; 9R)(�; W ) = 0; ∀R¿0

where, if R(91; 92) denotes the system (R; w) 
→ (−MKLR+ R−∇w; divR− Rw),

R(s; 9R) :=R(n1(s)9R; n2(s)9R)

Then there exists a unique exponentially decreasing solution of the boundary value problem
on R+:

R(s; 9R)(�; W ) = 0; ∀R¿0; and \s(s; 0) = − 4(s) (B14)

But now, in general, \n and W are not ≡ 0. As the power of � in front of W is 3, the trace
of W does not disturb the trace of w0 + �2w2. This means that we keep the choice of the
boundary condition g= 0 for w2 in (B12). But we have to modify h by setting instead of
h= − 9nMKL∇w0:

h= − 9nMKL∇w0 − \n(s; 0)

Then the expansion of the R–M eigenvector starts with

R0 + �2R2 + �2�(s; R) + O(�3) and w0 + �2w2 + O(�3)

and that of the eigenvalue with

S0 + �2S2 + O(�3)

where S2 is inLuenced by the boundary layer only in the non-isotropic case (when h has to
be modi&ed).
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