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Abstract: At V-notched tips in specimens made of quasi-brittle materials a small damaged or 

plastic zone is evident that cannot not be neglected in terms of dissipated energy and stress 

state, although it is small. Herein, to predict the failure initiation at the notch tip, we extend 

the finite fracture mechanics (FFM) coupled criterion, which requires a simultaneously 

fulfillment of an energy and a stress criteria.  

In the small damaged zone, a damage model is introduced so to decrease the effective 

Young’s modulus in a power law in terms of the distance to the notch tip in such a way that 

the stress field remains bounded. It seems particularly suited to quasi-brittle materials, since 

no diffuse damage can occur. This damage zone is coupled to the FFM criterion to provide the 

necessary condition for failure initiation.   

Under the assumption that the damaged zone and the virtual crack extension are small, 

matched asymptotic expansions are used. It is shown that the damaged zone grows first, 

proportionally to the square of the applied load and then, above a threshold, a virtual crack of 

a given length simultaneously satisfies the energy and stress criteria, and failure occurs. The 

approach allows taking into account varying tensile strength and material toughness in the 

damaged zone, as may reasonably be expected. Moreover, it is shown that the same coupled 

stress-energy criterion can directly be applied to quasi-brittle materials by appropriately using 

the actual material toughness as measured on a cracked specimen. 

 

1. Introduction 
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The behavior of brittle materials is governed by the elastic Hooke’s law until failure. This is 

obviously an approximation but it has proven to be widely sufficient even if it has something 

of an anomaly. At some points, called singular, the strain and stress fields tend to infinity. In a 

2D homogenous structure this occurs at reentrant corners (Williams, 1959; Leguillon and 

Sanchez-Palencia, 1987; Yosibash, 2012) (Figure 1).  

 

 

Figure 1. A V-notched specimen made of a homogeneous material - Notations. 

 

In fact, this unbounded growth is the manifestation of an asymptotic solution to the linear 

equations of elasticity. The displacements, strains and stresses in the vicinity of the notch root 

take the form 
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Here, ( , )r   are the polar coordinates with origin at the notch root O . The first term R  is not 

of interest and represents a constant vector used for consistency. The strain field   is the 

symmetric part of the gradient of the displacements U . The stress tensor   derives from   

according to the Hooke’s law. The exponent   and the associated angular function ( )u   are 

eigen-pairs to an eigenvalue problem obtained by satisfying the traction free boundary 

conditions on the V-notch faces (Leguillon and Sanchez-Palencia, 1987) (see Appendix 1). 

The coefficient k is the generalized stress intensity factor (GSIF) which coincides with the 

classical mode I stress intensity factor kI for a crack ( 0  ). 

Quasi-brittle materials undergo small (compared to the dimensions of the structure) damage 

or plastic areas near V-notch tips where the Hooke’s law no longer holds true and stresses are 

not tending to infinity (as in linear elasticity) but are generally bounded. This is also the case 
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for brittle materials but these areas are so small that in particular the energy dissipation which 

results from their formation may be neglected. Here, we aim at combining a damage model 

and a crack initiation criterion to predict failure at V-notches in specimens made of a 

homogeneous quasi-brittle material. A damage model was proposed in Leguillon (2008) 

assuming that Young’s modulus E evolves following a power law in terms of the distance r to 

the notch root so that there is no longer a singularity at the corner, i.e. the stress tensor 

remains bounded. On the other hand, the failure initiation is based on a coupled criterion 

(Leguillon, 2002) which states that a virtual crack causing failure mutually fulfills two 

conditions, one is energy driven while the other refers to a stress condition. The drop in 

potential energy corresponding to the virtual crack formation must exceed the energy that 

would be consumed to create it, and the tensile stress along the virtual crack must exceed the 

tensile strength of the material. This coupled criterion has proven effective for predicting 

failure in many brittle materials and structures such as PMMA and ceramics (Leguillon, 2002; 

Yosibash et al., 2006), geomaterials (Quesada et al., 2009; Romani et al., 2015), composites 

(Martin et al., 2010; Martin et al., 2012; Camanho et al., 2012; Garcia et al., 2014; Garcia et 

al., 2015) and adhesive bonding (Hebel and Becker, 2008; Moradi et al., 2013; Hell et al., 

2014). 

 

The outline of this manuscript is as follows. In Section 2, the main ideas of the coupled 

criterion for brittle materials are summarized. Section 3 is dedicated to the damage model; it 

describes how the Young modulus changes to accommodate the stress concentration. 

Asymptotic expansions are used in Section 4 to derive the size of the damage zone as a 

function of the applied load. The next section is devoted to the identification of a parameter 

involved in the damage law. Finally, following two different approaches, Sections 6 couples 

the two models, damage and coupled criterion, to provide a failure criterion for quasi-brittle 

materials. Numerical results are shown in Section 7 which exhibits comparisons between the 

different configurations illustrated in Figure 2. 
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Figure 2. Two different configurations: (a) the sharp V-notch, (b) the V-notch blunted by a 

circular damaged zone. 

 

2. FFM coupled criterion for brittle materials 

 

Consider the geometry is depicted in Figure 2(a). The failure prediction is based on the 

coupled criterion (Leguillon, 2002; Martin and Leguillon, 2004; Cornetti et al., 2006; 

Yosibash et al., 2006; Sapora et al., 2013; Weissgraeber et al., 2016). Its starting point is an 

energy balance (written in 2D omitting the specimen thickness) 

 

 
P K

c
0l    W W G   (2) 

 

where 
P

W  and 
K

W  are respectively the change in potential energy and in kinetic energy 

between an uncracked state and a cracked one embedding a crack of length l , under a 

constant loading. The last term is the energy consumed to create such a crack, 
c
G  is the 

material toughness. As the initial loading is quasi-static then (2) becomes 

 

 
P

c
l W G   (3) 

 

If the crack length l  at initiation is small compared to the dimensions of the structure (small 

compared to the notch depth in Figure 1 for instance), the problem can be described using 

matched asymptotic expansions. In the outer expansion, or far field, the displacements are 

given by 

 
0 1

1 2 1 2 1 2 1 1 2 1
( , ) ( , , ) ( , ) ( ) ( , ) ...  with  ( ) 0 as 0

l
U x x U x x l U x x h l U x x h l l        (4) 
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Here, U  also noted 
l

U  is the actual solution which depends on l . The leading term 
0

U  is 

solution to the unperturbed problem (i.e. without crack, 0l  ) and the following terms are 

small compared to that one. Such an expansion is valid throughout the entire structure except 

in a vicinity of the notch root where there is a short crack that is not taken into account by the 

successive terms 
0

U , 
1

U ,… of the outer expansion. They are all settled on the unperturbed 

domain ( 0l  , Figure 2a). The problem for 
1

U  can be found in Leguillon (1989, 2011) and in 

Section 5, but it plays a minor role in the present analysis. 

The inner expansion, or inner field, refers to a more detailed solution in the localized domain 

around the notch root. It is based on a zoom in by considering the stretched variables /
i i

y x l   
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  (5) 

 

As 0l  , the stretched dimensionless crack length is equal to 1 and the space spanned by 

1 2
( , )y y  becomes unbounded. The matching conditions impose to the far field to coincide 

with the inner field in an intermediate region located close to the v-notch root in the outer 

domain and far from it in the inner domain (Van Dyke, 1964). The leading term of the 

behavior close to the v-notch in the outer domain is described by the Williams expansion (1), 

this leads to the matching conditions 

 

 
0 1

0 1 2 1 1 2
( ) 1 ;   ( , )  ;  ( )   ;   ( , ) ( )  with 

r
H l V y y R H l k l V y y u

l

 
         (6) 

 

where the symbol   means “behaves like at infinity” (i.e. as    , that is far from the 

notch root in the inner domain). Using a superposition principle 

 

 
11

1 2 1 2
ˆ( ) ( ) ( )V y y u V y y


     (7) 

 

it is shown that 
1

V̂  and then 
1

V  are solutions to well-posed problems. Indeed, existence and 

uniqueness of 
1

V̂  derives from the Lax-Milgram theorem within unbounded domains, in 
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particular 
1

V̂  has a finite energy. Then, existence and uniqueness of 
1

V follows even if its 

energy is unbounded. Finally, the inner expansion takes the form 

 

 
1

1 2 1 2 1 2
( , , ) ( , , )  ( , ) ...  U x x l U ly ly l R k l V y y


      (8) 

 

The change in potential energy due to the onset of the crack can be expanded as (Leguillon, 

1989) 

 

 
P 2 2

 ...A k l


  W   (9) 

 

where the scaling coefficient A (MPa
-1

) is positive and depends only on the local geometry, 

i.e. the crack direction, not on its actual length. See Appendix 2 for the details of its 

computation. For example the coefficient A as a function of the opening angle  is given in 

Figure 5. 

Then the energy condition for the nucleation of the crack is  

 

 
2 2 1

c
 A k l

 
 G   (10) 

 

Since 2 1   is positive, the inequality (10) gives a lower bound for the admissible crack 

lengths l. This bound is even higher when the load (through k ) is low. Clearly, if 0.5   (i.e. 

except for a crack), if fracture occurs for a finite load, i.e. for a finite k , the length l  cannot 

be infinitely small, there is a jump at initiation. 

The stress condition states that the tensile stress   must exceed the tensile strength 
c

  all 

along the presupposed crack path (jump) 

 

 
c

( )   for 0r r l      (11) 

 

With an appropriate normalization of the eigenvector u  in (1) (i.e. (0) 1s


 , where s


 is the 

ortho-radial component of s  and where 0   corresponds to the bisector of the solid angle), 

using the Williams expansion (1) leads to 
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1 1

c c
   for 0      k r r l k l

 
 

 
       (12) 

 

The exponent 1   is negative and (12) gives an upper bound of the admissible crack lengths 

l. It is small when the load is low. The compatibility between the two inequalities (10) and 

(12) is achieved by increasing the load. It leads to defining the crack length 
0

l  and the critical 

value of the GSIF 
c

k  at initiation along the bisector (for symmetry reasons) 
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This criterion coincides with the classical Griffith criterion for a crack ( 0  , 0.5  ) and 

with the tensile strength condition for a straight edge (  ,   1). Between the two, it 

evolves continuously from one to the other. A good agreement with experiments was found in 

many different cases (e.g. (Leguillon, 2002; Yosibash et al., 2006), see also the review paper 

by Weissgraeber et al. (2016)). 

 

3. The damage model – Part I: the bounded stress field 

 

Since the pioneering work of Kachanov (1958, 1986) (Lemaitre and Chaboche, 1985), it is 

usual in elasticity to describe damage by a local decrease of the material stiffness. In case of a 

singular point, the strain tensor tends to infinity when approaching this point. Thus, on one 

hand the Young modulus must decrease to zero so the stresses remain bounded. On the other 

hand, the Young modulus must tend to the material physical value at a given distance of the 

singular point. To this aim, we assume there exists a circular damaged area of radius d  

encompassing the notch root (Figure 2(b)), in which the Young modulus E   within this area 

follows a power law in terms of r  (so that 𝐸′ → 0 as 𝑟 → 0) (Leguillon, 2008): 

 

  for , with 0 ;   otherwise
r

E E r d E E
d




 

     
 

  (14) 

where E is the Young modulus of the bulk material.  

Obviously, such a damage law (14) is applicable only in the vicinity of elastic singular points. 

The circular damage zone assumption may be reconsidered in a future research. It is a limiting 

assumption whereas, for instance, the Von Mises stress iso-curves of the singular field (1) are 
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not circles around the notch root. Indeed, this simplifying assumption allows entering into the 

theory of singularities based on the separation of variables r  and  , and it leads to tractable 

analytical expressions. It is likely to be acceptable provided the damaged zone is small 

compared to the dimensions of the structure, as can be expected being only interested in the 

initiation step, not in the forthcoming crack growth. Moreover it is not completely unrealistic, 

such circular damaged area can be observed in some numerical simulations at the very 

beginning onset of damage (Moes et al., 2011). Otherwise, one would have to consider 

damaged zone shapes defined by an equation like ( )r   constant and would make use of full 

finite elements (FE) computations.  

 

A classical damage variable   can be linked although it plays no direct role in the present 

analysis 

 

 (1 )   and then  ( ) 1
r

E E r
d



 
 

      
 

  

 

Note that the damaged zone radius is not yet determined and will be addressed in the next 

section. According to the Hooke’s law and in view of (14), within the damaged zone the 

elastic solution can be written as 
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  (15) 

 

The exponent   and the associated angular eigen-function u   are now solution to the 

following eigenvalue problem (see Appendix 1 for the definition of the operators A, B and C) 

 

 
T

( ) ( ) 0u              A B B C   (16) 

 

that can be rewritten using the change of unknown exponent / 2     (Apel et al., 2002) 
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2

2 T T
( ) ( ) 0  with ( ) ( )

4 2
u

 
             A B B D D C A B B   (17) 

 

The operator D is still symmetric, thus the solutions to (17) enjoy the same properties as that 

of (A1.1) (see Appendix 1). In particular, if the pair ( , )u   is a solution, then the dual 

( , )u
  is also a solution. In other words, the dual to ( , )u   is ( , )u 

  . 

According to (17), the exponent   is a function of   and the stress tensor in (15) becomes 

 

 /2 1
( , )  ( ) ...r k r s

 
  

      (18) 

 

This stress field remains bounded as 0r   if 

 

 ( ) / 2 1 0       (19) 

 

where the dependence of   on   has been highlighted. Note that for positive values of the 

left hand side member of (19) the stress field would vanish at the corner but there is no 

physical need for that. Thus, according to this remark, the Williams expansion takes the final 

form 

 

 

1
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( , )  ( ) ...

U r C k r u
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   

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

 


  (20) 

 

The strain field remains singular, whereas the stress field is bounded. A similar feature is met 

in the HRR solution for power hardening materials (Hutchinson, 1968; Rice and Rosengren, 

1968) where, even if the two fields remain singular, the strain one is much more singular than 

the stress one. 

This result is illustrated in Figure 3 where the exponent   is plotted as functions of the 

opening angle  .  

An important feature must be pointed out. When    (straight edge) there is no longer any 

singularity ( 1   in (1)) and the stress field remains bounded and constant in the vicinity of 
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any point of the boundary (tensile stress parallel to the boundary), as a consequence 0   in 

(14), then E E   and the damaged zone disappears. Thus, according to this damage law, 

there is no diffuse damage. Damage can only occur in areas of high stress concentration. This 

damage law seems particularly appropriate to quasi-brittle materials. 

 

 

Figure 3. The exponents   ensuring a bounded stress field at the V-notch as a function of the 

opening angle   (deg.). 

 

In Figure 4, the tensile stress along the bisector of the solid angle in presence of a damage 

zone of radius 1 mm is compared to the singular tensile stress (1) for an opening angle 

/ 2   (  0.545,   0.72). It is clearly bounded and the small drop that can be seen near 

r  0 is only a small inaccuracy in the FE calculation due to the close proximity of the two 

traction free faces of the notch. It is slightly varying in the damage zone and (20) represents 

the asymptotic trend as approaching the notch tip, i.e. at a small distance compared to the 

damage zone radius. Both numerical approach (Figure 3) and (20) are in a good agreement in 

the vicinity of the corner as shown in (Leguillon, 2008). The computation was carried out on a 

large (compared to the unit radius of the damaged zone) circular domain with a 90 deg. notch, 

prescribing the singular mode ( )r u


  on the outer boundary which proves useful in the 
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determination of the term of the inner expansions (see the superposition principle and Eqn. (6)

). The resulting stress field is dimensionless. 

 

 

Figure 4. The dimensionless tensile stress   along the bisector of the angle for / 2   as a 

function of the dimensionless distance /r d  to the notch root (
22

    );  (i) with a 

damage zone of radius 1 (red solid line), (ii) without damage zone (singular behavior) ( blue 

dotted line), (iii) the same singular curve shifted by 0.44 on the right (blue dashed line). 

 

By analogy with a suggestion of Rice (1968) studying the effect of a small scale yielding 

plastic zone at the tip of a crack, the tensile stress out of the damaged zone appeared to be 

quite similar to the singular stress curve shifted by 0.44 on the right (Figure 4). It means that 

away from the notch root (i.e. out of the damage zone), the influence of the damaged zone on 

the far field is equivalent to that of a virtual crack of length 0.44 d d . It is numerically 

checked that it is independent of the opening angle  . 

 

4. The damage model – Part II: determination of the size of the damage zone (d) 
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Assuming that the damage zone is small compared to the dimensions of the structure, the 

elastic solution can be again described using matched asymptotic expansions with respect to 

d . The outer expansion can be written 

 

 
0 1

1 2 1 2 1 2 1 1 2 1
( , ) ( , , ) ( , ) ( ) ( , ) ...  with ( ) 0 as 0

d
U x x U x x d U x x f d U x x f d d        (21) 

 

Here, U  also noted 
d

U   is the actual solution which depends on the radius d  of the damaged 

zone. The leading term 
0

U  is solution to the unperturbed problem (i.e. without damaged area,

0d  ) and the following terms are small compared to that one. Note that the functions 
0

U  

and 
1

U  in (21) are the same as in (4), the difference lies in the weight factors 
1
( )h l  and 

1
( )f d

. 

Such an expansion (21) is valid throughout the entire structure except in a vicinity of the 

notch root, i.e. in a vicinity of the damaged zone.  

The inner expansion, or inner field, refers to a more detailed solution in a localized domain 

around the notch root. It is based on a zoom in /
i i

z x d   

 

 

1 2 1 2

0 1 1

0 1 2 1 1 2

0

( , , ) ( , , )

( )
( ) ( , ) ( ) ( , ) ...  with 0 as 0

( )

U x x d U dz dz d

F d
F d W z z F d W z z d

F d



    
  (22) 

 

As 0d  , the dimensionless stretched radius of the damage area is 1 and again the space 

spanned by 
1 2

( , )z z  becomes unbounded. The matching rules are the same as in Section 3, 

again the leading term of the behavior close to the v-notch in the outer domain is described by 

the Williams expansion (1). This leads to the matching conditions 

 

 
0 1

0 1 2 1 1 2
( ) 1 ;   ( , )  ;  ( )   ;   ( , ) ( )  with 

r
F d W z z R F d k d W z z u

d

 
         (23) 

 

where the symbol    means “behaves like at infinity” (i.e. as    , that is far from the 

notch root in the inner domain). Using a similar superposition principle as in Section 2 

 

 
11

1 2 1 2
ˆ( , ) ( ) ( , )W z z u W z z


     (24) 
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In Appendix 3 we show that 
1

Ŵ  and then 
1

W  are solutions to well-posed problems, and detail 

the algorithm for the computation of 
1

Ŵ . 

 

The inner expansion takes the form 

 

 
1 2 1 2

1

1 2

( , , ) ( , , )

 ( , ) ...  

U x x d U dz dz d

R k d W z z




  
  (25) 

 

The energy balance now refers to the energy 
D

W  required to damage the specified zone  

 

 
P K D

0     W W W   (26) 

 

Following Leguillon (1989), the change in potential energy due to the creation and evolution 

of the damage zone can be expressed as  

 

 
P 2 2

 ...L k d


  W   (27) 

 

The coefficient L (MPa
-1

) is positive and depends only on the local geometry, i.e. on the 

opening angle   and the shape of the damaged zone (but not its size) it can be calculated 

using a path independent integral (see Appendix 2). In Figure 5, L decreases to 0 as   . 

This is a consequence of the choice of the damage law, when   the damaged zone 

disappears (see Section 3).  
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Figure 5. The dimensionless scaling coefficients *A EA  (red dashed line)  (Eqn. (10)) and 

*L EL   (blue solid line) (Eqn. (29)) as functions of the opening angle  (deg.) for 0.3  .  

 

Note that the curves in Figure 5 could also depend on the Poisson ratio but it is numerically 

checked that they almost not vary in a wide range from   0.1 to 0.4. They are plotted here 

for   0.3. 

 

The dissipation energy is manifested in the change in Young's modulus (i.e. damages the 

material). We compute it herein, when a damage zone of a radius d is created. This dissipation 

energy is proportional with the relative change in Young's modulus E  and of course 

proportional with the damaged area 
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Where we denote the constant of linear proportionality by Dc (MPa), assuming it to be a 

material parameter. The physical interpretation of Dc is given in Appendix 4 and we elaborate 

on it in Section 5. Recalling (14), we obtain that 
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 1

r
E E

E E E rd

E E E d




 

      
     

 
  (29) 

 

Inserting (29) in (28) and integrating, we obtain:  

 

 D 2

c

(2 )

2( 2)
D d

  




 


W   (30) 

 

Recall that    defined in (19) determines the exponent governing the change of E  so that   

remains bounded as 0r  . Inserting (30) and (28) in (27), then under a quasi-static loading, 

the energy condition to ensure the existence of a damage zone of dimension d  

 

 
2 2 2

c

(2 )

2( 2)
Lk d D

   



 



  (31) 

 

The exponent 2λ-2 being negative, (31) provides an upper bound for the admissible damage 

zone size as a function of the external load (through k ) 

 

 
2

2(1 )

c

2( 2)

(2 )

Lk
d

D

 

  

 



  (32) 

 

In this case there is no discontinuity (no jump), d  is directly related to the applied load 

through k  and stably grows from 0 as k  increases. Unlike the crack initiation, this stability 

was expected and it suits well a damage mechanism.  

 

According to the remark following Figure 4, a good approximation of the tensile stress  , i.e. 

the hoop stress, of the actual solution along the boundary of the damaged zone on the bisector 

of the solid angle ( 0  ) is  

 

  
1

( , 0)  with  d k ad ad d d





     (33) 
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where it is recalled that 0.44d d  is the virtual offset of the notch root and then a  0.56 

(Section 3). Inserting (32) into (33) shows that the stress is independent of the applied load, 

i.e. independent of k   

 

 
1 c

(2 )
( , 0)

2( 2)

D
d a

L

   




 



  (34) 

 

Moreover, it is numerically checked that this relationship holds true whatever the direction   

under the generalized form 

 

 
1 c

(2 )
( , ) ( )

2( 2)

D
d a s

L





  
  



 



  (35) 

 

Indeed, the functions s


 in (1) and s

  in (20) coincide, this is not true for the other 

components.  

The boundary of the damaged zone acts somewhat like a threshold in the stress field, it can be 

defined either by its radius (32) or by (34). As the tensile stress is increasing when 

approaching the notch root, if the tensire stress is smaller than the value in (34) and (35) then 

it is out of the damage zone. This may suggest something like the yield stress in an 

elastoplastic behavior, however there is a drawback: this threshold seems to depend on the 

opening angle through λ and β in the two above relationships, thus it cannot be considered as 

a material parameter. However, it is observed in the numerical application (Section 7) that it 

remains almost constant in a wide range of opening angles (  120 deg.). 

 

 

5. Identification of Dc 

 

The scaling coefficient Dc in (28) is a material parameter. We propose in this section a 

method for its identification from an appropriate experiment. Let us suppose that, using a full 

field measurement and a Digital Image Correlation (DIC) system (see the review paper by 

Hild and Roux (2006)), we are able to obtain a reliable displacement field 
DIC

U  in a bending 
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test for instance, this measured field is 
d

U  in (21). Next, it is possible to derive from this 

known displacement field the size d of the damage zone and then the parameter Dc. 

We refer to (Leguillon, 2011) for most of the results in this section. Let us make explicit the 

second term of the outer expansion (21) 

  

 

1

2

1

ˆ( , )
( )   with  

( , ) ( , )

L W u
f d kLd L

u u u u





   



   
  


  

 
  (36) 

 

where L  is dimensionless. It is the GSIF associated with the dual mode ( )u


 


 in 
1

Ŵ  or 

1
W  (see Eqn. (24)) in the analogue to a Williams’ expansion of 

1

Ŵ  at infinity. This is a 

consequence of the matching conditions. 

Again, a superposition principle  

 

 
11

1 2 1 2
ˆ( , ) ( ) ( , )U x x r u U x x





    (37) 

 

can be invoked to show that 
1

Û  is solution to a well-posed problem with a finite energy 

(belonging to a usual Sobolev space), and so is 
1

U  but obviously now with a non-finite 

energy. Using this decomposition, the outer expansion (21) can be written 

 

 

1DIC 0 22

1 2 1 2 1 2 2 1 2

2

2

ˆ( , ) ( , ) ( ) ( , ) ( ) ( , ) ...

( )
with 0 as 0

U x x U x x kLd r u U x x f d U x x

f d
d

d

 




     

  

 

  (38) 

 

 The term 
2

kLd


 in (38) appears to be the GSIF k


 (MPa mm
1+λ

) of the dual (super singular) 

mode ( )r u





, or at least the leading term in an expansion of k


. Analogously to k in (1), it 

can be extracted from 
d

U  using the   integral (Appendix 1) 

 

 

DIC

2 ( , )

( , )

U r u
k kLd

r u r u





 






 


  (39) 
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Having k


, k  and L , (39) allows to determine d   

 

 

1

2k
d

kL


 

  
 

  (40) 

  

And consequently by (32), one may finally determine 
c

D    

 

 
2

c 2(1 )

2( 2)

(2 )

Lk
D

d




  






  (41) 

 

Subsection 7.5 addresses also the determination of d  and the identification of 
c

D  by a FE 

simulation instead of a full-field measurement. 

 

6. Coupling the damage zone model with the FFM coupled criterion 

 

The damage zone grows with the load, i.e. with k. Therefore it pre-exists to the virtual crack 

which is considered only beyond a threshold load (see Eqn. (13)). Thus, the energy criterion 

for the failure initiation due to the crack must consider a change in potential energy due to the 

uncracked and the cracked states of the damaged structure. Reconsidering the energy balance 

(2) it is now stated as (the prime denotes variable quantities due to damage) 

 

 
P K P

c c
0 0

( )d 0    ( )d
l l

G r r G r r          W W W   (42) 

 

This form of the fracture energy allows to consider a variable toughness as it likely occurs in 

the damaged zone (Leguillon et al., 2016) (see Section 7.3). We suppose that at a distance r  

of the notch root the damage characterized by E   is such that 
c
( )dG r r  is the energy required 

to create a short crack with length dr . If r d  then 
c c
( )G r  G . The function 

c
( )G r  is 

somehow a “local” toughness varying or not with the level of damage. It is an artifact because 

this function cannot be experimentally determined. It would be necessary to introduce a crack 

with its tip in the vicinity of the point under consideration but which does not modify the 

surrounding properties (damage) when it is loaded. One can only assume that this local 

toughness varies with the damage and then verify that it gives consistent results with 
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experimental measures when available, as in the case of oxidized polymers (Leguillon et al., 

2016). See the discussion in Section 7.1. 

If the radius of the damage zone and the virtual crack length are of the same order of 

magnitude (i.e. d l , to be a posteriori checked) the two small parameters tend to 0 

simultaneously and the outer expansion (21) is almost unchanged except in the weight term 

1
( )g d  

 

 

0 1

1 2 1 2 1 2 1 1 2

1

( , ) ( , , , ) ( , ) ( ) ( , ) ...

with ( ) 0 as 0

dl
U x x U x x d l U x x g d U x x

g d d

   

 
  (43) 

 

But the inner expansion describing the crack onset must be rewritten to account for both the 

damage zone and the crack length (note that 0d   since a damage zone starts to grow 

monotonically with k) 

 

 

1 2 1 2

1

1 2

1

1 2

( , , , ) ( , , , )

 ( , , ) ...

ˆ ( ) ( , , ) +...  with 

U x x d l U dz dz d d

R k d W z z

l
R k d u W z z

d



 





   



  

    
  

  (44) 

 

The additional conditions fulfilled by 
1

W  and 
1

Ŵ  on the two crack faces can be found in 

Appendix 3. 

 

The function 
1

W  depends now on l   through  . Note that the function 
1

1 2
( , )W z z  in (22) is 

the present 
1

1 2
( , , 0)W z z . The change in potential energy takes the special form (Leguillon et 

al., 2007) 

 

  P 2 2
( ) (0) +... k d B B


  W   (45) 

 

The term ( )B   and (0)B  correspond respectively to the damaged cracked state and the 

damaged uncracked one, again they can be calculated using a path independent integral (see 

Appendix 2). For an uncracked configuration, following section 4, we identify that 𝐵(0) ≡ 𝐿. 

Substituting (45) in (42), the energy condition can be formulated as follows 
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  2 2

c
0

( ) ( )d
l

k d B L G r r


      (46) 

 

Since the crack length can be smaller or larger than the radius of the damaged zone, the stress 

tensor acting along the bisector of the solid angle ( 0  ) is no longer described by an 

asymptotic expansion as in (1) or (15). Let us denote   the tensile component along the 

bisector and   the same tensile component in the inner expansion coordinates. Because of the 

change of space variables /
i i

y x d , according to (44), 
1

 1 /   k d d k d
 

  


   , where 

  is dimensionless and then the stress condition can be written 

 

 

1

c c

1

c

( ) ( )  for 0      ( ) ( )  for 0

                                             ( ) ( )

r r r l k d

k d





       

   





       

 
  (47) 

 

Indeed, the stress condition of the (DEFINE CC) CC states that the tensile stress along the 

expected crack path prior to the crack onset must exceed the tensile strength. In the present 

case, this means that the expected crack path is located in the damage zone and may also 

exceed it. This explains that the stress condition must be applied within the inner domain 

where the damage zone is visible. In the classical case (Leguillon, 2002), it is usually applied 

in the outer domain because asymptotics are carried out with respect to the crack length and 

then prior to the crack onset there is no perturbation, inner and outer expansions are similar. 

Whereas, in the present case, the asymptotics are carried out with respect to the damage zone 

radius. The situation is somewhat similar to that of the blunted V-notch where asymptotics are 

carried out with respect to the root radius not with respect to the crack length (Leguillon and 

Yosibash, 2003). 

 

Alike the toughness, the tensile strength likely changes in the damage zone and (47) holds 

true provided that 
c
( )r   is constant or decreases as the damage increases (i.e. as E   

decreases), which seems a reasonable assumption (Leguillon et al., 2016) (see Section 7.3). 

Combining (46) and (47) gives an equation for the unknown critical virtual crack length 
c

l  as 

a function of d   
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c

c c c

c c c c c2 2 0
c c c c c

1 ( ) 1 ( ) 1
  with  ( ) ( )d   and  

( ) ( )

lB L G
G G r r l d

d l

 
 

    

  
    

 
   (48) 

 

Here 
c

G   depends on d  and 
c

  through 
c

l . Substituting (48) into (46) leads to the condition 

for failure initiation 

 

 

1 2 1

dam c c c c c

c

c c

( ) ( )

( ) ( )

G
k k

B L

 

   

  

 

    
     

   

  (49) 

  

Note that the right hand side depends on k  through 
c

  which depends on d  (48) which itself 

is a function of k  (32), so (49) is an implicit equation. 

 

Note that an alternative approach is to consider the total change in potential energy, denoted 

T
W , between the uncracked and undamaged state and the damaged and cracked one. Then 

the energy balance equation can be written 

 

 
T K D

c
0

( )d 0
l

G r r      W W W   (50) 

 

This leads to the inequality 

 

 
T D 2 2

c c
0 0

( )d ( )d  
l l

G r r G r r L k d
       W W   (51) 

 

From (2) and (51), we can already note that as expected, if 
c
( )G r  is unchanged in the damage 

zone (
c c
( )G r  G ), then the load triggering the crack onset will be larger in presence of the 

damage zone than in the brittle case, i.e. without damage. The damage zone "blunts" the notch 

(Leguillon and Yosibash, 2003; Picard et al., 2006; Carpinteri et al., 2012). 

The total change in potential energy can be written 

 

 
T 2 2

( ) ...k d B


  W   (52) 

 

Then the energy balance (51) is the same as in (46) 
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  2 2

c
0

( ) ( )d
l

k d B L G r r


      

 

That leads to the final form (48) and (49) of the criterion. 

 

7. Numerical results 

 

• In a first step, the functions ( )   and ( )B   have to be tabulated for different values of ω 

(0, 30, 60, 90, 120, 150, 180 deg. for instance) by solving once and for all the inner problems 

which solution is 
1

1 2
ˆ ( , , )W z z   (see Eqn. (44)), varying   from 0 to 2 by unbuttoning nodes 

(Appendix 3). Remember that (0)B L . 

• The second step consists in determining the critical load at failure, i.e. the critical value of 

the GSIF k . The non-linear equation resulting of (49) (the right hand side member depends 

on k ) 

 

 

1 2 1

c c
( ) ( )

( ) ( )

G
k

B L

 

   

  

 

    
    

   

  (53) 

 

is solved for k  using an iterative Newton procedure. Within each iteration, for a given value 

of the iterate 
( )n

k , the non-linear equation  

 

 c

2 2

( ) c

1 ( ) 1 ( )

( ) ( )
n

B L G

d

 

    





  (54) 

 

is solved for   again using an iterative Newton procedure, 
( )n

d  being calculated by (32) 

 

 

1

2 2 (1 )
( )

( )

c

2( 2)

(2 )

n

n

Lk
d

D



  

 
  

 

  (55) 

 

There are two nested loops. 
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• The final step is to solve the outer problem (i.e. neglecting both the damage zone and the 

crack length) corresponding to an actual structural problem, then to compute the GSIF k 

(Appendix 1) and to compare this value to the critical one determined at the previous step. 

 

Calculations are carried out for various V-notch opening angles    0 to 150 deg. Typical 

value of graphite are used, E  9600 MPa,   0.3, 
c

  25 MPa, 
c
G  0.14 MPa mm (in a 

first step constant values of the tensile strength and toughness are assumed). Calculations 

reveal to be sensitive to the scaling parameter 
c

D  reflecting the tendency of the material to 

damage. It is empirically chosen 
c

D  0.096 MPa (
c

/D E  10
-5

) for having consistent results 

in the damaged zone size, it remains small compared to the dimensions of the structure.  

A sensitivity analysis follows in Section 7.2. With these data, according to (34), the hoop 

stress ( , 0)d  on the bisector of the solid angle ( 0  ) at the boundary of the damage zone 

slightly varies around 26.5 MPa for a wide range of opening angles ( 120   deg.), ( , 0)d 

26.2 MPa for / 2  for instance. Then it starts to increase (indefinitely when   ). 

 

7.1 Variable opening, fixed 
c

D , 
c

  and 
c

G   

In that case the damage has no influence on the fracture parameters and 
c c
( )G r  G . Figure 6 

shows the critical GSIF in the two cases: dam

c
k  considering a damaged zone (49) compared to 

c
k  without a damaged zone (13) (brittle material). One may notice that dam

c c
k k  and thus that 

the damage zone "blunts" the notch. At the limit as   , dam

c c c
k k     25 MPa (keep in 

mind that k   for   ).  
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Figure 6. The critical GSIF’s dam

c
k  (49) with a damaged zone (blue solid line) and 

c
k  (13) 

without damaged zone (green dashed line), as a function of the opening angle   (deg.). Units 

of GSIF’s (MPa mm
1-λ

) are not specified because they vary with the opening angle  . 

 

On the one hand, from Figure 6 for 0   (  0.5), the toughness 
c
G  of the quasi-brittle 

material can be compared to the toughness 
c
G  

 

 

2 2
dam

c Ic

c c c c

c Ic

( 0)
1.43 

( 0)

k k

k k





   
      

   

G G G G   (56) 

 

It is the material toughness that would be measured during a test on a quasi-brittle material 

damaging according to the law proposed in Section 3. It takes into account the two last terms 

in the energy balance (50) corresponding to two different sources of dissipation 

 

 
D

c c
l l   G W G   (57) 

 

0

5

10

15

20

25

0 30 60 90 120 150 180

kc
dam kc





25 

 

Contrary, 
c
G  cannot be measured, it is the toughness of a virtual equivalent material which 

does not damage, it is just used to allow a better understanding of the role of the damage zone 

by separating the two mechanisms, damage and crack onset. 

On the other hand, the tensile strength can be identified for    and gives 
c c

    25 

MPa. Thus, by analogy with the case of a brittle material (Section 2), i.e. using the coupled 

criterion with the measured parameters, the critical GSIF is given by 

 

  
1

2 1c

c c
k

A








 
   

 

G
  (58) 

 

It is plotted in Figure 7 (red dashed line) and is very closed to 
dam

c
k . 

 

Figure 7. The critical GSIF 
dam

c
k  (49) (blue solid line) compared to 

c
k   (58) obtained by 

applying the coupled criterion to the identified strength and toughness of the quasi-brittle 

material, as a function of the opening angle   (deg.). Again, units of GSIF’s (MPa mm
1-λ

) are 

not specified because they vary with the opening angle  . 

 

This shows that the crack initiation at the root of a V-notch in a quasi-brittle material is still 

described by the coupled criterion, using the actual toughness as measured on a cracked 
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specimen. This is expected to greatly simplify the calculation algorithm as only ( )B   for ω = 

0 must be tabulated to calculate 
dam

c
( 0)k    and then to identify 

c
G . 

It could be emphasized that if 
c
G  is measured and if the damage law is known, then 

c
G  can be 

determined using (56) and it is then possible to analyze the changes that could occur if the 

damage parameters vary as a function of an external phenomenon (e.g. temperature, moisture, 

oxidation ...). 

 

 

Figure 8 shows the damage zone size d  and the critical crack length 
c

l . The damage zone 

size tends to 0 as the opening   approaches   because at the limit there is no longer any 

singularity (  ,   1,   0) and the stress field remains bounded. Note however that, 

because the asymptotic expansions assume 0d  ,   tends to infinity as    as observed 

in Figure 9, not because of l  but because d  0. By the way, it validates the hypothesis that l  

and d  are of the same order of magnitude for a wide range of opening angles  . 

 

The above reasoning remains valid provided l d  or even l d , so that both l  and d  tend 

to 0 as 0d   (the parameter used to carry out the expansions governs). But one can also 

write the asymptotic expansions with respect to l with the dimensionless parameter 

/ 1 /d l   . This must give the same results from the theoretical point of view and would 

be better suited to large openings since it holds provided l d  or even d l , so that both l  

and d  tend to 0 as 0l  . Nevertheless, this approach contains additional numerical 

difficulties. Indeed, varying µ as previously done, i.e. the dimensionless crack length for a 

fixed radius of the damaged zone in the inner domain, can be easily carried out by buttoning 

nodes; whereas varying  , i.e. the damaged zone radius for a fixed dimensionless crack 

length, needs drastically refining the mesh in the vicinity of the corner to keep a sufficient 

number of elements within the damaged zone even if it becomes very small.  
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Figure 8. The damaged zone size d  (mm) (blue solid line) (Eqn. (32)) and the critical crack 

length 
c

l  (mm) (red dashed line) (Eqn. (48)) as functions of the opening angle   (deg.). 

 

As predicted by the coupled criterion in brittle materials, in this class of quasi-brittle 

materials, the virtual crack has a given length. This model differs substantially from fracture 

models based on damage laws where cracks, defined by a damage parameter reaching 1, arise 

more gradually. 
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Figure 9. The dimensionless parameter /l d   as a function of the opening angle   (deg.). 

 

Obviously from Figure 9, 1   means that the crack extends beyond the boundary of the 

damaged zone. This is in agreement with the values of 
c

  and ( , 0)d  (Eqn. (34)). A 

"damaged zone" may develop again at the tip of the crack extension, but this is out of the 

scope of this study which is only interested in the failure initiation and the crack is only a 

virtual one. 

 

7.2 Fixed opening / 2  , fixed 
c

  and 
c

G , variable 
c

D   

Again in that case 
c c
( )G r  G . The best way to observe the convergence of the quasi-brittle 

solution toward the brittle one is to vary the parameter 
c

D  (see (28)) which expresses the 

ability of the material to damage, the larger 
c

D , the smaller the damaged zone radius d  

(Figure 10). Simultaneously, 0d   and the critical crack length 
c

l  converges toward the 

critical crack length 
0

l  in the brittle case. This convergence can also be observed in Figure 11 

showing the GSIF in the quasi-brittle case dam

c
k  approaching the GSIF 

c
k  in the brittle case. 

Out of the domain spanned by 
c

D  in Figures 10 and 11 (roughly from 0.06 to 0.6 MPa), the 

convergence of the two nested Newton algorithms becomes difficult to ensure.  
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Figure 10. The damage zone radius d  (mm) (blue solid line) (32) at crack initiation, the 

critical crack length c
l  (mm) (red dashed line) (48) for the quasi-brittle material when 

c
D  

(MPa) varies, compared to the crack initiation length 
0

l  (mm) (13) (green dotted line) for the 

brittle material, for / 2  . 

 

Note in Figure 10 the reverse trend on the crack length as the damaged zone becomes large 

(i.e. when 
c

D  decreases) and the crack length becomes smaller than its radius. This occurs 

according to (34) because the threshold defined by the boundary of the damage zone becomes 

smaller than  
c

 , it varies like 
c

D . 
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Figure 11. The GSIF dam

c
k  (MPa mm

0.455
) at failure (Eqn. (53)) (red solid line) compared to 

the critical value 
c

k  (MPa mm
0.455

) (Eqn. (13)) in the brittle material (blue dashed line) when 

c
D  (MPa) varies, for / 2  . 

 

7.3 Fixed opening / 2  , fixed 
c

D , variable 
c

  and 
c

G   

The main challenge in this section is to know how 
c

  and 
c

G vary with the damage. This 

obviously plays a crucial role in the prediction of crack initiation. Alike the Young modulus, 

we assume for consistency that the strength and the toughness follow a power law within the 

damaged zone. They decrease as the damage increases (i.e. as the Young modulus decreases)  

 

 

2

c c c c c c c c
( ) ,  ( )  for , with 0 ;  ( ) ,  ( )  otherwise

r r
r G r r d r G r

d d

 

    
   

           
   

G G  (59) 

 

The exponents   and 2  retains the ratio 2

c c
/G    unchanged, but other choices can be made.  

The decay hypothesis is based on a mechanism of damage by nucleation of micro-cracks and 

micro-voids, as described in (Mazars, 1986; Lemaitre and Chaboche, 1990) for example. Such 

a decay in strength was evoked in (Bazant and Planas, 1998), we extend it to toughness as it 

was predicted in porous materials if the porosity becomes large enough (Leguillon and Piat, 
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2008). This excludes ductile damage and fracture which are associated with large plastic 

deformations and where the hardening phenomenon can lead to very different results.  

 

Figure 12. The critical GSIF dam

c
k  (MPa mm

0.455
) (red solid line) (quasi-brittle material) 

function of the dimensionless parameter   compared to 
c

k  (MPa mm
0.455

) (blue dashed line) 

(brittle material), for / 2  . 

 

Using the assumption (59), we compute 
dam

c
k  as a function of   and generate the graph 

dam

c
( )k   in Figure 12. Notice that, for   0.2, then dam

c c
k k . For smaller values of  , i.e. for 

fracture parameters only slowly decreasing, the damaged zone blunts the notch leading to an 

apparent higher strength, whereas if the fracture parameters decrease faster, then there is a 

weakening of the structure. For instance, for    0.72 (i.e. a unique power law to describe 

both the stiffness and the fracture properties change due to damage), dam

c
k  13.3 MPa mm

0.455
 

far below 
c

k  16.8 MPa mm
0.455

. 

The ratio between the critical crack length 
c

l  and the radius d  of the damaged area remains 

almost the same as if 
c
( )G r  and 

c
( )r   are constant, as shown in Figure 13. 
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Figure 13. The damaged zone radius d  (mm) (blue solid line) and the critical crack length 
c

l  

(mm) (red dashed line) compared to the critical crack length 
0

l  (mm) (green dotted line) for 

the dimensionless varying parameter  . 

 

7.4 Determination of d  and identification of 
c

D  

In the absence of full-field measurements we may approximate 
DIC

U  by FE in a V-notched 

specimen (opening angle / 2  ) under three-point bending loading (Figure 14) with 

various damaged zone radii: 0.1, 0.2, 0.5 and 1 mm (recall that in the damage zone 

( / )E r d E
   with    0.72). Of course, the mesh is strongly refined in the vicinity of the 

notch in order to well capture the damaged zone. Note that, here d  is a priori fixed and the 

aim of the calculation is to check the ability of the method described in Section 5 to determine 

its value. 
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Figure 14. The specimen used to simulate by FE the displacement field that could be obtained 

by DIC. Computations are carried out on one half of the specimen due to symmetry. 

 

The coefficients k  (1) and k


 (39) are calculated using the path independent integral    

(Appendix 1) along 3 different paths located between 5 and 10 mm from the notch root, i.e. 

rather far from the damaged zone itself, and averaged (thus, a DIC picture of 20 × 20 mm
2
 

around the notch root would largely suffice). To prevent crack initiation, one needs only to 

ensure that the load is below the threshold, i.e. 
dam

c
k k . A prescribed displacement of 0.1 mm 

at point A  leads to k  11.6 MPa mm
0.455

. According to (40) and (41), the determination of 

the damaged zone size d  and the identification of the damage parameter 
c

D  are shown in 

Table 1. 

 

Table 1. Determination of the damaged zone size d  and identification of the damage 

parameter 
c

D  from a FE simulation of a DIC displacement field for / 2  . It is recalled 

that   0.545,   0.624, *
L LE  1.417, L   4.929. 

d  (mm) 0.1 0.2 0.5 1 

k  (MPa mm
0.455

) 11.6 11.6 11.6 11.6 

k


 (MPa mm
1.545

) ̶  4.67 ̶  9.94 ̶  26.95 ̶  57.30 

d  (mm) from (40) 0.100 0.201 0.502 1.003 

c
D  (MPa) from (41) 0.257 0.137 0.059 0.032 

 

Obviously the determination of d  turns out to be excellent, the error is less than 0.5%. This 

feature was already reported by Leguillon (2011) in a slightly different context: the 

determination of the length of a short crack. In this reference the robustness of this approach 

was tested by polluting the FE displacement field with a white noise and it was observed that 

the results remained very satisfactory.  
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Once d  is accurately known, 
c

D  is straightforwardly derived according to (41). Of course, 

c
D  is a material constant, the various values exhibited in line 5 of Table 1 are interpreted as 

follows, say for row 4: 
c

D  0.059 MPa will cause a damaged zone size d  0.5 mm if a 

displacement of 0.1 mm is prescribed at the load pin.  

 

9. Conclusion 

 

The damage law presented herein (Sections 3 and 4) although not traditional (i.e. based on the 

definition of an internal variable, the thermo-dynamic associated force and a dissipation 

potential), enjoys the main features of a usual damage law: the Young modulus decreases, the 

stress field remains bounded, the damage zone is defined by a threshold and the mechanism 

dissipates energy. It seems appropriate to quasi-brittle materials, no diffuse damage may arise 

following this law. The material parameter 
c

D  characterizing this law can be identified using 

an asymptotic procedure based on a full-field measurement of the displacements.  

The coupling of this damage law with the so-called coupled criterion provides a method to 

predict failure initiation at V-notches for a wide class of quasi-brittle materials. As in brittle 

materials, the crack suddenly appears, in contrast to models of damage where it arises 

gradually. Based on some assumptions, the influence of the decaying tensile strength and 

material toughness in the damaged zone is studied. Moreover, it is shown that the coupled 

criterion (Section 2) can still be used, neglecting the damage zone, by an appropriate change 

in the actual toughness. 

Clearly the choices that have been made are closely related to damage and crack nucleation at 

the root of a sharp notch, a source of failure in structures. Both the damage law and the 

coupled criterion are based on Williams’ expansions applicable to this case. Generalization to 

other situations may prohibit the use of semi-analytical expressions, however, such 

generalization may require FE computations. The key point is two mechanisms (damage and 

crack nucleation) that are weakly coupled. Crack nucleation is not a direct consequence of the 

evolution of the damage parameter reaching a threshold (often the limit value 1), but it is 

superimposed. The weal coupling  is because the damage locally modifies the material 

parameters and thus influences the onset of the crack. Then, two nested loop can be used: an 

outer one analyzes the evolution of the material parameters resulting of any damage law using 

FE computations, while the inner one implements the CC in this context, again using FE 

computations (Martin and Leguillon, 2004). One can refer for instance to (Leguillon et al., 
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2016) where the oxidation of the polymer evolves with time, thus modifying the conditions 

for the appearance of surface cracks. 

The assumption of a decrease of the Young modulus to describe the damage is commonly 

admitted and it seems realistic to apply to materials sensitive to damage like some polymers. 

But an important class of quasi-brittle materials is formed of metals where a small plastic 

zone develops at the root of the V-notch (small scale yielding). Obviously, the case of 

plasticity spreading all over the specimen is excluded from the present analysis. In the case of 

small scale yielding, the Young modulus can be considered as the secant modulus of a non-

linear constitutive law and its variation following a power law has some analogies with the 

Ramberg-Osgood plastic law. It remains a good approximation provided no unload occurs. 

However, it is difficult to go further in this direction. In particular, the boundary of the plastic 

zone (i.e. herein the damaged zone) is not defined by a yield strength but by a function, 

indeed independent of the applied load, but varying with   (see Eqn. (35)) which seems 

incompatible with classical plastic laws. Thus, we plan to extend the study to cover a wider 

range of quasi-brittle materials including materials undergoing small scale yielding. 

Validation of the proposed failure initiation criterion for hard metals undergoing a small scale 

yielding is planned in a future publication. 
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Appendix 1 

 

For more details in this appendix refer to (Leguillon and Sanchez-Palencia, 1987). The 

eigenpair   and ( )u   in (1) is solution to the eigenvalue problem  

 

 2 T
( ) 0u       A B B C   (A1.1) 

 

where A and C are symmetric operators and T
B B  is skew symmetric. In (1),   is the 

smallest positive solution to (A1.1). The eigenpair ( , )u  depends only on the opening angle 

 , for a traction free V-notch   is a real number such that 0.5 1   ( 0.5   for a crack, 

0  ; 1   for a straight edge,   ), thus   and     as 0r   (except of course if 

  1). Details on the computation of the eigenpairs are given in (Leguillon and Sanchez-

Palencia, 1987; Yosibash 2012). 

The generalized stress intensity factor k of the singular term ( )r u


  in (1) can be extracted 

from a FE computed solution 
FE

U  (an approximation of U  in (1)) thanks to the path 

independent integral   (Leguillon and Sanchez-Palencia, 1987; Labossiere and Dunn, 1998)  

 

 
FE

( , ) 1
  with ( , ) ( ). . ( ). .  d

2( , )

U r u
k n n s

r u r u



 
       



 


     


   (A1.2) 

 

The line   is any contour encompassing the notch root, starting and ending on the traction 

free edges of the notch, and n  is its normal pointing toward the origin. The path 

independence is ensured provided the functions   and   fulfil the equilibrium equations 

with 0 right hand side member (vanishing momentum equation and stress free boundary 

conditions). The pair ( , )u


  is also an eigenpair, so-called dual eigen-pair to ( , )u  

(Leguillon and Sanchez-Palencia, 1987; Yosibash, 2012). It is a mathematical solution to (1), 

however since it has an unbounded energy at the V-notch tip, it cannot serve as a "physical 

solution" to the elasticity problem. It is sometimes baptized super-singular mode (Henninger 

et al., 2010). A physical interpretation can be provided to the dual eigenpair in problems 

formulated in unbounded domains (Leguillon, 2011). 
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Appendix 2 

 

The change in potential energy between the uncracked and cracked states 
P

W   in Section 2 

can be expressed in terms of the integral   (Appendix 1) 

 

  0 0 0P 1
( ). . ( ). . d ,

2

l l l
U n U U n U s U U 



     
 W   (A2.1) 

 

where 
l

U  and 
0

U  are the elastic solutions respectively with and without a crack of length l 

and where   is a contour (Appendix 1) encompassing a domain containing the crack in the 

vicinity of the notch root. Using the change of variable /
i i

y x l  ( /r l  ), the above 

integral (A2.1) can be rewritten in the inner domain Ωin (stretched by 1 / l ). Then using the 

inner expansions 

 

 

0 0

1 2 1 2

1

1 2 1 2 1 2

( , ) ( , ) ( ) ...

ˆ( , ) ( , ) ( ) ( , ) ...
l l

U x x U ly ly R kl u

U x x U ly ly R kl u V y y

 

 

 

 

   

     
  

  (A2.2) 

 

into (A2.1), using some properties of independence with respect to the integration path leads 

to 

 

 
   

 

1 1P 2 2 2 2 2 2

1

ˆ , ( ) , ( )  

ˆwith , ( )

k l V u k l V u Ak l

A V u

    



     

  

   



W

  (A2.3) 

 

The same reasoning can be applied in Section 4 where the perturbation of the domain is no 

longer a small crack but a small damaged area. The analogue to (A2.1) is 

 

  0 0 0D 1
( ). . ( ). . d ,

2

d d d
U n U U n U s U U 



     
 W   (A2.4) 
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It is the change in potential energy between the damaged and the undamaged structure. Again, 

the change of variable /
i i

z x d  ( /r d  ) allows rewriting (A2.4) in the inner domain and 

using the inner expansions of 
d

U  and 
0

U   (see Eqn. (22)) leads to 
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  (A2.5) 

 

Finally, the function ( )B   in (45) (Section 6) is determined using the same procedure. The 

inner domain embeds the damage zone Ωd,in with radius 1 and a crack emanating from the 

notch root with dimensionless length /l d  . In our FE computations, this length is varied 

from 0 to 2 by inserting double nodes and  

 

    
1 1ˆ( ) , ( ) , ( )B W u W u

 
          (A2.6) 

 

where, according to (44), 
1

W  and 
1

Ŵ  depend on   and where the integration path 

encompasses the damage zone and the crack (which length can be larger than the damaged 

zone).  

 

Appendix 3 

 

Let us consider the stretched domain Ωin (stretched by 1/d) so the radius of the damaged zone 

is 1 (see Figure A2-1). In this domain 
11

1 2 1 2
ˆ( , ) ( ) ( , )W z z u W z z


   , given in (24) (Section 

4), is the solution to the elasticity system so it has to satisfy the equilibrium equation and 

boundary conditions (see also the appendix in  (Leguillon, 2002)). 
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Figure A2-1. The unbounded domain embedding the damage zone with radius 1. 

 

Since there are two domains such that in each the Young' modulus is different, then the stress 

tensor in each is given by a different expression 
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  (A3.1) 

 

where 
z

  denotes the gradient with respect to the space variables /
i i

z x d  ( /r d  ) 

which span the unbounded space 
in

  as 0d   (Figure 1) and C  and C  are the fourth order 

stiffness tensors relying respectively on E  and E   and  . The same relationships (A2.1) hold 

for 
1

Ŵ . 

 

Substituting (A3.1) in the equilibrium equations, one obtains:  
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  (A3.2) 

 

The boundary 
in

 , with the outer normal n , embeds the two unbounded edges of the V-

notch, Ωd,in is the stretched damage zone with radius 1, I is the interface between the domains 
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Ωin and Ωd,in and and N  its normal pointing toward the notch root. The symbol    means 

“behaves like at infinity”,   and   are the polar coordinates in in
 . 

Using the superposition principle  
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1 2 1 2
ˆ( , ) ( ) ( , )W z z u W z z


     (A3.3) 

 

It comes immediately that 
1

Ŵ  is solution to the following problem 
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  (A3.4) 

 

The continuity of 
1

ˆ( ).
z

W N  through the interface I is a consequence of the following 

transmission condition knowing that C C  on the interface 

 

    
1

ˆ( ) . : ( ) .   
zz

W N u N


     C C   (A3.5) 

 

where the bracket  holds for the discontinuity through the interface I,  ( )
z

u


   is 

calculated at points located on this interface, what is possible knowing that this singular term 

has an analytical expression, refer for instance to (Yosibash, 2012). 

Green’s formula applied to 
1

Ŵ  in the domain Ωd,in allows proving that the corresponding 

problem is well-posed. One has just to check that the resultant force and moment vanish as a 

consequence of the properties of the singular term ( )u


   in the unperturbed (i.e. defined by 

C  deriving from E  and  ) and unbounded V-notched domain. 
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When the domain Ωin embeds in addition a crack (Section 6), one has simply to add the 

following conditions on the two faces C+ and C- of the crack 
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  (A3.6) 

 

where m  denotes the outer normal to the crack faces C+ and C-. 

 

Appendix 4 

 

A classical and simple theory of damage in elastic materials (Kachanov, 1958, 1986; Marigo, 

1981; Lemaitre and Chaboche, 1990) consists in the definition of the free energy density 
F

W   

(herein the strain energy density) as a function of two internal variables: the strain tensor   

and the scalar damage variable   

 

 
F 1
( , ) (1 ) : :

2
      CW   (A4.1) 

 

where C  is the stiffness Hooke tensor of the undamaged material relying on the Young 

modulus E  and the Poisson ratio  . Two constitutive laws are derived from this potential 

(using standard notations in damage mechanics) 
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  (A4.2) 

 

where as usual   is the stress tensor and Y  is the thermodynamic force associated to   that 

governs its evolution. Then the damage law takes the general form, based on the existence of 

a threshold 
c

Y   
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c
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  (A4.3) 

 

where   is the time derivative of  . According to Clausius-Duheim second principle of 

thermodynamics, damage can only grow. As a consequence, the density of energy dissipated 

to reach the damaged state defined locally by   is 

 

 
c

 YD   (A4.4) 

 

In the present paper, the material parameter 
c

D  was introduced in Section 4 as the scaling 

coefficient defining the energy required to damage the material and more precisely to 

decrease the Young modulus E  by E  in a surface S , it is rewritten 
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It is the density of energy consumed to damage the material. Following the classical 

formalism of the above damage law, the current Young modulus E   is such that 

 

 (1 )  and then  
E

E E E E
E

 

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Thus comparing (A4.4) and (A4.5) leads to 
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