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Abstract—Singular points associated with the linear theories of steady-state heat transfer and
elasticity are discussed. Exact solutions for a set of benchmark problems consisting of crack tips,
wedge corners of different angles and matenials and internal multi-material interfaces in isotropic
as well as anisotropic materials are provided and described in detail. Both the generalized flux/stress
intensity factors (GFIFs/GSIFs) and the eigenfunctions are explicitly presented. The efficiency,
robustness and accuracy of new numerical methods based on the p-version of the finite element
method are demonstrated on the basis of the benchmark problems. Copyright © 1996 Elsevier
Science Ltd.

I. INTRODUCTION

The solutions of linear elastostatic and steady-state heat transfer problems in the vicinity
of crack tips were an intensive subject of research during the last 30 years. Although an
exact solution can be obtained for cracks in bodies of simple geometries, for most cases
involving complex geometries, anisotropic materials, and cracks at bi-material interfaces,
only a numerical approximated solution can be obtained. Some typical singular points in
an electronic device, for example, where failure initiation commonly occurs, are illustrated
in Fig. 1. The solution in the vicinity of singular points is of considerable engineering
interest (especially for general domains containing multi-material interfaces, and aniso-
tropic materials) because it is directly or indirectly related to failure initiation in composite
materials and electronic devices.

The exact solution for linear elastostatic problems in two dimensions, for example, in
the vicinity of any singular point can be expressed in the following form (Williams 1952,
Dempsey and Sinclair 1979, Gregory 1979, Dempsey 1995) :

Encapsulant

,Substrate/Printed Circuit Boarad

® = Singular points.

Fig. 1. Typica! sites of singular points in an electronic device.

t Research performed while the author served as a visiting assistant professor at the Center for Com-
putational Mechanics, Washington University, Campus Box 1129, St Louis, MO 63130, U.S.A.
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where r, 0 are the coordinates of a cylindrical coordinate system located in the singular
point and C,, are the coefficients of the asymptotic expansion (called the generalized stress
intensity factors—GSIFs). The eigenvalues «; and the eigenfunctions f,,,(6) are associated
pairs (eigenpairs) which depend on the material properties, the geometry, and the boundary
conditions in the vicinity of the singular point only. The conditions for power-logarithmic
stress singularity to appear (M # 0) are discussed in Dempsey (1995). Similarly, the solution
for problems in linear steady state heat-transfer, in the neighborhood of singular points is
as (1), only that the equation is in a scalar form and the coefficients are called generalized
flux intensity factors—GFIFs. For general singular points the exact solution u,, is generally
not known explicitly, i.e., neither the exact eigenpairs nor the exact GFIFs/GSIFs are
known, therefore a numerical approximation is usually sought. The validity and efficiency
of any such numerical method is measured according to the following criteria:

(i) How fast does the numerical approximation converge to the exact value as the
number of degrees of freedom (DOF) is increased?

(i) The robustness of the method. Does the method perform satisfactorily for a large
set of very different singular points and input data?

This paper addresses two main topics: first, we propose a set of benchmark test
problems for which exact (analytic) solutions are known. The problems have been designed
to be representative of the types of singularities present in practical engineering problems
associated with linear steady state heat transfer and elastostatic models, and are described
in detail to allow their reproduction. Singular points which give rise to complex eigenpairs,
as well as logarithmic type singularities (M # 0 in (1)) are presented. The intended purpose
of the proposed problems is to help users and developers of numerical methods to ascertain
the accuracy and robustness of the numerical codes used. Thermoelastic problems and
cases where non-homogeneous terms are involved (i.e., body forces and non-zero tem-
perature/displacement or flux/traction in the vicinity of the singularities) are not discussed.

In the second part of the paper, the test problems are solved by new numerical methods
formulated in detail and analyzed mathematically in (Yosibash 1994, Yosibash and Szabd
1995b and Szabd and Yosibash 1996). Herein, only a short description of the methods,
limited to the most essential features, is provided. These methods are used for computing
the eigenpairs and the GFIFs/GSIFs numerically, thus demonstrating the efficiency, accu-
racy and robustness which can be achieved for different types of singularities. Importantly,
the numerical algorithm is general in the sense that it first computes the eigenpairs associated
with the singular point, which are subsequently used to extract the GFIFs/GSIFs (rom a p-
version finite element solution. New results on the performance of the numerical algorithms
applied to problems at multi-material internal interfaces, fixed-free corners and cases
involving power-logarithmic stress singularities are reported herein for the first time.

The outline of this paper is as follows. A brief background on related work is given in
the following. Sections 2 and 3 contain the set of benchmark test problems associated with
steady-state heat transfer and elastostatic models. The numerical methods, based on the p-
version of the finite element method, are briefly presented in Section 4 for the heat-transfer
problem only, limited to the most essential features. The results obtained are listed and
discussed in Section 5 and the conclusions summarized in Section 6. An example problem
in linear elasticity where power-logarithmic stress singularities are excited is provided in
Appendix A.

1.1. Related work

Most of the research performed in the past concentrated on problems corresponding
to isotropic materials. In this case, the eigenpairs can be computed analytically (Williams,
1952). For example, in Rice and Sih (1965) the eigenpairs for cracks along the interface
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of two dissimilar isotropic materials are explicitly given, and in Suo (1989) explicit eigen-
functions for a crack along the interface of anisotropic materials are provided as well. It
is easier to obtain explicit eigenvalues than eigenfunctions (see, for example, Ying (1986)
and Dempsey and Sinclair (1981) for cases of up to three sub-domains). For traction-free
crack tip singularities the first two coefficients of the asymptotic expansion, usually called
the stress intensity factors, can be computed analytically for simple geometries and loading
conditions (Murakami, 1987). or can be approximated numerically, usually by the finite
element method. See Whiteman and Akin (1979) and Atluri and Nakagaki (1986) for
surveys of the main ideas. Finite element methods based on the displacement formulation
(principle of minimum potential energy) used to compute the stress intensity factors in
isotropic materials can be found, for example, in Szabd and Babuska (1988), Yosibash and
Schiff (1993), and Banks-Sills and Sherman (1986). For numerical methods used to compute
the stress intensity factors associated with cracks in dissimilar materials we refer to Lin and
Mar (1976), Hong and Stern (1978) and Matos er al. (1989). Analytical methods for the
computation of eigenvalues associated with interface cracks in anisotropic composites can
be found in Ting (1986) and the references therein. These methods provide an understanding
on the nature of the eigenvalues, but they are complicated for general applications.

Most of the numerical methods, however, are applicable to flux-free crack tip singu-
larities in isotropic materials, do not provide any desired number of stress intensity factors,
and fail when the eigenpairs are complex. They are difficult or even impossible to incorporate
into standard finite element programs, and moreover, are restricted to a particular type of
singularity.

2. HEAT-TRANSFER PROBLEMS

Steady state linear heat-transfer problems (also called scalar problems) in the neigh-
borhood of singular points are considered in this section. Here u denotes the temperature
field in a domain. The governing equation is:

where g,; are constant coefficients in each sub-domain called coefficients of heat conduction.
a; = a; and a;; satisfy the elliptic restriction, i.e., a,a2 — 3> > 0 in each sub-domain. For
multi-material interfaces we assume that the materials are perfectly bonded together, i.e..:

u(r, 0, —0) = u(r,0,+0)
(@’ v, Qu)(r, 0, —0) = (aif "' v, Ea0) (r, 04+ 0) (3)
where du symbolizes Cu/dx,, v =(v|,v,) is the unit outward normal vector to the straight

line interface between materials k and k+ 1, and &' are coefficients of heat conduction in
each sub-domain. We define the ““energy™ in a domain Q by:

r ) 2 ) A, ] 2
. def Cu oy cu cu
(«S(u) = day N +2a12',5‘7 P +a22 ~ dQ,
JJal X CXy CXH CX»

and the energy norm by :

lull & /& ().

If a numerical method is used to compute wuy, it can be shown that the relative error
between uy,,, and wu,, measured in the energy norm can be computed by (Szab6 and
Babuska (1991) chapter 4):
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lle, | def lunvar—vex e |& (upn) — € (ugy)
E— T . = ‘ - I
' x|l e |6 (ttex )|

lle.ll £ 1s a natural measure of convergence of the global numerical solution to the exact
solution, frequently used in finite element computations. We will use this measure in the
sequel, omitting the subscript r.

2.1. Scalar problem 1: isotropic clamped-free crack

Let Q be the unit circle sht along the positive x axis, and denote by I, the upper face
of the slit, by I'; the lower face of the slit, and by ' the circular portion of the boundary
of Q. (See Fig. 2.) Consider the problem discussed in Babuska and Miller (1984):

Viu=0 inQ,
O ]
u=0 onTl,. ;—;=0 onT,, %lzy onT,. )

Then the solution to this problem, accurate up to the sixth significant digit, is given by
Babuska and Miller (1984) :

u(r,0) = —1.35812r" % sin (0/4) +0.970087r*"* sin (36/4)
+0.4527077%* sin (360/4) + O+ *).  (5)
and the exact “‘energy” is ' (u) = 4.52707.

2.2, Scalar problem 2 : anisotropic domain
Consider the heat transfer problem in an anisotropic material governed by the equa-
tion:

~+a’2 :07 ap, :4~, a22:]~ (6)

prescribed over 4 domain Q whose boundary consists of a reentrant corner of 90" generated
by two edges, I'; and I',. On the two edges I', and T',, which meet at the origin of the co-
ordinate system, flux free boundary conditions are applied :

xY

Fig. 2. Scalar isotropic clamped-tree crack problem.
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5
ij=

ou
;=
Y ox;

v,;=0 onl, T, (7

and u = 0 is specified at (0,0). The solution u can be written in the following form:

Es

s . . , 2
u= Y A2 (1 +3sin’ )" cos [; arctan(2 tan H)} (8)

e

where r and 0 are polar coordinates centered on the reentrant corner such that 6§ =0
coincides with the T'; boundary. The first term in the expansion (8) for Vi is unbounded as
r—0.

Let Q be the unit circle sector shown in Fig. 3. The circular boundary of the domain,
[, is loaded by flux boundary condition which corresponds to the first symmetric eigen-
function of the asymptotic expansion of u about the reentrant corner:

U o N o, 0 . 1 du
5‘1_—‘ q, = (a,, cos” 8+ a,, sin” 0)0—1: +%31n2{9(a22-a11)<r 69)

= A;r "[2(143sin 0)]** 3[(1+ 3 cos? 6)(1+ 3sin® §) —3 sin® 20]

*cos[; arctan(2 tan 6)] + 2 sin 20 sin [; arctan(2 tan 6)]}. (9)

On the other two boundaries flux-free boundary conditions are applied. The GFIF A4, is
arbitrarily selected to be 4, = 1, while the others are 4, =0, i =2, 3,...oc. The exact
solution to this problem is given by ug, = u'"(r, 0).

2.3. Scalar problem 3 : internal interfuce with two materials

Two-dimensional bodies consisting of two or more materials perfectly bonded along
all their common edges attracted scant attention in the past. Lately, with the growing
interest in electronic packaging, more attention is focused on the solution to these problems.

Fig. 3. Domain for the anisotropic flux-free scalar problem.
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Fig. 4. Internal interface with two materials.

Let Q= {(r.0):r <2,0 <0< 2n} and let Q, be the two sub-domains of Q occupying
the sectors 0 < 0 < n/Z and n/2 < 0 < 2=n. (See Fig. 4.)
Consider the following interface problem :

pVi=0 inQ, (10)

with the following boundary conditions:

-

‘;f’_p[,.; (O + s ()] onT = 8Qui=1,2. (11)
py =10 and p, =1
A= 0731691779 and 4, = 1.268308221 (12)
and

cos [(1 —a)f}+ ¢, sin [(1 —a)0)] 0<0<m/2, (13)

(lgos[ (1—a)0l+creqsin[(1—a)f] n/2<0<2n

(1 +a)0] - I +a)0 0<0<n2,
haiy = [t Fafl = csin[(+a)b] & (14)

e, cos[(14+a)f] —c,essin[(1+a)0) n/2 <0 < 2n,

¢, = 6.31818181818182, ¢, = —2.68181818181818, ¢y = 0.64757612580273 and
a = (0.26830822130025.

Then the unique solution (up to an additive constant) to this interface problem is given
by Oh and Babuska (1992):

u(r,0) = A, r h (0) + A7 2h, (0), (15)
where 4, = 4. = 1.

3. ELASTOSTATIC PROBLEMS

Linear elastostatic problems in the neighborhood of singular peints are considered in
this section. Here u £ (u,, u,)" denotes the displacement vector in the x, y directions and
6., @, T, are the stresses. For multi-material interfaces we assume continuity of dis-
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placements and tractions across boundary interfaces. We define the “strain energy’ in a
domain Q by:

The energy norm and its connection to the strain energy is equivalent to that presented in
the previous section, i.e.

Jull, = /&),

3.1. Elastostatic problem 1: traction-free isotropic L-shaped domain
Let us consider the L-shaped plane elastic body presented in Fig. 5, having re-entrant
edges of length 1. On the boundaries of the domain. tractions which correspond to the
following exact stress field :
o, = A " 2—0 (2, + )] cos(a, — 10— (2, — 1) cos(a, —3)0)
+ Ay, T[2— Qo (2 + )] sin (2, — 1)0— (o — 1) sin (o, —3)0]
o, = Ay 240 (%, + D] cos(ay; — 1)+ (2, — 1) cos(a, —3)6}
+Aso, 2405 (o 4+ D sin (o — 104 (2, — 1) sin (x, —3)0)
Too= Ay Ny —1)sin (o, —3)0+Q, (o, + 1) sin (2, — 1)6}

+ Asosr' i (an — 1) cos (2, — 30+ Q5 (s + 1) cos (o — 16} (16)

T

T —

1

Fig. 5. The L-shaped domain.
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are being applied where 4, and A, are constants analogous to the mode 1 and 2 stress
intensity factors in linear elastic fracture mechanics ; o, = 0.5444837368, O, = 0.543075597,
o, = 0.9085291898, O, = —0.218923236 are constants determined so that the solution
satisfies the equilibrium equations and the traction-free boundary conditions on the re-
entrant edges.

3.2, Elastostatic problem 2 traction-fee crack in an isotropic material

Let us consider the plane elastic body with a crack along the negative x-axis shown in
Fig. 6, which is isotropic with material constants £ = 1 and v = 0.3, presented in Szabo
and Babuska (1988). On the boundaries of the domain, tractions which correspond to the
exact stress field given by (16) are being applied where 4, and 4, are the mode | and 2
stress intensity factors in linear elastic fracture mechanics; o, = o, = 1/2, @, = 1/3 and
Q, = —1 are constants determined so that the solution satisfies the equilibrium equations
and the traction-free boundary conditions on the re-entrant edges. Furthermore, the dis-
placement vector at (0,0) is fixed and the y-components of the displacement vector at (1, 0)
is fixed.

3.3. Elastostatic problem 3 fixed-free 90° isotropic corner

Plane problems (or axisymmetric problems) with rigidly fixed end and traction free
lateral surface are of increasingly interest in contact mechanics, for example, when an elastic
body is compressed between rough rigid stamps, with the contact being without slip. A
representative case for these problems, where the stresses are singular, for which an analytic
solution is available is presented in Fig. 7. The origin of a polar coordinate system is placed
at the corner with § = 0 being the fixed edge:

u,(0=0)=0
1
{u_y(e =0)=0 a7
and a traction free edge is assumed at § = n/2:
T(B=m/2)=0
. 8
{T_.w ) =0 s

Consider a plane-strain situation for which x = 3 —4v, and material properties £ = 1 and

y
| r
1
\_* 0
— =x
IJ
Y. ‘
i 1 | 1 i
|

1 i
-t —————————————
1 [ 1

Fig. 6. Crack in an isotropic domain.
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T, & T,
are applied

T,=0
Ty=0 r=1
6
NNNNN
u,=0
uy=0

Fig. 7. Fixed-free 90° isotropic corner.

v = 0.3. The exact value of the strength of the singularity «,, at r — 0, can be obtained by
solving the implicit equation :

cos (M) = — — —=— . (19)

The first eigenvalue is real a, o = 0.71117293327.
Imposing the following traction field on the boundary r = 1,0 > 0 > 7/2:

T,(0) = 4,/2.8{[(3—a)cos(] —z)8— (1.8 —a) cos(1 +x)0]
—y[(3—a) sin (1 —x)0— (1.8 + &) sin (1 +2)0]},
T(60) = A,/2.8{[(1 —2) sin (1 —o)B+ (1.8 — =) sin (1 +a)8]

+9[(1 —a) cos(1 — )0+ (1.8 +a) cos (1 +x)6]}, (20)
where
_Snem 00075708 21
" k42x+cos(am)y ’

one obtains the exact stress field in the domain, see Stern and Soni (1976) :

o, = A r* " 2.8{[(3—2x)cos(1 —a)0— (1.8 —a) cos(1 +u)6]
—y[(3—2)sin (1 —o)f— (1.8 +u) sin (1 +a)0}},
oop = A, """ /2.8{[(1 +a) cos (1 —a)0+ (1.8 — ) cos(1 + )]
—7[(1+0o) sin (1 —o)f+ (1.8 + o) sin (1 +2)0]},
o =Ar""28{[(1 —a)sin (1 —a)0+ (1.8 —0a) sin (1 + )]
+7[(1 —a) cos(1 —2)0+ (1.8 + ) cos(1 +2)0]}. (22)
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Fig. & Crack at a bi-material interface example problem.

3.4. Elastostatic problem 4 traction-free crack at isotropic bi-material interface

A bi-material is a composite of two homogeneous materials, with continuity of trac-
tions and displacements across interfaces maintained. For two isotropic materials, an exact
solution for the stress tensor can be obtained using complex analysis. Consider a domain
presented in Fig. 8. and define:

I Ky [y +
o= — T - 23
¢ 2n1n (szﬁ-u: @3
where
3—4v for plane strain

[(3—v)/(14+v) forplane stress

and p 1s the shear modulus. This domain is loaded by normal and tangential tractions on
the circular boundary as follows :

| . ) N
= K [cos(eIn 1.5)a)s +sin(eln 1.5)57}]

T,(r=15.0) = —

\,/' Ry

+ K, [—sin(eln 1.5)6® +cos(eIn1.5)03]}  (24)

1 .
T.(r=15.0) = N 'K, [cos(eln 1.5)a}y +sin(eln 1.5)a3]
KL

+ K [—sin(eln 1.5)g) +cos(eln 1.5)ap]l.  (25)

where o, and o,, are given by (27), and K,, K,; are the so-called **stress intensity factors’ in
fracture mechanics. The crack faces are traction-free,
Following Suo (1989)F, the exact stress fields in material 1 can be put into the form:

T The cxpressions for the displacements in Suo (1989) are not continuous across the interface at 0 =0,
therefore could not possibly be valid.
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0, = ——— | K[ cos(eIn r)al) +sin(eInr)ay)]

+ K[ —sin(eln el +cos(zlnrail} ij=r.0. (26)

where

o = [—sinhe(n—6) cos(30/2) +e """ cos(8/2) (1 + sin?(0/2) +esin (6))]/c

o) = [sinhe(n—0) cos(36/2)+e 7 cos(6)/2)(cos*(8/2) —esin (0))]/c

¢ = [sinh &(z — 0) sin (30/2) +e ™" " sin (6/2)(cos™ (8/2) —esin (0))]/c

o/ = [coshe(n—0)sin (30/2) —e™ ““~ " sin (6/2)(1 + cos?(0/2) —esin (0))]/¢

ofy = [—coshe(n—0) sin (36/2) —e """ sin (0/2)( sin®(6/2) +¢esinH))}/c

o7, = [coshe(n—0) cos(30/2) +e """ cos(0/2)( sin?(8/2) +e¢sin (8))]/c

¢ = coshen. 27

The stress fields in material 2 can be obtained by replacing = by —n everywhere in (27).
The first singular exponent ( first eigenvalue) for this crack problem is a complex number
given by 1/2+ie.

3.5. Elastostatic problem 5 : inclusion problem

The case of a composite body consisting of two dissimilar isotropic, homogeneous and
clastic wedges, perfectly bonded along their interfaces, is studied. The analytic (exact)
asymptotic series representing the stress field in the neighborhood of the singular point can
be derived explicitly for this problem, as shown by Chen (1994).

Consider the unit circle domain €, divided into two sectors: €; occupying the sector
—57/6 < 0 < 57/6 and Q, occupying the sector 57/6 < 0 < 7n/6, see Fig. 9. Plane strain
condition is assumed with v, = v, = 0.3 and E, = 10,000, £; = 1. The eigenvalues charac-
terizing the stress singularity in the vicinity of the point (x.y) = (0,0) for the modes I and
11 are given by o, = 0.512472160 and x, = 0.730975740. On the boundary of the domain
the following traction field is applied:

7
/ / /2///

i s

xr

,/,
7%,
7 )

7

Fig. 9. Domain configuration of the elasticity inclusion problem.
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—57/6 < 0 < 51/6

K /
T,(0) = —0.717604531 —={0.401735588 cos [(1 +,)0]

J2n
—1.561125474 cos [(a, —1)0]}
K
—1.023570729 /;L{—0.813]97463Sin[(1+a2)9]
\/ i

—1.619121416 sin [(x, — 1)6]}

K
T.(0) = 0.717604531—— {0.401735588 sin [(1 + ;6]

N
—0.305963261 sin [(o; —1)6]}
K
—1.023570729— = { —0.813197463 cos [(1 +,)6]
J2n

—0.813974463 cos [(x, — 1)6]}
57/6 < 0 < Tn/6

K
7,(0) = —0.000370516 —= {0.972611382 cos [(1 4o, )(n— 0)]

/27

N
—1.561125474 cos [(«, — 1) (n—0)]}

K
+0.000152306 —= { —1.240586478 sin [(1 + o, ) (1 — )]
J2n

—1.619121416sin [(or; — 1) (m — )]}

K
T,(6) = —0.000370516 —— {0.972611382sin [(1 +a,)(x —0)]

/

V2
—0.305963261 sin [(ot, — 1) (x—6)]}
K
—0.000152306 ;; {—1.240586478 cos [(1 +2) (x — )]
\VAm

—0.191969274 cos [(2, — 1)(m—0)]},

(28)

(29)

(30)

(3h

where K, and K, are chosen arbitrarily to be \/2'7t The exact stress field in the domain is

singular at » = 0, and can be written in the form:
o = PO+ fN0) i =r.0.10,
where f7,(0) and f}/(0) are the functions given by:

—57/6 < 0 < 51/6

F0(6) = —0.717604531 {0.401735588 cos [(1 o, )0] — 1.561125474 cos [(2, — 1)6]}

(32)

FUD(@) = —1.023570729 { —0.813197463 sin [(1 +2,)6] — 1619121416 sin [(2, — 1)6]}

FP(0) = 0.717604531 {0.401735588 cos [(1 +,)0] +0.949198951 cos [(2, — 1)¥]}
FE0(0) = 1.023570729 { —0.813197463 sin [(1 + a,)0] + 1.235182867 sin [(o, — 1)6]}
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(0) = 0.717604531 {0.401735588 sin [(1 +«,)0] —0.305963261 sin [(ez, — 1)0]}
F96) = —1.023570729 { —0.813197463 cos [(1 +,)0] —0.81397463 cos [(a; — 1)6]}

Sn/6 < 0 < Tnj6

£0(0) = —0.000370516 {0.972611382 cos [(1 +a, ) (m—B)]
—1.561125474cos [(ot; — 1) (n—0)]}

FUD(9) = 0.000152306 { — 1.240586478 sin [(1 -+ o) (m— 6)]
—1.619121416sin [(or, — 1) (m— 6)]}

£(6) = 0.000370516 {0.972611382 cos [(1 +a, ) (n— 6)]
+0.949198951 cos [(ot, — (m—0)]}

£41(6) = —0.000152306 { —1.240586478 sin [(1+0,)(x — )]
+1.235182867 sin [(o; — 1) (n— 0)]}

£9(8) = —0.000370516 {0.972611382 sin [(1 4, ) (m — )]
—0.305963261 sin [(x, — 1)(z—0)]}

£UD(6) = —0.000152306 { — 1.240586478 cos [(1+ 2, ) (n— 0)]
—0.191969274 cos [(x, — D (r—6)]}.

3.6. Elastostatic problem 6 : rigid body motion

Many numerical formulations do not satisfy the rigid body displacement criteria,
meaning that under rigid body translation or rigid body rotations, generating no singu-
larities, the computed GSIFs are not identically zero. To examine this criteria we consider
again the plane elastic body with a crack along the negative x-axis shown in Fig. 6. This
time we subject the domain to large rigid body translations by imposing on its boundaries

rigid body displacements :
3.0
= 33
u {_3-0}, (33)

and the rigid body rotation :

u= { }}, (34)
—X
The strain energy in this case is identically zero as well as the stress intensity factors.

4. THE COMPUTATIONAL SCHEME

4.1. Eigenpairs computation by the modified Steklov method

Let us “zoom in” at the singular point and consider a domain Q% in its vicinity shown
in Fig. 10. r, 6 are the coordinates of a cylindrical coordinate system located in the singular
point. In Q% the steady-state heat transfer governing equation is given in (2). To simplify
our discussion let us assume flux free boundary conditions on I', and I, i.e.:
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Singular point.

Fig. 10. Domain and notations for modified Steklov formulation.

i ,,(r_o onT, andT,. (35)

In QF, u may be represented as follows: u = r*f(0). Under special (exceptional) circum-
stances, ¥ may also have additional terms as #*In(r) f(0) (see Dempsey (1995)). This case is
addressed in Appendix A, and not treated in the following analysis. Therefore, on I'; and
I', we have:

(Oujdr) = (a/R)u. (36)

Multiplying (2) by a test function ve H'(Q%) (H' being the usual Sobolev space), integrate
using Green'’s theorem, and following the steps presented in Yosibash (1994), we obtain
the following modified Steklov weak form :

Seek axed, 0+#ueH'(Q¥ suchthat
B(u,0) — (N (1 0) + N g1, 0)) = 2 M g (1, 0)+ M g+ (u,v)), YoeH'(QF)  (37)

where :
B, ) ”% Zl a; fi‘ fi Q. (38)
M, 0)E Jm[(al 1 cos? 0+a,, sin 26+ a,, sin® Qyuv],_  d0, (39)
t
A (1) J ’ {[(ap a1 sinfcos O+, cos20] 2 v} do, (40)
0 x

and similarly for .# g« and A4 . only that the integration is performed at r = R*.

Remark 1. The domain Q% does not include singular points. Also note that the formulation
of the weak form has not limited the domain Q% to be isotropic, and in fact can be applied
to multi-material anisotropic interfaces.

Numerical solution by the p-version of the finite element method. The weak eigenproblem
(37) is reformulated in the framework of the p-version of the finite element method. The
domain Q% is divided into finite elements through a meshing process. The polynomial basis
and trial functions are defined on a standard element in the &, # plane such that — 1 < & < 1,
—1 < n < 1. These elements are then mapped by appropriate mapping functions onto the
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“real” elements (for details see Szabd and Babugka (1991) chapters 5 and 6). Let u be
expressed in terms of the basis functions in the standard plane @&, n):

u(@n) = Y b®(En) (4D

where b, are the amplitudes of the basis functions (sometimes called the “‘nodal values™),
and @, are products of integrals of Legendre polynomials in & and #. Denoting the set of
coefficients associated with I'; and I'; by {br}, we obtain after performing static con-
densation the following eigenproblem

(KJ{bx} = a[M]{bx}, (42)

where [K] is the condensed stiffness matrix associated with the left hand side of (37) and
[M] is the matrix associated with the right hand side of (37). The solution of the eigen-
problem (42) provides the sought eigenvalues o, and the associated eigenvectors. For
details the reader is referred to Yosibash (1994) and Yosibash and Szabo (1995b).

4.2. Extraction of the GFIFs

Once the eigenpairs are computed, they are used for extracting the GFIFs. The
procedure is as follows. First we solve the problem over the entire domain of interest Q by
means of the finite element method based on the displacement formulation, thus obtaining
ure. Second, a small sub-domain around the singular point P is constructed. Define Sy as
the interior points of a circle of radius R centered on the point P. Q, is defined by QN S,
and I’y is its circular boundary. (See Fig. 11.) Defining g, & (ou/dx, Ou/dy)", and
q & (Qv/ox. dv/0y)" then the complementary variational principle over Qg can be stated as:

Seek q,€ E.(Q), suchthat:

g (7 & ou dv
A, q,) { J ay 5 —rdrdf
Ao 0 Jo, :,fgr @.Y, ﬁx,.

W

»

e v of .
J iy a,,zq—\jv,dsé——f,#((q,) Vq, €E.(Qp), (43)
r, UX;

i

=1

E.(Qg) being the statically admissible space (see detailed definition in Szabo and Babuska

Fig. 11. The domain ) and the extraction sub-domain Qp.
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(1991)), and # is the temperature along I',. Since 4 in (43) i1s not known exactly, it is
replaced with the approximated finite element solution .

For the complementary weak form the trial and test spaces g, and q,, are chosen to be
linear combinations of the eigenfluxes, which are computed from the eigenpairs using
temperature-flux relationship. The unknowns are the GFIFs.

Remark 2. The eigen-flux vector, being derived from the eigenpairs, automatically satisfies
the boundary conditions on all boundaries except [, so that the linear form % (q,)
degenerates to an integral over the circular boundary I" alone.

Solving (43), one obtains an approximation for the series coefficients, the GFIFs.
Mathematical analysis (see Yosibash (1994} and Szabd and Yosibash (1996)) followed by
numerical examples demonstrate that the rate of convergence of the GFIFs to the exact
values is as fast as the convergence of the energy, therefore the method is “super-
convergent’.

5. NUMERICAL RESULTS AND DISCUSSION

The algorithms presented in Section 4 have been implemented in the p-version finite
element computer code PEGASYST which was used for performing the numerical studies.
The trunk space was used to represent the trial and test function space in all computations.
By definition, the trunk space of degree p spans the set of monomials &%, i+ < p augmented
by the monomial &y for p =1 and by the monomials &, &y” for p = 2 on the standard
quadrilateral element defined by Qf = {£5: 1] <1, |n| < 1}. Elements are mapped by
the blending function method. Therefore the boundaries are represented exactly in the
stiffness matrix and load vector computations. The load vectors were computed by eva-
luating the applied tractions in 14 Gauss points along the loaded edge of each element and
integrated numerically, using double precision operations. The trial functions over each
element are polynomials of degree | < p < 8, and the integration scheme uses (p+3)(p+3)
Gauss integration points over each quadrilateral.

The performance of the numerical methods presented in Section 4 is reported in the
following. The set of benchmark problems is solved, and the computed eigenvalues and
GFIFs/GSIFs are presented. As demonstrated in the sequel, the proposed methods provide
results of high accuracy, are robust and efficient.

5.1. Scalar problem 1 : results

This particular example problem was chosen to demonstrate that the proposed method
has the same super-convergent properties as the extraction method proposed in Babuska
and Miller (1984). The extraction method in Babugka and Miller (1984), however, requires
the knowledge of the eigenpairs a priori, and is not applicable to anisotropic materials.

This problem has been solved in Yosibash (1994) using the exact known
eigenpairs. Herein, the eigenpairs are computed numerically using the modified Steklov
method resulting in (2,) ;ppro = 0.250000000002, (0t3) 1550 = 0.750000000000 and (o3) yppror =
1.250000000000 at p = 8 (CPU time to compute these values was 3.31 s on a Silicon
Graphics IRIS Indigo workstation R3000, 24MB of RAM, SpecMark89 = 28). The high
accuracy of the computed eigenpairs is essential in computing the GFIFs.

For the extraction of the GF1Fs, the mesh shown in Fig. 12 is used with 2 refinement
layers toward the singular point, one having the radius of 0.15 and the other having the
radius of 0.15%. The GFIFs are extracted using an integration path R = 0.9 with 10 terms
in the series. In Table 1 we summarize the approximated first three GFIFs, their relative
error (e, (%) = 100(4/* — 4,)/4)), the corresponding number of degrees of freedom and
the relative error in energy norm. The following conclusions may be drawn from the results
shown in Table | which are typical of many other numerical experiments performed :

tPEGASYS is a trademark of Engineering Software Research and Development, Inc. 7750 Clayton Road,
Suite 204, St Louis, MO 63117.
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Fig. 12. F. E. mesh and boundary condition for scalar problem 1.

Despite the presence of a strong (r'*-type) singularity, A" appears to be con-
verging at a rate which is at least twice that of the error in energy norm. This rate
of convergence is approximately the same as that reported in Babugka and Miller
(1984).

The GFIFs A%% and A%% are much more accurate than A%* (the error is smaller
than that reported in Babuska and Miller (1984)), and the observed convergence
rate is considerably faster when compared with the convergence of the error in
energy norm.

(i) For path radii taken far enough from the singular point, R > 0.5 in this example
problem, the accuracy of the GFIFs is almost independent of R.
Table 1. Computed values of the first three GFIFs for scalar problem 1, R = 0.9
p=1 p=2 p=3 p=4 p=>5 p=6 p=7 p=38

DOF 12 36 64 104 156 220 296 384
lells(%) 34.52 16.73 12.79 11.26 10.25 9.49 8.89 8.39
A —1.106246 —1.261053 —1.286924 —1.313504 —1.313504 —1.319999 —1.324789 —1.328490
e,l(%) —18.54 —7.15 —5.24 —3.94 —3.28 —2.81 —2.45 —2.18
ATE 0.893839 0971012 0.969531  0.970206 0.97007 0.970077  0.970090  0.970085
e4,(%) —7.86 0.095 —0.057 0.012 <0.0001 —0.0010 0.00031 —0.0002
AL 0379149  0.446053  0.452521 0.452492  0.452694  0.452706  0.452705  0.452708
e, (%) —16.25 —1.47 —0.0411 ~-0.0475 —0.0029 —0.0002 —0.0004 0.0002
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scalar problem 1.

(iv) Asexpected, for isotropic materials, the number of terms considered in the series
has no influence on the accuracy of the GFIFs.

We present in Fig. 13 the convergence of the GFIFs as compared with the relative error in
energy norm and the relative error in energy. Note that the rate of convergence in the first
GFIF is faster than the rate of convergence of the energy norm, and at p > 4 is virtually
the same as the rate of convergence of the energy. The second and third GFIFs converge
much faster. This is because the corresponding eigenfunctions are much smoother.

5.2. Scalar problem 2 : results

The eigenpairs were computed using the modified Steklov method, obtaining the
first three approximated eigenvalues: «, = 0.666666675, o, = 1.333333307 and o, =
2.000000413.

The domain has been partitioned into only three elements as shown in Fig. 14, and the
first 3 GFIFs were then extracted, taking R to be 0.9. The number of degrees of freedom,
the relative error in energy norm (%), and the computed values of the three GFIFs are
listed in Table 2. Of course, A4 has to converge to 1, and A%* and A%%, have to converge
to 0. We may see from Table 2 that the GFIFs converge strongly and obviously, although
not monotonically. Our method yields solutions at p-level 2 or 3 that are within the range
of precision normally needed in engineering computations.

We have plotted the relative error in energy norm, the relative error in energy and the
relative error in A4, on a log-log scale in Fig. 15. The convergence path of the GFIF Af*
follows closely that of the ““energy”’, which is a behavior referred to as *“super-convergence”’.

This problem clearly demonstrates the effectiveness and the super-convergent property
of the proposed method for anisotropic materials.

Table 2. First 3 GFIFs for the scalar anisotropic problem

p=1 p=2 p=3 p=4 p=>S5 p= p=71 p=238
DOF 4 11 21 34 5 69 91 116
lrefl s(%) 29.07 14.84 10.06 7.45 5.83 474 3.96 3.39
AfE 0.8976059 0.9855478 0.9846905 0.9959510 0.9955990 0.9976367 0.9985509 0.9984618
ALE 0.0539073 0.0025256 0.0003571 0.0004857 1.3¢-7 7.8¢e--5 0.0001106 2.8¢-5

ALE le- 10 le-10 le-10 le-10 le-10 le-10 le-10 le-10
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Fig. 15. Convergence of lle[ , the energy (|le| %), and 4}* for the scalar anisotropic problem.

5.3. Scalar problem 3 : results

The performance of the modified Steklov method is demonstrated by Table 3 where
we report the relative error of the first and second computed eigenvalues. A finite element
mesh consisting of six elements, such that the inner elements have a radius of 0.15 has been

Table 3. Relative error (%) in first two eigenvalues (A% = 0.731691779, /5* = 1.268308221)

p=1 p=2 p=3 p=4 p=3 p=6 p=1 p=38
DOF 8 1 28 41 57 76 98 123
CPUft(sec) 0.19 0.07 0.13 0.26 045 0.75 14 2.24
e; (%) 1032 0377 00069  7.0e-S  43e-7 109  3.0e-11  1.0e-10
e, (%) —394 0909  0.0270  44e4 456 798  1.0e-10  1.0e-10

t Computations performed on a Silicon Graphics IRIS Indigo workstation (R3000, 24MB of RAM, Spec-
Mark89 = 28).



262

Z. Yosibash

~___ StressCheckVl24 =~ B
N =
\\ v
ka
;‘%’/,
\YA//
.. /
i/i\,/
-~ //
- t)//
/
i
. ! /// \\\
| ()
g / /
| K\/ y
B ANy s
! T fo
i Vs /
\ ,/
A e /
-\ e /
,/&\\ L, /4_
hY
N / A
PN ) S
. \:}\ ’//"m
: P " %
( T - AN
\ (t e - ) /’/X
...... X "‘\-\\\ »_/\/( N
- ] T
94/12/30 15:06:47

Fig. 16. F. E. mesh and boundary conditions for scalar problem 3.

used (see Fig. 16) together with the eigenvalues obtained by the modified Steklov method
at p = 8, for computing the first two GFIFs A}* and A5*. These GFIFs, according to (15),

have to converge to | as the number of degrees of freedom is increased. The number of
degrees of freedom, the relative error in energy norm (%), the relative error in energy (%),
the computed value of the GFIFs, and the relative error in GFIFs (%) are listed in Table
4 for R = 0.6. The data in Table 4 is plotted on a log-log scale in Fig. 17. It is seen that the
rate of convergence of the GFIF is faster than the rate of convergence in the energy norm,
and although not monotonic, is similar to the rate of convergence of the energy.

5.4. Elastostatic problem 1: results
The eigenpairs were computed using the modified Steklov method resulting with

(1) gppron = 0.5444837375 and (o2) yppror = 0.9085291893 at p = 8. The eighteen-clement mesh

Table 4. First two GFIFs for scalar problem 3 : two periodic isotropic material
p=1 p=2 p=3 p=4 p=5  p=6  p=T7 p=8
DOF 6 18 33 54 81 114 153 198
el (%) 73.68 10.52 8.47 1.28 0.75 0.51 0.41 0.34
le]|2(%) 54.28 1.11 0.717 0.0164 0.0056 0.0026  0.00168 0.001156
A 0.82729 098729  0.99934  0.99956  0.99973  0.99990  0.99993  0.99994
A5F 0.19937  1.03126  0.03587  1.00040  0.99939  1.000006 1.00004 0.999997
100(AF —A4,)/ 4, —17.27 —1.27 —0.065 —0.0434 -0.0273 —0.0103 —0.0067 —0.0059
100(A%E — A,)/ 4, —80.06 312 3.587 0.0405 0.0610 0.0005 0.0037  0.00030
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shown in Fig. 18 in conjunction with the approximated eigenvalues were used for extracting
AYE and A4%. Two radii, R = 0.9 and R = 0.5 were used for the integration path to illustrate
the influence of R on the results. We define the normalized GSIFs:
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Fig. 18. Mesh design and boundary conditions for the L-shaped domain problem.
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Table 5. First two GSIFs for the L-shaped isotropic material

p=1 p=2 p=73 p=4 p=>5 p==6 p=1 p=2_8

DOF 41 143 305 527 809 1151 1553 2015

e (%) 24.28 7.74 318 1.82 1.30 1.04 0.87 0.74
R=09 4, 0.895596 0.995697 0.998194 0.999131 0.999641 0.999670 0.999717 0.999750
100(4y" —43.4, —1044 —043  —0.18 —0.0869 —0.0359 —0330 —0.0283 -0.0250
A 0.957941 0997849 0.999954 0.999857 0.999984 0.999998 0.999991 0.999991
100045 - 4,)/ 4, —420  -0.215 —-0.0046 —0.0143 —0.00157 —0.00017 —0.00091 —0.00087
R=05 4, 0.846893 0.972630 0.998131 1.000186 0.999505 0.999437 0.999597 0.999690
100(AT"—4).4,  —1531 —274 —0.187 0.0186 —0.0494 —0.0563 —0.0403 —0.0309
A, 0.941586 0.989872 0.998757 1.000180 1.000071 0.999976 0.999977 0.999990
100(A5" — 44): 4, —584 —1.013 —0.1243 0.0180  0.007} —0.00239 —0.00226 —0.00099
A, = A4, (44)

This way all normalized GSIFs are expected to converge to | (unless they are zero) as the
number of degrees of freedom is increased. The number of degrees of freedom, the relative
error in energy norm (%), the computed values of the normalized GSIFs, and the relative
error in the GSIFs (%) are listed in Table 5. The absolute value of the relative error of 4,,
A, for R = 0.9, the energy norm and the strain energy are plotted against the number of
degrees of freedom on a log-log scale in Fig. 19. These results show that the relative error
in strain energy and that of 4, and A, are of comparable magnitude, and they converge at
approximately the same rate, until the relative error drops below 0.1%. The path of
integration has very little influence on the method’s performance.

Incompressible materials : the same problem is analyzed in Yosibash and Szab6 (1995a)
for a nearly incompressible material (Poisson’s ratio v ranging from 0.499 to 0.4999999),
where it is shown that the proposed methods are almost insensitive to v up to v = 0.4999999.

5.5. Elastostatic problem 2 results

Numerical results for this crack problem have been reported in Yosibash and Szabo
(1995a), where the performance of the present method was compared to the contour integral
method. Herein, we show only the relative error in the energy norm, the relative error in
the strain energy, and the absolute value of the relative error in the first two SIFs, plotted
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Fig. 19. Convergence of | ¢||, the strain energy (|le| ). and A4,, A, for the L-shaped domain, R = 0.9.
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material.

against the number of degrees of freedom on a log-log scale in Fig. 20. A mesh containing
16 elements was used in our computations. It is seen that the rate of convergence of the
SIFs is faster than the rate of convergence of the solution measured in energy norm. The
convergence patterns of the extracted SIFs by the proposed method are similar to these
extracted by the contour integral method.

5.6. Elastostatic problem 3 : results

In our computations the approximated first eigenpair obtained by the modified Steklov
method was used (%), = 0.71117293326. A finite element mesh consisting of two
elements, such that the inner element has a radius of 0.15 has been used. (See Fig. 21.) The
normalized GSIF is computed at R = 0.6. The number of degrees of freedom, the relative
error in energy norm (%), the relative error in strain energy (%), the computed value of
the normalized GSIF, and the relative error in GSIF (%) are listed in Table 6. The data in
Table 6 is plotted on a log-log scale in Fig. 22. [t is seen that the rate of convergence of the
GSIF is faster than the rate of convergence in the energy norm, and although not monotonic,
is similar to the rate of convergence of the strain energy.

5.7. Elastostatic problem 4 results

The accuracy and convergence behavior of our method is demonstrated on the bi-
material fracture mechanics problem shown in Fig. 8 where plane strain situation is
assumed. The finite element mesh used is shown in Fig. 23. The outer radius of the domain
has the radius of 1.5 and the two refined layers around the singular point have the radii
0.15%1.5 and 0.15% % 1.5. The polynomial level of the trial and test functions is increased
over the shown mesh from 1 to 8. The stress intensity factors K, and K, in the expressions
for the applied tractions are arbitrarily selected to be K. Again, we define the normalized
stress intensity factors K, and K, as K;%/K and K4F/K, respectively.

Figure 24 shows the relative error in the energy norm, the relative error in strain energy
and the absolute value of the relative error in the extracted SIFs as the number of degrees
of freedom is increased on a log-log scale. The computations were done using an integration
radius of 1.3. It is seen, as in the case of an isotropic material, that the existence of complex
eigenpairs has no influence on the performance of the proposed method, and the SIFs
converge to the exact values virtually as fast as the convergence rate of the strain energy.
This example demonstrates that an accurate and efficient numerical solution of fracture
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Fig. 21. F. E. mesh and boundary condition for elastostatic problem 3.

mechanics problems, even for such complicated situations as the crack at a bi-material
interface, 1s possible.

5.8. Elastostatic problem 5 : results

The domain Q is disretized by employing the finite element mesh shown in Fig. 25,
having 1 radial layer graded geometrically toward the singular point with a grading factor
0.15. Using two terms in the series, and an integration path with R = 0.8, the error in the
SIFs K, and K, converge as fast as the error in the potential energy. Figure 26 shows the
relative error in the SIFs as the number of degrees of freedom is increased as compared to
the relative errors in energy norm and potential energy.

5.9. Elastostatic problem 6 results
The “deformed” configurations after imposing the rigid body motions are presented

in Fig. 27. As expected, the computed SIFs are virtually zero; smaller than 107" at p-
level = 8.

Table 6. First GSIF for the fixed-free 90" isotropic corner

p=1 p=2 p=3 p=4 p=>5 p==6 p=7 p=28

DOF 4 12 22 36 54 76 102 132

lell (%) 16.25 9.16 3.29 2.20 1.64 1.31 1.08 0.91
[ell7(%) 2.64 0.84 0.1t 0.0484 0.0256 0.0172 0.0117 0.0083
A 0.90523 097633  1.00004 0.99920 0.99930 0.99960 0.99972  0.99977

1
100(A45E— 4,)/4, —9.48 —2.37 0.0043  —0.0798 —0.0697 —0.0400 —0.0278 —0.0232
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6. SUMMARY AND CONCLUSIONS

A set of benchmark problems representative of linear steady-state heat transfer and
elastostatic models with singular points have been presented. The problems have been
designed to include most types of singularities that occur in practical engineering problems.
Their exact solutions (i.e., the eigenpairs and the GFIFs/GSIFs) are described in sufficient
detail to allow reproduction. Importantly, we propose problems associated with anisotropic
materials, wedge corners of different angles and materials, internal multi-material interfaces,
and a case where power-logarithmic stress singularity is present in addition to the traditional
crack tip singularities. This set of problems is intended to allow developers and users in this
important field of fracture mechanics and failure initiation theory to assess the accuracy,
robustness and efficiency of proposed numerical methods. They can be used for finding and
correcting errors and weaknesses in numerical algorithms that compute eigenpairs and

GFIFs/GSIFs.
coefficients of asymptotic expansion, the GFIFs/GSIFs, are of great practical importance

because failure theories directly or indirectly involve these coefficients. These quantities are
especially important for anisotropic materials or in locations where two or more materials
are joined, because there is an increasing interest in composite materials and electronic
packaging. The performance of new numerical methods, based on the p-version of the finite
element method, was demonstrated by solving the benchmark problems. These methods
provide both the eigenpairs and the GFIFs/GSIFs. Importantly, the methods are applicable
to anisotropic materials, multi-material interfaces, and cases where the singularities are
characterized by complex eigenpairs. New results on dissimilar wedges, perfectly bonded
along all their common interfaces (multi-material internal interfaces), fixed-free corners,

Reliable and efficient numerical methods for the computation of eigenpairs and the
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and power-logarithmic stress singularities are reported herein for the first time. It is shown
that the numerical methods yield results of high accuracy, are robust and efficient.
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APPENDIX A. POWER-LOGARITHMIC STRESS SINGULARITY

The analytical conditions governing the occurrence of a power-logarithmic stress singularity, ¢(+* " 'Inr). are
presented in Dempsey (1995). where it is shown that for a free-clamped wedge of a specific Poisson’s ratio the
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Traction
Free
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Fig. A.1. Free-clamped wedge exciting power-logarithmic stress singularity.

power-logarithmic stress singularity is excited. For a 270" free-clamped wedge (see Fig. A.1) in an isotropic
material with a Poisson’s ratio v = 0.331046412, the stress field contains power-logarithmic singularity, see
Dempsey (1995. Table 1):

6 = All‘” 34254974 - Ifl (0)+_4zrtl..§4254<>74—| In )‘f:(9)+h.04t4 (Al)

To demonstrate the robustness, in respect to power-logarithmic singularity types, of the proposed method,
we present the first two eigenpairs obtained using the modified Steklov method. These are computed on a 4
element mesh. It is expected that the first two eigenvalues will collapse into a single one as the p-level (representing
number of degrees of freedom) is increased. and the corresponding eigen-stresses will become identical. In Table
A.1 we summarize the first two computed eigenvalues obtained as the p-level is increased from 1 to 8. The first
and second eigen-stresses ¢, and o, for p-levels 3 and 8 are shown in Figs A.2-A.5. As observed. the first two
eigenvalues and eigen-stresses collapse into one as the number of degrees of freedom is increased, indicating the
presence of the power-logarithmic stress singularity.
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Fig. A.2. First and second o, eigen-stresses at p = 3.
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Fig. A.3. First and second g, eigen-stresses at p = 3.
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Table A.1. First two computed eigenvalues which have to collapse to a single value «f* = 0.34254974

p=1 p=2 p=3 p=4 p=>5 p==6 p=7 p=28
DOF 20 46 72 106 148 198 256 322
al® 0.29603441  0.31881456  0.33848389  0.34183181 0.34254967+ 0.34251766 0.34253064  0.34254449
ot 0.38225179  0.36605285  0.34658798 0.34326833 0.342549671 0.34258184 0.34256885 0.34255499

T Complex conjugates with imaginary part +0.000108i.
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Fig. A.4. First and second g, eigen-stresses at p = 8.
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Fig. A.5. First and second g, cigen-stresses at p = §.




