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Abstract

Herein we address the behavior of the linear elastic solution in three-dimensional thin domains, especially near
the boundaries, and compare it to the approximated solution obtained by dimension reduced two-dimensional
hierarchic plate models. The mathematical analysis is backed-up by numerical simulations using the p-version of the

®nite element method. We identify mathematically, and more importantly, quantify the engineering quantities which
are rapidly changing in a boundary layer. We also investigate how well (if at all) the two-dimensional plate-models
solutions approximate the three-dimensional solution inside and outside of the boundary layers. # 2000 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

Plates are viewed in structural engineering practice as three-dimensional components with one of their
dimensions, usually denoted by `thickness', much smaller compared to the other two dimensions. Due to
the complexity of a three-dimensional elastic analysis, much attention has been given historically to the
derivation of `plate-models', which can be understood as an application of dimensional reduction
principles. These plate models are aimed to approximately solve the three-dimensional problem by a
two-dimensional formulation, and the most popular models in the engineering practice are the
Kirchho�±Love (K±L) and Reissner±Mindlin (R±M) plate-models. Recently, hierarchic sequence of
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plate-models were proposed so as to make adaptive selection of the model which is best suited for the
purpose of a particular quantity of interest.

The quality of the plate-model must be judged on the basis of how well its exact solution
approximates the corresponding three-dimensional problem. Especially, of much interest are the
boundary layers which may occur in a three-dimensional plate, and their realization (if possible at all) in
plate-models. Although several previous works have addressed the existence of boundary layers in plate-
models (especially the R±M model), and their treatment by the ®nite-element method, (BabusÏ ka, 1991,
1992a,b; Schwab and Suri, 1996; Arnold and Falk, 1990a, b, 1996) none of the previous publications
address in detail the fully three-dimensional solution and its behavior in the boundary layer. Therefore a
comparison of the solution in the boundary layer zone between the three-dimensional domain and two-
dimensional models is lacking.

Very recent detailed mathematical analysis on the asymptotics in thin three-dimensional elastic plates
(Dauge et al., 1997, 1998) makes it possible to identify, and more importantly, quantify the engineering
quantities which are rapidly changing in a boundary layer (which is of a magnitude similar to the plate
thickness). Furthermore, it is now possible to investigate how well (if at all) the two-dimensional plate-
models solutions approximate the three-dimensional solution inside and outside of the boundary layers.
To this end, we herein provide explicitly the quantities which exhibit dramatic changes in the boundary
layers. We consider the displacements solution in a three-dimensional thin elastic plate of thickness 2e as
an asymptotic inner (in the boundary layer) and outer series of e. This enables us to investigate and
explicitly present which of the engineering quantities are susceptible to radical changes in the boundary
layers, and provide visualization of this radical change via numerical experiments as e4 0.

In Section 2 we provide some notations and preliminaries followed by details on the three-
dimensional explicit solution in Section 3. The model problems which are considered for numerical
visualization of the mathematical analysis are outlined in Section 4. The mathematical results are
demonstrated by numerical experimentation for three-dimensional thin domains in Section 5. We then
provide a brief summary on two-dimensional hierarchic plate models in Section 6, followed by various
two-dimensional hierarchic plate-model solutions which are compared to the three-dimensional solution
and the di�erences in the behavior especially in boundary layers are emphasized in Section 7. These
solutions are obtained using the p-version ®nite element method. We conclude with a summary and
conclusions in Section 8.

2. Notations and preliminaries

We denote by ue the displacement ®eld in a thin elastic three-dimensional domain Oe of thickness 2e.
The domain Oe is de®ned as follows:

Oe � o � � ÿ e, � e�, with o � R2 a regular domain:

In general, let u��u1, u2, u3�T denote the displacement ®eld, and let e denote the associated linearized
strain tensor eij� 1

2 �@ iuj�@ jui �, where @ i � @=@xi. The stress tensor sss is given by Hooke's law

sss � �A�e,
where �A� � �Aijkl� is the compliance tensor of an isotropic material expressed in terms of the LameÂ
constants l and m:

Aijkl � ldijdkl � m
ÿ
dikdjl � dildjk

�
:
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In the sequel we will use either the LameÂ constants or the equivalent engineering material coe�cients:

Young modulus E � m�3l� 2m�
l� m

and Poisson ratio n � l
2�l� m� :

The inward traction ®eld on a point of the boundary is T��T1, T2, T3�T and de®ned as sss � n where n is
the unit interior normal to the boundary.

For simplicity of presentation it is assumed that the boundary conditions on the upper and lower
faces of the plate, i.e., x3 �2e, are traction free, and on the lateral faces

@OL
e � @o � � ÿ e, � e�,

one of the eight possible combinations of homogeneous boundary conditions denoted by where i �
1, . . . , 8 are prescribed. The eight di�erent lateral boundary conditions are combinations of three
homogeneous displacements or tractions: normal, horizontal tangential and vertical.

To u we associate its horizontal tangential component usMu1n2 ÿ u2n1 and its normal component
unMu � n � u1n1 � u2n2 on @OL

e, the vertical component being u3 and similar notations apply to T. To
each boundary condition corresponds two complementary sets of indices A and B where A is
attached to the Dirichlet conditions of , i.e. ua � 0 for each index a 2 A . The Neumann conditions
are Tb � 0 for each index b 2 B . Table 1 shows the eight possible lateral boundary conditions.

To each boundary condition we associate a space of kinematically admissible displacements:

V �Oe � �
n
uuu 2

�
H 1�Oe ��3; ua � 0 on @OL

e 8a 2 A

o
:

Then, the weak formulation of the elasticity problem in the three-dimensional domain is stated:

Seek ue 2 V �Oe �, such that�
Oe
Ae�ue � : e�uuu� �

�
Oe

f e � uuu, 8uuu 2 V �Oe �,

8><>: �2:1�

where f e represents the volume distributed force.
Noting by Greek index a the values in {1, 2} corresponding to the in-plane variables, we can state the

strong formulation equivalent to (2.1) of the three-dimensional plate problem in Oe as

�l� m�@a div ue � mDuea � ÿf ea, a � 1,2,

�l� m�@3 div ue � mDue3 � ÿf e3

Table 1

The eight possible lateral homogeneous boundary conditions and their engineering notation

Type Dirichlet Neumann A B

Hard clamped u � 0, fs, n, 3g
Soft clamped un, u3 � 0, Ts � 0 fn, 3g fsg
Hard simply supported us, u3 � 0, Tn � 0 fs, 3g fng
Soft simply supported u3 � 0, Tn, Ts � 0 f3g fs, ng
Frictional I us, un � 0, T3 � 0 fs, ng f3g
Sliding edge un � 0, Ts, T3 � 0 fng fs, 3g
Frictional II us � 0, Tn, T3 fsg fn, 3g
Free T � 0 fs, n, 3g
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with traction free boundary conditions on the top and bottom faces of the plate x3 �2e:

2mea3ue � 0, a � 1,2,

2m@3ue3 � l div ue � 0:

The boundary conditions on the lateral side @OL
e are

uea � 0, 8a 2 A and T e
b � 0, 8b 2 B :

To examine the behavior of the engineering quantities of interest as e40, we scale the x3 coordinate
by a factor of 1=e, to obtain a standard domain O � o � �ÿ1, 1�. Because we are interested in the
lateral boundary layers in the neighborhood of @o , we introduce the new scaled parameter N � n=e,
where n is an axis inward and normal to the boundary, and we also de®ne X3 � x3=e, see Fig. 1. The
curvature radius of @o inside o at s is denoated by R � R�s�, and we recall that 1=R � k is the
curvature. Notice that for straight boundaries k � 0.

Like in Dauge et al. (1997, 1998), we assume that the body forces behave like ®xed pro®les in the
scaled vertical variable X3 and that they are of order of e in the vertical direction, namely

f ea�x� � fa�x1, x2, X3 �, a � 1, 2, f e3�x� � ef3�x1, x2, X3� �2:2�
with the data f ��f1, f2, f3�T regular up to the boundary, i.e. f 2 C1� �O �3. These assumptions ensure that
the displacements have an asymptotic expansion as e40 as discussed in the next section, and that this
expansion starts `near' e0. Note that, as we are in the framework of linearized elasticity, by
superposition we can construct displacement asymptotics for any body forces in the form
Skekf k�x1, x2, X3�. Moreover any force which can be expanded as a series Skekgk�x1, x2, X3� of smooth
functions in the unscaled variables �x1, x2, X3�, has also the previous form.

The condensed notation u� is used for �u1, u2�T, div�u� denotes @1u1 � @2u2 and D� denotes the
horizontal Laplacian @11 � @ 22.

Fig. 1. The coordinate system near plate's lateral boundary.
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3. Three-dimensional solution

The displacement ue in Oe can be split into a bending part ue
b and a membrane (or stretching) part ue

m,
cf Friedrichs and Dressler (1961), according to

ue
b,a�x3� � 1

2

ÿ
ue
a�x3 � ÿ ue

a� ÿ x3�
�
, a � 1,2, ue

b,3�x3 � � 1
2

ÿ
ue
3�x3� � ue

3� ÿ x3�
�

ue
m,a�x3� � 1

2

ÿ
ue
a�x3� � ue

a� ÿ x3 �
�
, a � 1,2, ue

m,3�x3� � 1
2

ÿ
ue
3�x3� ÿ ue

3� ÿ x3�
�

Thus the in-plane components of ue
b are odd with respect to x3 and its vertical component is even,

whereas the in-plane components of ue
m are even and its vertical component is odd. Of course, ue

b is the
solution of (2.1) corresponding to the bending part of the body forces f eb and similarly for the
membrane.

3.1. Full expansion of displacements

The bending and membrane parts of the displacement ue solution of (2.1) can be expanded in the
following way in the sense of asymptotic expansions1

ue
b '

1

e
u0

KL,b � u1
KL,b � e

�
u2

KL,b � uuu1b � jjj1
b

�
� � � � � ek

�
uk�1

KL,b � uuukb � jjjk
b

�
� � � �3:1�

ue
m ' u0

KL,m � e
�

u1
KL,m � uuu1m � jjj1

m

�
� � � � � ek

�
uk

KL,m � uuukm � jjjk
m

�
� � � �3:2�

where

. the uk
KL,b and uk

KL,m are bending and membrane parts of Kirchho�±Love displacements and are given
as:

uk
KL,b �

�
ÿ x3@1z

k
3, ÿ x3@2z

k
3, z

k
3

�T

and uk
KL,m �

�
zk1, z

k
2, 0

�T

�3:3�

where zk1, z
k
2 and zk3 are functions of the in-plane variables x� and are denoted by `generators' because

all terms in (3.1)±(3.2) can be generated by zk.

ÐThe ®rst two terms u0
KL,b and u0

KL,m are the well-known limit Kirchho�±Love displacement
vectors (Ciarlet, 1990).

ÐThe O(1) term u1
KL,b manifests the boundary layer pro®le `pollution' inside the plate, i.e. away

from the boundary.

. The uuukb and uuukm are bending and membrane parts of a displacement uuuk � uuuk�x�, x3� with zero mean
value:

8x� 2 �o ,

��1
ÿ1

uuuk�x�, X3� dX3 � 0

It is important to notice that uuuk does not depend on e;

1 This means that the di�erence between the solution of (2.1) and the truncated series of (3.1)±(3.2) at the order k is estimated by

ckek�1, cf more precisely (Dauge et al., 1997, 1998).
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. the jjjk
b and jjjk

m are bending and membrane parts of a bounded boundary layer pro®le
jjjk � jjjk�s, N, X3� exponentially decreasing as N41.

We give more information about these di�erent terms.

3.1.1. The Kirchho�±Love displacements
uk

KL,m and uk
KL,b are determined by three functions de®ned on o : �zk1, zk2�T�zzzk� and zk3, respectively. The

in-plane displacement zk� is the solution of the `membrane equation':

m�D� �zzzk� �
ÿ
~l � m

�
r�div�zzzk� � Rk

m, �3:4�

whereas zk3 solves the `bending equation':ÿ
~l � 2m

�
D2
�z

k
3 � Rk

b, �3:5�

with ~l � 2lm�l� 2m�ÿ1 and �D�� the vectorial horizontal Laplacian. The right hand side of (3.4) for zzz0� is
given by:

R0
m�x�� � ÿ

1

2

��1
ÿ1

f ��x�, X3� dX3

and the right hand side of (3.5), for z03 is:

R0
b�x�� �

3

2

" ��1
ÿ1

f3 dX3 � div�

 ��1
ÿ1

X3 f � dX3

!#

and for zzzk, k � 1, 2, . . . the right hand sides are provided in Table 6 in Dauge et al. (1997) Part I or in
Table 5 Dauge et al. (1997) Part II.

The type of boundary conditions on @o for the generators are provided in Tables 2 and 3 in Dauge
et al. (1997), and we only remark on several interesting properties:

ÐFor the four cases , , , and , (unlike the other four cases) the boundary conditions for the
partial di�erential equations involving zzz0 are all 0.

ÐThe boundary conditions for zzz1 are special traces of zzz0 according to Table 3 in Dauge et al. (1997).
It is important to note that the boundary conditions consist of traces associated with the boundary
layer pro®les, hence, the boundary layers in¯uence zzz1 through these boundary conditions.

ÐFor the four cases , , , and , z11 � z12 � 0.

3.1.2. The ®rst displacements uu1

The displacement vectors uuu1b and uuu1m are also completely determined by zzz0, and their expressions are
given by:

uuu1b�x�, X3� � v

6�1ÿ v�
�
0, 0,

ÿ
3X2

3 ÿ 1
�
D�z03

�T

, �3:6�

uuu1m�x�, X3� � v

6�1ÿ v�
�
0, 0, ÿ 6X3 div�zzz0�

�T

: �3:7�
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3.1.3. The boundary layer ®rst pro®les for cases , , , and
jjj1

b can be described as a sum of two terms in tensor product form in the variables s and �N, X3�:
jjj1

b � a�s�jjj1a
b �N, X3� � b�s�jjj1b

b �N, X3�, �3:8�
whereas jjj1

m has an expression in tensor product form

jjj1
m � c�s�jjj1c

m �N, X3� �3:9�
Here jjj1a

b , jjj1b
b and jjj1c

m are typical pro®les whose components in the horizontal tangent, normal and
vertical directions have special behaviors with respect to X3:

jjj1a
b � �0, odd, even�T

jjj1b
b � �odd, 0, 0�T

jjj1c
m � �0, even, odd�T

The functions a, b, c are given as traces of zzz0 along the boundary @o according to the Table 2a.
Note the presence of k in front of the traces for the hard simple support case; the existence of

boundary layer terms is linked to non zero curvature.

3.1.4. The boundary layer ®rst pro®le for cases , , , and
In contrast to the previous four `clamped' lateral boundary conditions, the normal and transverse com-

ponents of jjj1 are zero, i.e. j1
N � j1

3 � 0, and the only nonzero component is j1
b,s. Moreover, jjj1

m � 0:
jjj1

b is still given by (3.8), with a�s� � 0 and b�s � is given according to Table 2b.

3.1.5. The relation between curvature and boundary layer ®rst pro®les
There are boundary conditions for which boundary layers do not develop in case the boundary is

straight. These are and . Boundary layers always develop for curved boundaries. A summary of the
cases at which boundary layers do appear are given in Table 3. The letters s, N, X3 denote if boundary
layers are in the horizontal tangential, normal or vertical component of the displacement ®elds.

Table 2a

Values of a�s�, b�s� and c�s� for ± BCs

Case a�s� b�s� c�s�

and D�z03 0 div�zzz
0
�

k@ nz
0
3 0 kz0n

k@ nz03 @ s�@ nz03� div�zzz0�

Table 2b

Value of b�s� for ± BCs

Case b�s�

@ sz
0
3

k@ sz03
@ sz03
�@ n � k�@ sz03
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3.2. First terms of displacements

To realize the speci®c quantities which play a signi®cant role in each of the various zones in the thin
plate we present herein the ®rst terms in the expansion (3.1)±(3.2), up to O�e2�. Throughout the plate
x3=e � X3, see Fig. 1.

To visualize which of the values approach zero as e40, we express these in terms of the O(1)
variables s, N, X3 used in the boundary layer and x1, x2, X3 used elsewhere. With this in mind, (3.1)±
(3.2) take the form:

ue
b �

266664
ÿX3@1z

0
3 ÿeX3@1z

1
3 �0 �0

ÿX3@2z
0
3 ÿeX3@2z

1
3 �0 �0

1

e
z03 �z13 �ez23 ev1b,3

377775� ejjj1
b � O�e2� �3:10�

ue
m �

0BB@
z01 �ez11 �0
z02 �ez12 �0
0 �0 �ev1m,3

1CCA� ejjj1
m � O�e2� �3:11�

where the symbol O�e2� means that the remainder is uniformly bounded by ce2 and jjj1 is determined
according to the eight canonical cases in (3.8)±(3.9).

Examining (3.10)±(3.11) it may be noticed that the displacement ®eld is dominated by the Kirchho�±
Love components, and especially the vertical bending component of u0

KL,b is much larger than any other
displacement component (this is commonly known). However, in order to visualize the boundary layer
e�ects in the bending displacement ®eld, we ®lter out constants in X3 by the introduction of the
quantities, de®ned in the neighborhood of o 's boundary:

Ji�u��s, N� � 1

e

�e
ÿe

u3�s, N, X3�
e

Pi

�
x3

e

�
dx3

� 1

e

��1
ÿ1

u3 �s, N, X3�Pi�X3 � dX3, i � 2, 4, 6 �3:12�

Table 3

Existence of boundary layers for the eight possible lateral homogeneous boundary conditions

Type Straight boundary Curved boundary

Hard clamped N, X3 N, X3

Soft clamped N, X3 N, X3

Hard simply supported Ð N, X3

Soft simply supported s, N, X3 s, N, X3

Frictional I s s

Sliding edge Ð s

Frictional II s s

Free s s
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where Pi�t� is the Legendre polynomial of order i. Because z03, z
1
3 and z23 are constants in respect to x3,

then they are orthogonal to Pi �i 6� 0�. Computing Ji�u��s, N � at a given point s of the boundary along
the inward normal 0 E n=2e E 1 emphasizes the boundary layers in the displacements ®elds. Since v1b,3
has a term which depends on X2

3, see (3.6), then we expect that J2�u��s, N � will vary in the boundary
layer zone due to the e�ect of the boundary layer pro®le, but will become constant outside of the
boundary layer. This will be demonstrated numerically in Section 5.

3.3. First terms of strains

A more pronounced in¯uence of the boundary layers shows up when examining the strain components.
We herein denote the bending andmembrane strain vectors associated with ub and um, respectively, by

eb � �eb,11 eb,22 eb,33 eb,23 eb,13 eb,12 �T and em � �em,11 em,22 em,33 em,23 em,13 em,12 �T:

We investigate the strain asymptotics successively outside and inside the boundary layer zone.

3.3.1. Outside the boundary layer zone
In a region of the form o0 � �ÿe, e� where �o 0 � o , the e�ect of the boundary layer terms is not

visible since the jjjk are exponentially decreasing. Then the asymptotics of eb and em contains only the
terms coming from uk

KL,b, uuu
k
b and uk

KL,m, uuu
k
m respectively, namely

2666666666664

eb,11

eb,22

eb,33

eb,23

eb,13

eb,12

3777777777775
�

26666666666666664

ÿX3 @11z
0
3 ÿeX3 @11z

1
3 �0

ÿX3 @22z
0
3 ÿeX3 @22z

1
3 �0

0 �0 � u
1ÿ u

X3D�z03

0 �0 �e u
6�1ÿ u�

ÿ
3X2

3 ÿ 1
�
@2D�z03

0 �0 �e u
6�1ÿ u�

ÿ
3X2

3 ÿ 1
�
@1D�z03

ÿX3@12z
0
3 ÿeX3@12z

1
3 �0

37777777777777775
� � � �

�

26666666666664

ÿX3@11z
0
3

ÿX3@22z
0
3

u
1ÿ u

X3D�z03

0

0

ÿX3@12z
0
3

37777777777775
� O�e� �3:13�

and
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2666666666664

em,11

em,22

em,33

em,23

em,13

em,12

3777777777775
�

266666666666666664

@1z
0
1 �e@1z11 �0

@2z
0
2 �e@2z12 �0

0 �0 ÿ u
1ÿ u

div�zzz0�

0 �0 ÿe u
2�1ÿ u�X3@2 div�zzz0�

0 �0 ÿe u
2�1ÿ u�X3@1 div�zzz0�

1

2

�
@2z

0
1 � @1z02

�
�e1

2

�
@2z

1
1 � @1z12

�
�0

377777777777777775
� � � �

�

266666666666664

@1z
0
1

@2z
0
2

ÿ u
1ÿ u

div�zzz0�

0

0

1

2

�
@2z

0
1 � @ 1z02

�

377777777777775
� O�e�:

�3:14�

Thus we can see that, outside the boundary layer zone, the components e23 and e13 are of order e, unlike
the four other ones in general.

3.3.2. Inside the boundary layer zone
For this reason we investigate more specially the two components e23 and e13 inside the boundary

layer zone in order to make the boundary layer visible. Now, instead of the Cartesian in-plane
components, it is more natural to consider the tangential and normal components, namely for the
strains

es3 � 1

2
�@ su3 � @3us � and en3 � 1

2
�@nu3 � @3un�:

For , and :

�
eb,s3

eb,n3

�
�
0@ 0

1

2

�
@X3

j1
b,N � @Nj1

b,3

� 1A� e
2

0@ @ sv1b,3
@nv

1
b,3

1A� O�e2� �3:15�

and

�
em,s3

em,n3

�
�
0@ 0

1

2

�
@X3

j1
m,N � @Nj1

m,3

� 1A� e
2

0@ @ sv1m,3

@ nv
1
m,3

1A� O�e2�: �3:16�

Thus the strain component en3 is in¯uenced mainly by the boundary layer term which is of order 1, and
in¯uenced at the order e by the uuu1 term.

For condition , we still have (3.16), but instead of (3.15), due to the presence of the new bending
tangential component j1b

b,s in the boundary layer terms, we have now:

M. Dauge, Z. Yosibash / International Journal of Solids and Structures 37 (2000) 2443±24712452



�
eb,s3

eb,n3

�
�

0BB@
1

2
@ s@nz

0
3�s�@X 3
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Thus en,3 in the boundary layer zone is of order e for straight boundaries but of order 1 for curved
boundaries.

For boundary conditions ± , since jjj1
m � 0, only the bending part is of interest:
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�
�
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@X3

j1
b,s

0

1CA� e
2

0@ @ su1b,3
@nu1b,3

1A� O�e2� �3:18�

Here, the strain component es3 is in¯uenced by the boundary layer term at the order 1, and in¯uenced
at the order e by the uuu1 term.

4. Model problems used for demonstration purposes

The theoretical results are visualized by computing functionals associated with the boundary layer
terms for the di�erent boundary conditions. We consider two con®gurations: the ®rst one is a
rectangular plate, thus with straight edges; whereas the second one is a circular plate, thus the boundary
has a non-zero curvature.

4.1. Rectangular plate

Its dimensions are 4� 1� 2e and it is subjected to a bending volume force f e � �0, 0, 2e�T, see Fig. 2
The material properties are: Poisson ratio n � 1=8 and Young modulus E � 27=4. Being interested in the
boundary layers along edge FB of the plate, we keep the other boundaries EF and DB hard clamped,
while on the boundaries FB and ED we apply the various eight homogeneous boundary conditions.
These boundary conditions give rise to two axes of symmetry, so that only a quarter of the plate may be
analyzed, namely plate ABCG, with symmetry boundary conditions on AG and GC.

We consider a part of this plate which has one of its boundaries along the x1 axis, so that in the
boundary layer zone x1 � s, and x2 � N. Thus, in the neighborhood of the point
A, @1 � @=@ s, @2 � �1=e�@=@N, and overall the domain @3 � �1=e� @=@X3.

To visualize the boundary layer in¯uence we compute the normalized root mean square (N-RMS)
norm Ibl

13 of e13 � es3 and Ibl
23 of e23 � en3 inside the boundary layer zone according to the formula

Fig. 2. Rectangular plate under consideration.
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Ibl
a3 �

�����������������������������������������������������������
1

V

�1
x 1�0

�2e
x 2�0

�e
x 3�ÿe

jea3j2 dV

s
, a � 1, 2, �4:1�

and the N-RMS norm of Iout
13 of e13 and Iout

23 of e23 away from the boundary layer:

Iout
a3 �

����������������������������������������������������������������
1

V

�1
x 1�0

�0:5
x 2�0:25

�e
x 3�ÿe

jea3j2 dV

s
, a � 1, 2, �4:2�

where V denotes the volume of the `box' in which the strain components are sought. The main interest
of this N-RMS norm is that it has the same behavior in e as the corresponding strain component.

4.2. Circular plate

The second con®guration under investigation is a circular plate of radius 1 and thickness 2e as shown
in Fig. 3. Material properties and volume force remain unchanged. For this case (of a circular
boundary) we de®ne

Ibl
n3 �

���������������������������������������������������������������������������
1

V

�1
r�1ÿ2e

�2p
y�0

�e
x 3�ÿe

jen3j2r dr dy dx3

s
�4:3�

where V is the volume of the annulus zone r 2 �1ÿ 2e, 1� under consideration.

Fig. 3. Circular plate under conideration.
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5. Numerical tests for three-dimensional problems

In this section numerical results are provided which demonstrate the solution characteristics inside
and outside of the boundary layers in three-dimensional domains.

Fig. 4. Finite element mesh for the plate with 2e � 0:1.

Y

XZ

Fig. 5. Finite element mesh and boundary conditions for the plate with 2e � 0:001.
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5.1. Visualization of boundary layers in a three-dimensional rectangular plate

A three three-dimensional p-version ®nite element model is constructed having two elements in the
thickness direction, four elements in the x2 direction and six elements in the x1 direction. In the
neighborhood of the edges, the mesh is graded so that there are two elements of dimension e each. See
Fig. 4 for a typical mesh for 2e � 0:1 and Fig. 5 for 2e � 0:001 and boundary conditions. The ®nite
element model is constructed parametrically so that the value of 2e may vary, and we change it from
0:1 �� 10ÿ1� to 0:00031622777�� 10ÿ3:5�. Although not visible on Fig. 5, there are two elements across
the thickness and two elements each of dimension e in the neighborhood of the boundary. The p-level
over each element has been increased from 1 to 8 and the trunk space has been used (SzaboÂ and
BabusÏ ka, 1991). There are 12,568 degrees of freedom at p � 8. An advantage of using p-version ®nite
element methods is the possibility of having `needle elements' in the boundary layer zone with aspect
ratios as large as 10,000 without signi®cant degradation in the numerical performance.

The convergence rate in energy norm for 2e � 0:001 is provided in Fig. 6 as a typical example. An
exponential convergence rate is obtained without thickness-locking phenomenon visible (due to the use of
high-order elements). The convergence of the computed data has been examined as well for increasing p-
levels in order to evaluate the reliability of the numerical results.

5.1.1. Boundary layers in vertical displacement
The value of J2�u�, J4�u� and J6�u�, as de®ned in (3.12) is computed at a set of equidistant points
�s, N � � �x1, x2=2e� along the line x1�1, 0 E x2=2e E 2 for clamped boundary conditions and shown

Fig. 6. Convergence rate in energy norm, BCs, with 2e � 0:001.
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Fig. 7. J2�u�, J4�u� and J6�u� for straight boundary with .
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in Fig. 7. The graphs clearly present the existence of the boundary layer pro®le in the vertical
displacement component in a three-dimensional domain in the vicinity of the boundary where x2=2e < 1.
As expected, J4�u�40 and J6�u�40 as we move away from the boundary, for e40. The value of J2�u�
tends to be a constant as we move away from the boundary because of the quadratic term X2

3 in uuu1b,3 as
explained in Section 3.2.

5.1.2. Strains in the boundary layer zone
The e�ect of the boundary layer is visible directly on the strain components eb,s3 � e13 or eb,n3 � e23 as

e40, according to (3.15) for conditions ± , (3.17) for condition 4 and (3.18) for conditions ± .
In Fig. 8 we plot log �Ibl

13� � log �Ibl
s3� (de®ned in (4.1)) vis log �2e� for all boundary conditions ±

(log herein denotes log10). One may clearly see the boundary layer e�ects for boundary conditions , ,
and which are manifested by the nearly constant value of log �Ibl

s3� as e40, as predicted by the
mathematical analysis. As predicted for straight boundaries, no boundary layer is visible for and .

We plot in Fig. 9 the values of log �Ibl
23� � log �Ibl

n3� as e40 for all boundary conditions ± . The
value of log �Ibl

n3� for is virtually zero so that it is not shown in Fig. 9. Again, the boundary layer

Fig. 8. log �Ibl
13� � log �Ibl

s3� vis log �2e� for ± BCs (straight boundary).
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e�ect is clearly visible for and ; Ibl
n3 approaches a constant value as e40. This is due to the O�1�

component of the boundary layer pro®le, which may be smaller compared to (e=2�@2u13 for large values
of e, but much larger as e40.

5.1.3. Strains outside the boundary layer zone
For comparison purposes, we present the N-RMS norm computed outside of the boundary layer,

de®ned in (4.2). This shows that, for all boundary conditions, both Iout
13 and Iout

23 are of order e as the
thickness tends to zero, due to the leading term of order e in the strain components according to (3.10).

In Fig. 10 we plot log �Iout
13 � vis log �2e�.

In Fig. 11 we plot log �Iout
23 � vis log �2e�. Because �Iout

23 � is nearly zero for boundary condition, it has
not been shown in Fig. 11.

Fig. 9. log �Ibl
23� � log �Ibl

n3� vis log �2e� for ± BCs (straight boundary).
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Fig. 10. log �Iout
13 � vis log �2e� for ± BCs (straight boundary).

Fig. 11. log �Iout
23 � vis log �2e� for ± , and BCs (straight boundary).
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5.2. Boundary layers in three-dimensional soft simply supported circular plate

Consider the plate shown in Fig. 3, with soft simply supported boundary conditions u3 � 0,
Ts � Tn � 0, prescribed along the circular boundary.

Since the geometry, loading and boundary conditions are independent of y, then we may analyze the
plate as an axisymmetric model, having a two-dimensional sector of radius 1 and thickness of 2e. The
®nite element mesh used in our analysis is shown in Fig. 12.

We consider the N-RMS norm of the strain component en3 de®ned by (4.3) inside the boundary layer.
In Fig. 13 we plot log �Ibl

n3� vis log �2e�. As expected, Ibl
n3 is independent of e, as e40 for curved

Z

R

Fig. 12. Finite element mesh and boundary conditions for the circular plate 2e � 0:1.

Fig. 13. log �Ibl
n3� vis log �2e� for circular plate with .
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boundaries, demonstrating a boundary layer pro®le as opposed to the case of a straight boundary. One
may observe in (3.17) that en3 for curved boundary is or order 1.

6. Two-dimensional formulation of hierarchic plate-models

Hierarchic plate-models have been formulated in the past ten years, and the reader is referred to SzaboÂ and
BabusÏ ka (1991), BabusÏ ka and Li (1991), SzaboÂ and Sahrmann (1988) and Schwab (1989) for early references
and Alessandrini et al. (1996, 1997) for mixed hierarchical models using the Hellinger±Reissner principle.

Here follows a short overview on hierarchic plate models in the framework of the code that we use
(Stress Check User's Manual, 1996). A hierarchical family of plate models, denoted by the index d (for
which its solution is de®ned as ue

d) is one which satis®es:

(a) kueÿue
dk=kuek40, as e40. Usually the energy norm is used.

(b) If the solution ue is su�ciently smooth with respect to e then:

kue ÿ ue
dk=kuekE C�d�ea�d�

with a�d� > a�dÿ 1�.
(c) For any ®xed e

kue ÿ ue
dk=kuek40, as d41

The displacements ue
d of the plate-model d are:

ue
d �

8>>>>>>>>>>><>>>>>>>>>>>:

Xn1
j�1

u1jj�x1, x2 �w1jj�x3�

Xn2
j�1

u2jj�x1, x2 �w2jj�x3�

Xn3
j�1

u3jj�x1, x2 �w3jj�x3�

9>>>>>>>>>>>=>>>>>>>>>>>;
: �6:1�

Herein d is the number of the model, which coincides with the highest polynomial degree describing the
displacement components. We will be considering the hierarchic plate-model family implemented in the
®nite element code Stress Check2 (Stress Check User's Manual, 1996), for which (note that this code
aims at solving the bending equations whereas membrane, or stretching, models are variants of
generalized plane-stress situations which are not addressed here).

The ®rst hierarchical plate-model d � 1 with the special material matrix given in Stress Check User's
Manual (1996) is exactly the R±M model, where the shear correction factor is chosen so as to minimize
the error in the energy norm:

shear corr: factor � 5

6�1ÿ v�

2 Stress Check is a trade mark of Engineering Software Research and Development, Inc., Clayton Plaza, Suite 204, 7750 Clayton

Rd., St Louis, MO, USA.
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For d � 2 the shear correction factor is given in Stress Check User's Manual (1996) and for d e 3 no
shear correction factor in the material matrix is needed.

Remark 6.1 The K±L plate-model is not a member of the hierarchical family. It represents in a decoupled
system the solution of the bending equation for x3:

DD2
�z3�x1, x2 � � f3�x1, x2�, D

E�2e�3
12�1ÿ v�2

,

and a membrane equation for u�, and this solution is unable to manifest boundary layers.

Table 4

Hierarchic plate-model de®nitions

d �n1, n2, n3� Non-zero w1 � w2 Non±zero w3

1 �1, 1, 1� w1j1 � w2j1 � x 3 w3j1 � 1

2 �1, 1, 2� w1j1 � w2j1 � x 3 w3j1 � 1, w3j2 � x 2
3

3 �2, 2, 2� w1j1 � w2j1 � x 3 w3j1 � 1, w3j2 � x 2
3

w1j2 � w2j2 � x 3
3

4 �2, 2, 3� w1j1 � w2j1 � x 3 w3j1 � 1, w3j2 � x 2
3

w1j2 � w2j2 � x 3
3 w3j3 � x 4

3

5 �3, 3, 3� w1j1 � w2j1 � x 3 w3j1 � 1, w3j2 � x 2
3

w1j2 � w2j2 � x 3
3 w3j3 � x 4

3

w1j3 � w2j3 � x 5
3

Fig. 14. Three-dimensional vis two-dimensional plate models: log �Ibl
23� vis log �2e� for .
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7. Numerical tests for comparing three-dimensional and two-dimensional plate models

Of major interest is the question whether the various hierarchic plate models are able to capture the
boundary layers present in three-dimensional domains. To address this question we consider the ®ve
hierarchic plate models having d = 1, 2, 3, 4 and 5, and we denote them by model 1, 2, 3, 4 and 5
correspondingly. For the plate models, we consider the mid-surface of the three-dimensional domain,
with a vertical pressure of a magnitude e2 applied on it. On the two-dimensional surface we lay a ®nite
element mesh identical to the mesh on any plane �x1, x2� of the three-dimensional model presented in
Fig. 4. The ®rst plate-model d � 1 with a special material matrix is the R±M model. For this R±M
model, the hard clamped boundary conditions are applied by imposing zero displacements in all
directions, which implies zero slope normal and tangential to the plate boundary. In all plate models the
convergence rate in energy norm is exponential as well as the convergence rate of the strains.

Herein we analyze only three kinds of boundary conditions along a straight edge: , and , and
compare the plate model's boundary layer against the three-dimensional domain boundary layer.

Fig. 15. log of rel. err. in Ibl
23 between the three-dimensional and two-dimensional plate models as e40 for .
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7.1. Hard clamped plate

The value of log (Ibl
23) for the various two-dimensional plate models is plotted against the value

obtained for the three-dimensional domain as e40 in Fig. 14. One may notice that the R±M plate
model (model 1) cannot mimic the boundary layer term. However, as we increase the order of hierarchic
plate models, a better approximation of the boundary layer is obtained. A more pronounced di�erence
between the three-dimensional solution and the two-dimensional plate models is visible once we plot in
Fig. 15 the relative error in Ibl

23 between the three-dimensional domain and the plate models:

Relative Error �def jI
bl
23j3±D ÿ Ibl

23j2±D model

Ibl
23j3±D

j

as e4 0. Fig. 15 shows how well the boundary layer term in the fully three-dimensional solution is
represented by the various plate models as e4 0. It is also interesting to inspect the relative error in Ibl

23

Fig. 16. log of rel. err. in Ibl
23 between the three-dimensional and two-dimensional plate models as the model number is increased

for .
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between the three-dimensional and two-dimensional plate models as the model number is increased, for
the di�erent thicknesses. This is shown in Fig. 16. One may notice that plate model 2 does not always
approximate better the boundary layer zone as compared to the R±M plate model. As the plate
hierarchy increases, the better the approximability of boundary layers, independent of the thickness.

If one is interested in the outer ®eld (away from the boundary layer zone), the relative error
in Iout

23 can be analyzed. In Fig. 17 we plot the relave error in Iout
23 between the three-dimensional model

and the various plate models as e4 0. Away from the boundary layer a much smaller relative error is
visible.

7.2. Comparing three-dimensional and two-dimensional plate modelsÐfree plate

Herein we examine the value of log (Ibl
23) associated with the boundary layer of the free boundary. It is

plotted in Fig. 18 for various two-dimensional plate models against the value obtained for the three-
dimensional domain as e4 0. In this case, even the ®rst plate model (R±M), is very close to the three-

Fig. 17. log of relative error in Iout
23 between the three-dimensional and two-dimensional plate models as e40 for .
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dimensional solution, capturing the boundary layer term well. Due to numerical errors in the three-
dimensional models at 2e < 10ÿ3:5 we were not able to compute Ibl

13 and Iout
13 reliably, so that this value

is extrapolated using the previous two results in Figs. 18 and 20 for the smallest two values of e. In Fig.
19 we inspect the relative error in Ibl

13 between the three-dimensional and two-dimensional plate models
as the model number is increased, for the di�erent thicknesses. Again, one may notice that plate model
2 does not always approximate better the boundary layer zone as compared to the R±M plate model.

The value of Iout
13 (away from the boundary layer zone) for the three-dimensional model and the

various plate models as e4 0 is plotted in Fig. 18. Again, one notices the very good agreement between
the various plate models and the fully three-dimensional solution away from the boundary layer.

7.3. Comparing three-dimensional and two-dimensional plate modelsÐslide plate

Herein we examine the value of log �Ibl
13� associated with the boundary layer of the sliding boundary

condition. As predicted this value should approach zero as e40, since no boundary layer pro®le exists,

Fig. 18. Three-dimensional vis two-dimensional plate models: log �Ibl
13� vis log �2e� for .
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therefore the same behavior is expected from the various two-dimensional plate models. Fig. 21 shows
log Ibl

13 for various two-dimensional plate models against the value obtained for the three-dimensional
domain as e4 0. In this case, all plate models mimic the three-dimensional solution due to non-
existence of boundary layers.

8. Summary and conclusions

The solution of the elasticity problem in three-dimensional thin domains (having a thickness of 2e)
has been explicitly provided as an asymptotic series in e. It has terms which exist in the boundary layer
zone, which is of magnitude e, and vanish away from it. This enables us to identify, and more
importantly quantify, the quantities which are rapidly changing in the boundary layer zone. Numerical

Fig. 19. log of rel. err. in Ibl
13 between the three-dimensional and two-dimensional plate models as the model number is increased

for .

M. Dauge, Z. Yosibash / International Journal of Solids and Structures 37 (2000) 2443±24712468



experiments using the p-version of the ®nite element method, show that some of the strain components
(thus the associated stress components) may be solely in¯uenced by the boundary layer terms in the
vicinity of boundary layers.

We also examine how well the various hierarchic plate models approximate the three-dimensional
solution as e4 0. It has been demonstrated that for some boundary conditions, for example, even the
lowest member of the hierarchic plates family (R±M model) is able to capture the right boundary layer
behavior, whereas for other boundary conditions, for example, the R±M plate model misses its
behavior for some of the strain components. When no boundary layers exist in the three-dimensional
solution, for example, then plate models mimic the three-dimensional solution in the `boundary layer'
zone well. In all examined cases as we increase the hierarchic order of the plate models we converge to
the right boundary layer representation.

The three-dimensional solution in the outer zone (away from the boundary layer) is much better
approximated by the various plate models. It is important to note that all ®nite element models used
have a proper mesh re®nement towards the boundary layer zone. An improper mesh layout may cause
numerical pollution errors from the boundary layer zone into the whole plate, thus even if the boundary
layer solution is not of interest, a proper mesh layout is necessary to ensure control of numerical errors
(Suri et al., 1998).

There might be pathological cases in which the boundary layer terms will highly in¯uence the solution
away from the boundary, a subject which is under investigation.

Fig. 20. Three-dimensional vis two-dimensional plate models: log �Iout
13 � vis log �2e� for .
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