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SUMMARY 
Whereas the higher-order versions of the finite element method (p and hp-versions) are fairly well 
established as highly efficient methods for monitoring and controlling the discretization error in linear 
problems, little has been done to exploit their benefits in elasto-plastic structural analysis. In this paper, we 
discuss which aspects of incremental elasto-plastic finite element analysis are particularly amenable to 
improvements by the p-version. These theoretical considerations are supported by several numerical 
experiments. First, we study an example for which an analytical solution is available. It is demonstrated that 
the p-version performs very well even in cycles of elasto-plastic loading and unloading, not only as compared 
with the traditional h-version but also with respect to the exact solution. Finally, an example of considerable 
practical importancethe analysis of a cold-working lug-is presented which demonstrates how the 
modelling tools offered by higher-order finite element techniques can contribute to an improved approxima- 
tion of practical problems. 
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1. INTRODUCTION 

Elasto-plastic analysis is of increasing importance in all fields of engineering sciences. However, 
real-life elasto-plastic problems are difficult to solve because they are non-linear in nature. 
Approximate numerical methods are required for solving practical problems of elasto-plasticity. 
The last two decades have witnessed a great deal of research for finding approximate solutions to 
elasto-plastic problems by the finite element method (FEM). References 1 provides an excellent 
review of the techniques of elasto-plastic modelling in the framework of the finite element method. 

Almost all research work on elasto-plastic finite element analysis was based on the traditional 
h-version of the finite element method. The theoretical basis of the h-version is explained in 
Reference 2; see e.g. Reference 3 for details on the application of the h-version to elasto-plasticity. 
Whereas a lot of attention has been focused on realistic material models, the equally important 
issue of the accuracy of numerical modelling, including questions of discretization errors and 
convergence of the error in energy norm, remain largely unaddressed (see, however, References 
4 and 5). 

During the last decade, techniques for monitoring the discretization error in finite element 
approximations have been studied thoroughly, and new strategies for an efficient minimization of 
the error in energy norm have been developed. In the p-version of the FEM, the polynomial 
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degree of the finite element approximation is increased to improve the accuracy of the solution, 
rather than following the traditional approach of mesh refinement (h-version). The hp-version 
combines mesh refinement and increasing polynomial degrees. 

The theoretical basis and convergence properties of the h-, p-, and hp-versions of the FEM for 
linear elliptic problems have been well established. Reference 6 provides a survey of the state-of- 
the-art of the p- and hp-versions of the finite element method based on the displacement 
formulation. By all measures of performance, the higher-order-methods provide superior accu- 
racy (with respect to the discretization error) than their h-version counterpart for a large class of 
linear problems including linear elasticity. 

The performance of the p-version for elasto-plastic stress analysis problems has not been 
investigated until very recently. To the authors’ knowledge, the first numerical experiments which 
include incremental elasto-plastic material models in the frame of higher-order finite element 
methods have been reported in Reference 7. However, at that time no further discussion or 
evaluation of the efficiency of the p-version for this class of problems has been given. The first 
author of the present study has developed an experimental finite element code named FEASIBLE 
(cf. Reference 7) which includes p-version capabilities and provides elasto-plastic material laws as 
well as multi-stage analysis. This implementation has been employed for the numerical examples 
included in Sections 5 and 6. 

Recently, the applicability of the p-version for solving elasto-plastic problems, using the 
deformation theory of plasticity, has been investigated numerically in Reference 8. This study 
shows that, even though the deformation theory is, strictly speaking, restricted to cases where the 
principal stresses remain proportional to each other throughout the plastic process, both theories 
yield very similar results in many cases. However, the problem categories amenable to the 
deformation theory do not include unloading and cyclic elasto-plastic processes. 

Therefore, the present paper focuses on the incremental rheory ofplasticity (for an introduction, 
see e.g. References 1 and 9). The paper is organized as follows: We identify those subtasks of the 
elasto-plastic finite element procedure which determine the computational performance and 
accuracy of the numerical analysis. Subsequently, we discuss in which steps of the elasto-plastic 
analysis we would expect improvements when switching to the p-version. It is shown that many of 
the advantages of the p-version in purely linear analysis carry over to elasto-plastic problems. 
A numerical study of the loading and unloading of a thick-walled cylinder under internal pressure 
is presented. For this problem, an exact solution is available. The analytical results are then 
compared with the finite element solutions obtained by the p-version and the h-version. We 
demonstrate that the p-version method performs very well, also as compared with the h-version. 

Finally, some unique features of the p-version finite element code are illustrated which permit 
realistic modelling of practical engineering problems. The finite element solution to a lug which 
undergoes cold-work expansion is provided and compared with the approximate closed-form 
solution often used in practice by engineers. This example demonstrates that many cold-working 
problems demand a finite element analysis when other than very crude accuracy requirements are 
imposed. Furthermore, it shows that the p-version of the FEM makes the analysis of such 
problems very convenient and easy as well as reliable and robust. 

2. FINITE ELEMENT APPROXIMATION 

Once a specific material model has been selected and the geometrical and mechanical idealization 
of the structure has been determined, the problem of structural analysis is cast in the form of 
a purely mathematical problem. The finite element method is a tool for solving this well-defined 
mathematical problem approximately. The primary aim of the finite element analysis is to find as 
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good an approximation to the exact solution of the mathematical problem as can be obtained 
with a given amount of engineering work and computer resources. The issue of how well the 
selected mathematical model corresponds to the physical reality is to be treated completely 
independently of the issue of the numerical accuracy of the finite element solution. In the present 
paper, we focus exclusively on the errors introduced by the finite element discretization, not on 
the physical modelling issue. 

The finite element method based on the displacement formulation starts by minimizing the 
functional of the potential energy 

n(u) = +B(U,  u) - F(u) 

over a finite dimensional subset g of the space &!2) of functions which have finite strain energy 
over the domain R and fulfil the displacement boundary conditions. Here, the bilinear form 
yB(u, u) denotes the strain energy corresponding to some displacement field u and F(u) the work 
of the applied loads. Thus, an approximation uFE E f(!2), minimizing n(u) over s"(Q), is obtained, 
whereas the exact solution u,, minimizes n(u) over &Q). 

Consequently, for an assessment of the efficiency of a specific finite element scheme, the 
magnitude of the discretization error in the energy norm is monitored as a function of the number 
of degrees of freedom N used in the finite element approximation uFE. The error in energy norm is 
defined by 

1 

1 1  e IlE Ef J- (2) 

In the present study, the p-version of the FEM is applied in the form of a uniform p-extension, 
increasing the polynomial degree of the approximation uniformly on the entire mesh. As far as 
linear analysis is concerned, the p-version is distinctly superior to the h-version for problems 
which have an exact solution that is analytic throughout the domain. In such cases, exponential 
convergence (i.e. I( e I ( E  = ce-flfi) can be achieved asymptotically (N -, 00) with simple finite 
element meshes, whereas the convergence of the h-version is only algebraic (i.e. 11 e I I E  = C N - ~ ) .  
The actual value of the convergence rate /3 depends on the precise character of the exact solution. 

Even for problems which include a finite number of points where singularities occur in the 
stresses, the p-version converges (algebraically) at least twice as fast as the h-version (i.e. a better 
value of f l  can be obtained by the p-version than by the h-version), even on meshes without any 
local refinement. Resorting to the hp-extension, i.e. performing simultaneous mesh refinement and 
increase of polynomial degree, the exponential convergence in energy norm can be recovered even 
for these singular problems. However, for such problems, convergence characteristics which are 
significantly better than algebraic can also be obtained in the pre-asymptotic range (i.e. for 
practical N) by performing the p-extension on a geometrically graded mesh, cf. Reference 6. The 
appropriate mesh refinement is done in advance then, determining the refinement areas by 
a priori criteria, rather than refining the mesh simultaneously with the p-extension. 

In elasto-plastic analysis, n(u) is a non-linear function of u so that the properties of the FEM 
for linear analysis do not carry over to elasto-plasticity directly. However, in the incremental 
theory of plasticity, we solve a sequence of linearized problems with the same geometry, but 
strain-dependent material properties and loads. The final solution is obtained as the sum of those 
of the quasi-linear steps. Therefore, the overall performance of the non-linear analysis will be 
determined by the smoothness of the exact solutions of the stepwise problems. 

The smoothness properties of the exact solution of purely elastic problems are well known and 
can generally be determined a priori from the geometric shape and the boundary conditions; on 
the other hand, little has been done yet to inquire how much the introduction of elasto-plastic 
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material behaviour changes the smoothness properties of the corresponding purely elastic 
solution. 

However, when deciding which finite element method is more appropriate when solving an 
elasto-plastic problem, the question of smoothness is of little relevance because the higher-order 
methods perform significantly better for problems in any of the two categories of smoothness 
discussed above. This important fact is often overlooked. 

Furthermore, it is worth noting that the elastic-plastic material is still characterized by 
continuous strains so that elasto-plasticity does not introduce any kind of an abrupt 'material 
interface' inside the elements. Such a situation might cause the p-version to yield oscillatory 
answers. However, it does not occur in small-strain elasto-plasticity since there is always 
a continuous change in the material properties, even though the one-dimensional ideal elasto- 
plastic stress-strain relationship intuitively suggests some kind of 'discontinuity'. Even upon 
unloading and reloading, the strains and consequently the material properties (directly depending 
on the strains) remain continuous. 

All contained plastic flow problems fall into the category of completely continuous strains and, 
consequently, the corresponding displacements can be expected to be at least not much more 
unsmooth than those resulting from purely elastic problems. 

As far as uncontained plastic flow is concerned, the underlying mathematical problem changes 
from the elliptic to the hyperbolic type, including possible bifurcations, multiplicity of the 
solution, and the like; such problems are strictly beyond the limits of small-strain elasto-plastic 
analysis for both the h- and p-versions of the FEM. They cannot be solved by methods based on 
the principle of minimum potential energy. Of course, the physical problem finally emerges into 
unrestricted plastic flow. However, the FEM does not directly model the physical problem, but is 
only a tool for solving a mathematical problem. If unrestricted plastic flow is to be analysed, 
a different mathematical model has to be used, not just a different type ofJinite element 
approximation. 

The accuracy of the strains computed from the finite element solution is even more important 
in elasto-plastic analysis than in purely linear problems because the stress-strain law itself 
depends on the strains. We can expect accurate results only if the input to the constitutive law is 
sufficiently accurate. Furthermore, errors tend to accumulate in a prolonged incremental compu- 
tation with many load steps. 

A recent study" investigates numerically the pointwise quality of strains computed directly 
from the finite element approximation of the displacement field for linear problems. This is 
exactly the technique that will be employed in an elasto-plastic computation to determine the 
current material properties. The numerical investigation" identifies various patterns of conver- 
gence and shows that in all cases and for a wide variety of stress concentration factors 
(a smoothness criterion) the p-version outperforms the h-version. Furthermore, it is evident that 
very small errors in the energy norm are usually required to achieve sufficient accuracy of the 
pointwise strains, even for quite smooth solutions. Such global accuracy levels are impractical for 
an h-version approach due to the slow convergence of this method. 

In summary, all considerations indicate that the p-version of the FEM will be beneficial for 
elasto-plastic computations, and there is no indication that the p-version might give rise to any 
new numerical problems not encountered in the h-version. Our numerical examples strongly 
support this. 

3. NUMERICAL ASPECTS OF Jz PLASTICITY 

In the present paper, we are dealing with the application of the p-version of the FEM to problems 
from metal plasticity. The computations are based on the ideal elastic-plastic J2 flow theory, using 
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the von Mises yield law. Further assumptions include small displacements and small strains. The 
incremental formulation of the von Mises yield law starts with the following assumptions: 

The total strain increment can be decomposed into a purely elastic and a purely plastic part: 

(3) 

The yield criterion is independent of the hydrostatic pressure and of the third invariant of the 

de = dE.1 + d&,l 

We assume the engineering definition of the strain vector. 

deviatoric stress tensor: 

F = 3J2 - a,’ (4) 

J2 denotes the second invariant of the deviatoric stress tensor and uy the uniaxial yield stress of 
the material. No strain hardening is assumed. Only stress states such that F < 0 are permissible. 
Once the stress path reaches F = O  in a point, plastic strains will develop in that point upon 
further loading. 

During a plastic loading increment, the stress state is confined to the yield surface given by 
equation (4): 

(5) d F  = [aF/aaIt da  =O 

In equation (5), do denotes the stress increment vector and the superscript t indicates transpose. 
The direction of the plastic flow is given by (normality rule) 

Here, dA is a proportionality factor and a denotes the stresses in vectorial notation. Using 
Hooke’s law for the elastic part of the strains, 

de., = D- do (7) 

where D is the linear-elastic material matrix, formulas (3), (5) and (6) can be combined to 
determine the elasto-plastic stress increment 

L 

corresponding to a total strain increment ds. Formula (8) defines the elasto-plastic material 
matrix D.,. This relationship is needed in a finite element program to determine the tangential 
stiffness matrix for a Newton-Raphson method or a similar scheme. Furthermore, it can be used 
to integrate the constitutive law on the integration point level of the finite element method in case 
an explicit algorithm is to be used for that. Whereas the correctness of the tangent stiffness matrix 
has only an influence on the efficiency of the non-linear solver, the integration of the constitutive 
law has a direct impact on the accuracy of the final results. 

Much attention has been dedicated to the accurate integration of the constitutive law during 
the last two decades (6. References 11-14). A comprehensive scheme of error control and quality 
assurance in the FEM has to include this aspect, which is, however, independent of the finite 
element discretization technique. With a view to practical applications, and especially with 
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respect to the complicated plastic laws which become increasingly common in rock mechanics 
and concrete modelling, the authors of the present study favour a fully general implicit scheme 
similar to the one presented in Reference 14. However, at present, only the traditional tangent- 
radial return method has been implemented. This simple scheme can be considered sufficiently 
accurate for the von Mises yield criterion without hardening provided that small steps are used 
for the integration of the constitutive law. 

However, the most challenging computational issue specifically related to the use of J2 flow 
rules is created by the condition that the plastic strains correspond to an incompressible mode of 
deformation (note that it follows from equations (4) and (6) that the plastic strain increments have 
no volumetric component): Starting from a compressible elastic behaviour, the material becomes 
progressively more incompressible during the elasto-plastic deformation process as the amount of 
plastic strain increases as compared to the elastic strain. This will eventually lead to a severe 
locking problem in the traditional h-version of the finite element method if the displacement 
formulation is used. The problem of incompressibility locking in J2 plasticity has already been 
studied in Reference 15, and various schemes have been devised to avoid the locking, either by 
‘reduced integration’ or by introducing an independent approximation of the hydrostatic pres- 
sure. Today, most approaches use the mixed finite element method resulting from the latter idea, 
entailing all the disadvantages and additional complications inherent to mixed methods. 

On the other hand, the problem of locking due to incompressibility has been studied extens- 
ively for the p-version of the finite element method (see References 16-18), and it has been shown 
that no locking effects occur when the polynomial degree p is greater than four. No special 
precautions or mixed methods have to be introduced to obtain accurate results. 

Our numerical experiments will demonstrate clearly that locking due to incompressibility does 
not occur in the p-version analysis of the elastoplastic problem. 

4. IMPLEMENTATION 

In many details, the implementation of an elasto-plastic material law in a p-version FEM code is 
identical to a standard h-version implementation. Therefore, we summarize only briefly the main 
features of the implementation used for the present study. 

First, we carry out a purely linear elastic analysis and perform a uniform p-extension, starting 
at p = 1 (piecewise linear approximation). The maximum polynomial degree available is p = 8. 
The convergence of the strain energy is monitored. Based on the assumption that the error in 
energy norm converges algebraically, a very reliable estimate of the exact energy can be obtained 
by extrapolation from three different p-levels (cf. Reference 6). Throughout the present study, the 
space of hierarchical tensor product trial functions has been used (product space). 

To avoid errors in the linear solution by approximate geometrical mapping, we always use the 
blending-function method (see Reference 6) to describe curved boundaries accurately. Therefore, 
we can use very large elements even in the presence of curved boundaries. 

When the error estimate for the purely linear solution reaches a user-defined threshold, the 
non-linear computation starts. There is no guarantee that the non-linear solution will be of the 
same order of accuracy as the linear solution, but we rather expect the non-linear solution to be 
less accurate. We have already seen that e.g. incompressibility effects which are not originally 
present in the system will be introduced by the plastic material law, and those effects will slow 
down the convergence of the error in energy norm. Therefore, it seems reasonable to impose very 
restrictive accuracy requirements on the linear solution. In our practical computations, as a rule 
of thumb, we set the desired accuracy of the linear solution to about 10 per cent of what we would 
consider reasonable for a purely elastic analysis. 
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The next step is to determine at which fraction of the total imposed load the system will start to 
yield. The remaining load is divided into a number of load increments, and in each of these the 
Newton-Raphson method with a consistent tangent predictor is applied. The Newton-Raphson 
iterations are stopped when both the relative magnitude of residual force vector and of the change 
in the incremental displacements in either the Euclidean or the maximum norm are smaller than 
a prescribed threshold. In each load increment, a check for elastic unloading is performed in every 
integration point. 

Finally, stress results are available only in the integration points since the incremental 
elasto-plastic law has been evaluated only there. To obtain stress results, elsewhere a least- 
squares approximation for each of the components of the stress vector is computed for each 
element individually. For this least-squares fit, we employ the trial functions corresponding to the 
polynomial level used in the finite element approximation of the displacements. The issue of 
interpolating the stress results has not been fully investigated in the present study. It might be 
preferable not to approximate each stress component individually, but separate the hydrostatic 
part first, and do the least-squares fit afterwards on the hydrostatic and deviatoric parts 
individually. The effects of the stress evaluation procedure on the final pointwise stress accuracy 
yet need to be investigated in more detail. The current procedure is only a pragmatic approach to 
the problem. 

5. THE THICK-WALLED TUBE UNDER INTERNAL PRESSURE 

First, we study an-example for which an analytical solution is available, the thick-walled tube 
under internal pressure. The analytical solution for both the loading and the unloading-includ- 
ing elasto-plastic re-loading in the reverse direction-has been given in Reference 19. It is one of 
the few elasto-plastic two-dimensional problems for which an analytical solution even for the 
unloading is available, and therefore we use it as a basis for the evaluation of the numerical 
quality of the h- and p-versions of the finite element method. 

However, this problem is also of considerable practical interest since the pressurized tube may 
be used as a model for the cold-working of holes e.g. in aircraft engineering. Rich et al.” suggest 
to use the analytical solution for the analysis of a wide range of cold-worked holes, and in our 
practical application example, we will study how well this solution is suited for a cold-worked 

Cold-working is a process which is used to produce favourable stresses that significantly reduce 
the effects of stress concentration around a hole. In this method, an oversized and tapered 
mandrel, sometimes with a lubricated sleeve, is pulled through the hole to be cold-worked. Upon 
the removal of the mandrel, the hole is surrounded by a region of residual compressive stresses. 
This method is generally used for holes at the time of aircraft manufacture, as well as during 
service, to increase the fatigue life to structural components. 

lug. 

5. I .  Analytical solution 

The analytical solution for the problem of the tube under internal pressure has been given in 
Reference 19 and applied to the cold-working process in Reference 20. The following assumptions 
are adopted in the analysis: 

(1) elastic-perfectly plastic material model, 
(2) plane strain situation, 
(3) von Mises yield condition, 
(4) incompressibility of both the elastic and plastic zones (no analytical exact solution exists 

deformation). 
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In the application to cold-working, the mandrel is assumed to remain purely elastic. Under 
these assumptions, the solution can be obtained in closed form, which is very well suited for 
comparison with numerical approximations. Dropping the incompressibility assumption, 
a closed-form solution is no longer available. 

Notation. Consider a tube with an internal radius a and an external radius b, Young’s modulus 
E,, Poisson ratio v p  and uni-axial yield stress by. Denote the modulus of elasticity for the mandrel 
by Eb,  its Poisson ratio by vb and its radius by a + I. The difference I between the radii of the 
mandrel and the hole is called interference. 

Upon inserting the mandrel into the tube, a plastic zone of radius p is created. This radius is 
defined by the following implicit equation (if no solution exists for the equation, the interference is 
simply too small to create a plastic zone): 

and the pressure between the mandrel and the hole can be shown to be 

If P 2 2(cry/f i )  ln(b/a), then the entire cylinder becomes plastic, and this case is of no interest 
for us. 

The circumferential stresses around the hole are given by 

Upon removal of the mandrel, the tube undergoes an elastic unloading. If P > 2(0J f i )  
(1 - az/b2),  no reverse yielding occurs, and the residual circumferential stresses are given by 

Otherwise, compressive yielding occurs in the zone a < r < pR, where pR is given by the implicit 
equation: 

2 l n - - l + ~ + - = O  U P i  P f i  
PR b 20, 
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In this case, the circumferential stress is 

a < r < p R  

This problem is suitable for both the incremental and deformation theories of plasticity because it 
is axisymmetric and the stresses are proportional. 

Note that equation (6) in Reference 20 is not correct which renders the stresses in the 
compressive plastic zone around the hole after unloading. The correct solution is found in 
Reference 19. 

5.2. Numerical examples 

The problem described in the previous section is solved by the p-version as well as the h-version 
of the FEM. The finite element solutions to this problem will demonstrate the capabilities of the 
p-version and its accuracy. 

Comparison with the exact solution. We study a tube with an internal radius a = 1-5 in and an 
outer radius b = 4.0 in subjected to a cold-working process. A plane strain situation is assumed. 
A pressure P =62OOO psi is applied to both the inner side of the tube and the outer face of the 
mandrel. We determine the corresponding interference level as the sum of the radial displace- 
ments of both bodies. Thus, an interference I =0.03399 in is obtained. The material properties of 
the tube are defined by E ,  = 10 OOO OOO psi, the uniaxial yield stress by = 58 OOO psi, and v p  = 049. 
We select this value of the Poisson ratio in order to be close to the exact analytical solution which 
assumes elastically incompressible material. The displacement-based finite element schemes 
cannot be applied if v =05 exactly. The mandrel's material properties are taken to be 
Eb = 30 000 000 psi, and v b  = 0.3. All finite element computations are based on an elastic-perfectly 
plastic von Mises yield law. 

Exploiting symmetry, only one quarter of the domain was analysed. The radial displace- 
ments are constant along the perimeter. For each of the two versions of the FEM, two different 
meshes have been analysed. The purely elastic mandrel has been studied only in one simple 
p-version mesh, imposing extremely high accuracy requirements. 

In Figure 1, the meshes used for the cylinder in the p-version are shown. We use a uniform mesh 
of two elements and a graded mesh of six elements for the representation of the tube. The 
boundary conditions are uy =O on edge A-B, u, =O on edge C-D, and t, = - P on A-D, where t,  
denotes the normal traction. The other boundary conditions are traction-free. The p-level is 
increased on each element until the estimated global error in energy norm is decreasing below 0 1  
per cent. We use the product space and the p level is uniform throughout the mesh. On the coarse 
mesh, the error estimate indicates that the desired accuracy threshold has been reached when we 
use p = 8, whereas p = 5 is sufficient for reducing the error estimate below the threshold on the 
finer mesh. 
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D C 

Figure 1. Meshes used in the p-version analysis of the tube under internal pressure 

For the h-version, we use meshes consisting of 70 eight-noded elements and 140 eight-noded 
elements, respectively. Both meshes are graded in the radial direction such that the biggest 
element is ten times bigger than the smallest. A mesh consisting of 300 eight-noded elements was 
also analysed to make sure that the mesh of 140 elements was fine enough in the circumferential 
direction. The three different h-version meshes are shown in Figure 2. The results obtained with 
the 300-element mesh are practically identical to those of the 140-element mesh, so only the latter 
mesh is used in our examples. 

Figure 2. Meshes used in the h-version analysis of the tube under internal pressure 
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Furthermore, we also analysed the mesh with 70 elements, employing nine-noded elements 
instead of the eight-noded elements. The trial function space associated with the nine-noded 
elements corresponds to the product space at p = 2  in the p-version. 

The h-version computations were carried out with the commercial finite element solver” 
ADINA. The ADINA system offers a special pressure-displacement element for incompressible 
materials, based on the mixed finite element formulation.22 This element was used in the analysis. 

For avoiding any influence of the size of the load increments and the accuracy of the 
equilibrium iterations in the non-linear computation, the load steps and equilibrium threshold 
have been varied in a very broad range and chosen such that the resulting solutions proved 
virtually independent of these parameters. At least 10 load steps have been used after reaching the 
elastic limit, and also for the elasto-plastic unloading, or rather, reverse loading. A large number 
of load steps was suggested by the fact that only the tangent-radial return method for integrating 
the constitutive law has been implemented in the research code until now. The effects of the 
accuracy bounds imposed on the loading/unloading procedure will not be considered in the 
following, as they turned out to be completely negligible in comparison to the differences in the 
results caused by the choice of the method for the finite element approximation. 

In Figure 3, the exact analytical solution of the circumferential stress (oe) for the loading case is 
compared with the p-version solution. The h-version solution with eight-noded elements and the 
exact solution are displayed in Figure 4. Note the very good agreement between the exact and the 
finite element solutions in the whole range, except at the interface between the elastic and plastic 
zones. At this location, the h-version solutions with the eight-noded elements tend to oscillate, 
and the quality of the results is questionable, whereas the p-version solution is much smoother 
and follows the exact solution more closely. The p-version merely produces smoothed stress 
results close to the elastic-plastic interface. It is clearly visible that the elasto-plastic radius (p) can 
easily be determined from the p-version solutions, but not so well from the solutions obtained by 
the h-version with eight-noded elements. 

However, the h-version solution improves considerably when we employ the nine-noded 
elements instead. These elements have an additional ‘internal mode’ trial function. The corres- 
ponding results are displayed in Figure 5. No oscillations are present any more, even in the 
coarser mesh. The computer time for this analysis is somewhat greater than for the eight-noded 

Radial Distance from Hole Center. (in) 

Figure 3. Circumferential stress in pressurized tube, loading case. Results of p-version FEM analysis an exact solution 
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Radial Distance from Hole Center. (in) 

Figure 4. Circumferential stress in pressurized tube, loading case. Results of h-version FEM analysis with 8-noded 
elements and exact solution 
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5. Circumferential stress in pressurized tube, loading case. Results of h-version FEM analysis 
elements 

with 9-nod4 

elements. It is interesting that, even in the h-version, obviously some degree of 'p-extension' and 
switching to a different space of trial functions is required to capture the solution of this problem 
properly. 

Upon removing the internal pressure, the tube first undergoes an elastic unloading; in the last 
stage of the unloading, reverse yielding occurs in the vicinity of the inner surface of the tube. The 
overall performance of the h-version as well as the p-version, compared to the exact analytic 
solution, is presented in Figures 6 and 7, respectively. 
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Figure 6. Circumferential stress in pressurized tube. Residual stress after cold-working. Results of p-version FEM analysis 
and exact solution 

Radial Diitance from Hole Center. (in) 

Figure 7. Circumferential stress in pressurized tube. Residual stress after cold-working. Results of h-version FEM analysis 
and exact solution 

In Figures 8-10, we present ‘zoomed’ plots of the circumferential stresses in the reverse yielding 
zone. The same phenomenon as in the loading case is observed at the new elasto-plastic interface 
radius p R :  Both h-version meshes with eight-noded elements exhibit oscillations of the stress in 
the reverse yielding zone. Furthermore, it turns out that the 2-element p-version mesh is 
obviously unable to capture the very narrow zone of reverse yielding properly. Clearly, just one 
element in the radial direction is not sufficient. However, a very good solution is obtained with the 
six-element mesh and the p-version. Also, the solution of the h-version with nine-noded elements 
is quite accurate. 
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Figure 8. Circumferential stress in pressurized tube. Residual stress after cold-working. Results of p-version FEM analysis 
and exact solution. Zoom of zone of compressive plastification 
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Figure 9. Circumferential stress in pressurized tube. Residual stress after cold-working. Results of h-version FEM analysis 
with 8-noded elements and exact solution. Zoom of zone of compressive plastification 

In order to verify the smoothness of the material properties in this elasto-plastic computation, 
the condition number (ratio of the largest and smallest eigenvalue) of the tangential material 
matrix (stress-strain matrix) has been checked in all integration points during the loading and 
unloading process. The condition number changes very little during the loading and unloading 
and depends predominantly on the elastic material properties. This indicates that the influence of 
elasto-plasticity on the smoothness of the stress-strain law is very small. 
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Circumferential stress in pressurized tube. Residual stress after cold-working. Results of h-version FEM 
analysis with 9-noded elements and exact solution. Zoom of zone of compressive plastification 

Table 1. Computation times and number of unknowns 
for the elasto-plastic loading and unloading of a tube 

under internal pressure (v  =0*49) 

ADINA FEASIBLE 

Coarse mesh 82 s 88 s* 

Fine mesh 162 s 90 S' 
450 d.0.f. 288 d.0.f. 

870 d.0.f. 456. d.0.f. 

Note: The FEA solutions were computed on a Silicon Graphics 
SGI IRIS Indigo workstation (R3000, SPEC mark =26). The 
computation times reported do not include post-processing op- 
erations. The number of degrees of freedom does not include 
constrained degrees of freedom. 
* Maximum p-level is 8, product space. 

Maximum p-level is 5 ,  product space. 

A rough comparison between the computation times of the finite element solutions (measured 
on an IRIS SGI workstation) is given in Table I. The computation times for the p-version include 
multiple purely elastic runs with increasing p-levels to minimize the error of the elastic solution. 
Table I demonstrates that the computer time resources required by the p-version and the 
h-version solutions are of roughly the same order of magnitude. 

The realistic case of v p  =0.3 in the elastic zone. Usually, the Poisson ratio of engineering 
materials in the elastic region is close to 0.3. In the following, we use the finite element solution to 
show that the analytical solution based on the incompressibility assumption in the elastic region 
may be considered as a good approximation for the solution with v p  =0.3. 

For this case, we select a smaller interference than before, I = 0.02 in. This will emphasize the 
influence of the compressibility in the elastic zone since the extent of the plastic zone will be 
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Figure 11. Circumferential stress in pressurized tube, v = 0.3. Residual stress after cold-working. Results of p-version 
FEM analysis and analytical solution for v = 0.5 

smaller than before. Employing the six-element mesh with the p-version, and the 140-element 
mesh with the h-version, the corresponding pressure was calculated to be P = 52 200 psi. The 
finite element solutions for v p  = 0.3 are compared to the analytic solution (assuming v p  = 0.5) in 
Figure 11. It is evident that the unrealistic assumption of incompressibility in the elastic region 
does not significantly affect the validity of the analytical solution for the practical case. The 
elasto-plastic radius, however, is smaller than the one predicted by the FEM solutions. 

6. PRACTICAL APPLICATION: THE COLD-WORKING OF AN ATTACHMENT LUG 

Usually, as a first approximation, engineers use the closed-form solution for a cold-worked 
cylinder given in Reference 20 in real-life problems, even though the geometry of the realistic 
problem is different from the cylinder. A cold-worked fastener hole located near a plate edge, or 
a lug, is usually idealized as a cold-worked tube having an inner radius equal to the hole radius, 
and an outer radius equal to the distance of the fastener hole from the edge. We show in the 
following that this approximation has considerable deficiencies and should be used only for fairly 
crude accuracy requirements. 

In the case of the lug, which is no longer axisymmetric, the question of adequate finite 
modelling arises. The plastic zone is no longer bounded by a circle, and also the deformations of 
both the mandrel and the hole deviate from the purely circular shape. Therefore, a finite element 
analysis imposing uniform pressure or constant radial displacements on the hole does not reflect 
the true situation properly. Neither the final shape of the deformed mandrel and hole nor the 
pressure distribution is known a priori. Furthermore, even for the axisymmetric case of the tube 
(with corresponding dimensions), an analysis carried out with prescribed displacements equal to 
the interference (i.e. assuming a rigid mandrel) reveals considerable differences in the residual 
stresses (roughly 10 per cent deviation) in the elastic zone of the tube when comparing with the 
deformable mandrel case. Also, the plastic radius is over-estimated by the model with the rigid 
mandrel, although the stresses in the plastic region are very close to those obtained with an elastic 
mandrel and the corresponding pressure inside the tube differs by only 1 per cent. 
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Figure 12. Mesh used in the p-version analysis of an attachment lug. Asterisks indicate the maximum extent of the plastic 
zone during cold-working 

In the following, we show how to pursue a more realistic analysis. 
The lug with a hole of radius a = 1-5 in, outer radius b =4.0 in and total length of 1 = 12in was 

modelled by 13 elements (see Figure 12). An interference level I =0.02 in was assumed between 
the mandrel and the lug. For the lug, we use material constants E = 10000000 psi, cy = 58 000 psi 
and v =0.3. Symmetry conditions were used along edges A-B and C-D to reduce the computa- 
tion time. 

We assume that the influence of the elastic stiffness of the mandrel can be represented by 
a constant-stiffness distributed elastic spring interface element attached to the edge of the hole. 
The corresponding approximate normal spring stiffness is readily obtained from the axisymmet- 
ric linear analysis of the mandrel subject to constant pressure. The tangential stiffness of the 
spring is zero (no friction). Displacements corresponding to the original interference between the 
lug and the mandrel are now prescribed on the interface elements as an initial displacement rather 
than directly on the hole. Thus, we obtain a deformed shape of the hole (and the mandrel) which 
deviates from the circle, and a non-uniform pressure distribution reflecting the actual stiffness 
relation between the lug and mandrel. 

The procedure suggested here for the analysis might be improved by re-calculating the spring 
stiffnesses, starting from the actual (non-constant) pressure distribution as applied to the mandrel, 
repeating the entire process with the updated data until the final check of the initial assumptions 
would render negligible differences. However, for the demonstration purposes of the present 
study, it will suffice to perform only the first step of such an iterative analysis, which is already 
much closer to reality than many analyses carried out in current engineering practice. 

Note that the lug is constrained exclusively by the spring interface elements and the symmetry 
constraints. We consider the cold-working process in a co-ordinate system attached to the 
mandrel. The analysis simulates a cold-working procedure in which the mandrel is not capable of 
carrying any resultant force in the plane of the lug, but is allowed to move freely. Therefore, we 
obtain an equilibrated pressure distribution along the hole. The lug as a whole moves, but the left 
end of the model (attached to the airplane and thereby constrained) remains almost a straight line 
provided it is far enough from the hole. 

After loading, removal of the mandrel is simulated by deleting the interface elements. At this 
stage, the model of the lug has only rigid body and symmetry constraints. Traction boundary 
conditions are given by the pressure formerly carried by the spring interface elements. We are now 
solving a problem which has only traction boundary conditions (except the symmetry constraint), 
and therefore we require the tractions to be in equilibrium. 

Note that the two stages of the computation are characterized by different boundary condi- 
tions and, consequently, a different number of unknowns, and that adding or deleting elements in 
an existing model may change the smoothness of the exact solution. This has to be kept in mind 
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Cold-worked attachment lug. 'Circumferential' stresses after unloading for various locations. Comparison 
with analytical solution of cold-worked tube 

when checking the accuracy of the corresponding purely linear solutions to ensure the use of 
reasonable models in the two-stage non-linear analysis. 

Four interface elements were used along arc B-C. The material properties of the mandrel are 
the same as in all previous examples, giving a normal spring stiffness C, =38 500000psi. 
Figure 12 displays the maximum extent of the plastic zone during the loading as obtained by the 
p-version analysis with p = 5 (product space), corresponding to an estimated error in energy norm 
of less than 0.1 per cent in the elastic solutions. The maximum deviations of the internal pressure 
during cold-working from the constant value P = 52 200 psi (corresponding to the tube) were 
+8.7 and -2.5 per cent. 

In Figure 13, the 'circumferential' stress in the lug after complete unloading is compared with 
the solution obtained by application of the analytical solution of the tube. The unloading is purely 
elastic. Figure 13 displays the stress at 8 = 0", 8 = 90", and 8 = 180" (cf. Figure 12). For 8 = 0", 
the stress is much higher than the value given by the closed-form solution in the elastic zone and 
at the elastic-plastic interface. However, at 8 = 90", the most important location for practical 
purposes, the analytical solution over-estimates the actual value of the stress in the elastic region 
closer to the hole, but under-estimates it close to the outer boundary of the lug. 

This realistic problem clearly demonstrates that the simple thick-walled tube analogy reflects the 
actual situation of the lug only quite inaccurately whereas the p-version FEM is a very useful tool 
for studying elasto-plastic problems involving even complex loading and unloading conditions. 

7. CONCLUSIONS 

We conclude that the p-version of the finite element method performs very well in small-strain 
incremental elasto-plastic analysis of structures. The p-version makes it a lot easier to control the 
discretization error of the finite element method. Error monitoring and control is achieved 
automatically, with minimum user interaction, and without substantial loss of computational 
efficiency. In some cases, we find that the models based on the p-version yield clearly superior 
accuracy in comparison with their h-version counterparts. 
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As an example, the paper demonstrates the application of the p-version of the FEM to the 
cold-working problem. It is seen that the method is very well suited for this practically relevant 
problem and that reliable and realistic results can be obtained with a small amount of modeling 
work. 

In summary, the application of the p-version in elasto-plastic structural analysis can be 
recommended. 
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