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SUMMARY 
A numerical method for the computation of the generalized flux/stress intensity factors (GFIFs/GSIFs) for 
the asymptotic solution of linear second-order elliptic partial differential equations in two dimensions in the 
vicinity of singular points is described. Special attention is given to heat transfer and elasticity problems. The 
singularities may be caused by re-entrant corners and abrupt changes in material properties. 

Such singularities are of great interest from the point of view of failure initiation: The eigenpairs, 
computed in a companion paper,' characterize the straining modes and their amplitudes (the GFIFs/GSIFs) 
quantify the amount of energy residing in particular straining modes. For this reason, failure theories 
directly or indirectly involve the GFIFs/GSIFs. 

This paper addresses a general method based on the complementary weak formulation for determining 
the GFIFs/GSIFs numerically as a post-solution operation on the finite element solution vector. Impor- 
tantly, the method is applicable to anisotropic materials, multi-material interfaces, and cases where the 
singularities are characterized by complex eigenpairs. An error analysis is sketched and numerical examples 
are presented to illustrate the effectiveness of the technique. 

KEY WORDS: finite element methods; p-version; singular points; stress intensity factors; flux intensity factors; com- 
plementary energy; fracture mechanics; bi-material interfaces 

1. INTRODUCTION 

This is the second of two papers in which we discuss the computation of the solutions of linear 
elliptic partial differential equations, representing heat conduction or  elastic deformation, in the 
vicinity of singular points. In the first paper,' numerical procedures were developed for comput- 
ing the characteristic unknowns, called eigenpairs. The methods discussed in Reference 1, called 
the Steklov method and the modified Steklov method, are general, that is, applicable to 
singularities associated with corners and non-isotropic multi-material interfaces. 

This paper presents a method for the extraction of the coefficients of the asymptotic expansion 
(GFIFs/GSIFs) once the eigenpairs are available. The stress intensity factors in the two- 
dimensional linear theory of elasticity are related to  the amount of energy residing in the natural 
straining modes. They are, therefore, directly or indirectly connected with failure theories. We 
show in this paper that accurate computation of stress intensity factors (analogously flux intensity 
factors for heat transfer problems) is possible using a post-processing scheme over a small 
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subdomain. It is shown that through utilization of the weak complementary formulation in 
conjunction with the modified Steklov method, and the p-version of the finite element method, 
the GFIFs/GSIFs can be computed with high accuracy for anisotropic as well as for isotropic 
domains. 

Many methods exist for the extraction of stress intensity factors associated with cracks from 
finite element solutions. For example, the J-integral method, the energy release rate method, the 
stiffness derivative method, the contour integral method (CIM), the cutoff function method 
(CFM), the singular superelement method, etc. See for example References 2-5 and the references 
therein. Most of the methods, however, are applicable to crack singularities in isotropic materials 
only, and do not provide an arbitrary number of stress intensity factors. 

One of the most efficient ways for extracting the GSIFs in a superconvergent manner is by CIM 
and CFM which are described in References 2 and 4. A variation of the CIM for the Laplace 
problem in three dimensions is presented in Reference 6, where mathematical analysis supported 
by numerical examples demonstrate that the flux intensity factors converge as fast as the energy, 
thus exhibit superconvergence. These efficient procedures use specially constructed extraction 
functions. These methods have three disadvantages: First, the CIM is not directly applicable to 
anisotropic multi-material interfaces because the eigenfunctions are not orthogonal with respect 
to the bilinear form. Second, a large number of extraction functions must be devised. Third, in the 
general elliptic problems the auxiliary functions are considerably less smooth, so that they cannot 
be approximated by the finite element method as well as the eigenfunctions corresponding to the 
positive eigenvalues. 

The method presented in the following has the advantages of these superconvergent methods, 
without the drawbacks. 

The outline of this paper is as follows. In Section 2 we demonstrate the method on the basis of 
the two-dimensional Laplace problem. This problem has been chosen because it is simple enough 
for demonstration purposes, yet contains all essential properties which are common to elliptic 
boundary value problems. The notations and the weak formulation for the extraction of the 
GFIFs is given. We also demonstrate that the method exhibits superconvergence. Numerical 
experiments are presented on the basis of a model problem, an L-shaped domain. In Section 3 the 
anisotropic heat transfer problem is discussed. The superconvergence property of the method is 
demonstrated through a numerical example. Section 4 is dedicated to elastostatic and problems 
involving cracks and complex eigenpairs. We present two numerical examples of a crack in an 
isotropic material, and a crack between two dissimilar materials, where complex eigenpairs 
appear. 

2. GFIFS FOR THE LAPLACE PROBLEM-FORMULATION 

The behaviour of the solution for the Laplace equation (V’u = 0) in a two-dimensional domain in 
the vicinity of a singular point is best understood and is given by (see Reference 7): 

m S M  

r and 0 being the polar co-ordinates of a system located in the singular point. cli are the 
eigenvalues (real numbers in case of the Laplace problem) andfis,(0) are the eigenfunctions which 
are analytical. Except for special cases, S = 0. M is either 0, or a positive integer when the 
boundary near the singular point (at the vertex) is curved. Note that the eigenpairs are uniquely 
determined by the geometry and material data. 
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When ai < 1, the corresponding ith term in the expansion (1) for Vu is unbounded as r -+ 0. We 
can think of the coefficients Chm of these terms as analogous to the stress intensity factors of 
elasticity. We generalize this terminology, and refer to all coefficients Ckm, whether or not the 
corresponding terms in (1) are singular, as generalized flux intensity factors (GFIFs). The 
analogous coefficients in elasticity are called generalized stress intensity factors (GSIFs). The 
GSIFs are very important from the engineering point of view because they are related to failure 
theories. 

Notation. Let $2 be a simply connected domain with boundaries dR = Uiri which are analytic 
simple arc curves called edges. These edges intersect at points called vertices. The Laplace 
problem V2u = 0 is prescribed over R, with Dirichlet boundary conditions u = u* on TD and 
Neumann boundary conditions du/dv = i o n  aR - rD. Newton (also known as mixed) boundary 
conditions may be prescribed as well, but will not be considered here. Define the space 

= {u  E H'(R)(u = 0 on ry} where H'(R) is the usual Sobolev space. 

2.1. The primal weak form 

primal weak form): 
In the primal formulation, the exact solution to the problem is defined by the weak form (the 

Seek u E H'(R), u = u* on TD such that 

a ( u ,  u) = %(u) vu E Hh(Q) 

where the bilinear form is 

and the linear form is 

By II u I I E  = ,/- we denote the energy norm of u. Note that it is equivalent to the H'(R) 
seminorm. 

The exact solution u is analytic in Q except in the vicinity of the singular points (at the vertices), 
where the solution is given by the asymptotic expansion (1). 

We use the p-version of the finite element method for approximating the solution of the weak 
form, i.e. we use a hierarchic sequence of finite element spaces S,(R) c * . . c Si(R) c H'(R). 
These finite element spaces consist of continuous piecewise polynomials of degree p on the 
elements of the mesh, such that the degree of the polynomial is increased as we go from Si to Si+ 1. 

Error estimation procedures in the energy norm for the p-version are summarized in Reference 8. 
In the vicinity of the singular point P, see Figure 1, the exact solution u can be expanded as 

shown in (1) (we exclude for the moment the special cases where the In t terms appear): 

In the case of the Laplace equation, ai andfi(0) can be computed exactly using analytic methods, 
where in the general case numerical approximations are available using the modified Steklov 
method. 
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Figure 1 .  Typical singular point P 

The following procedure is proposed: First we solve the problem over the entire domain R by 
means of the finite element method on the basis of the primal weak form (2), thus obtaining uFE. 

Second, a small subdomain around the singular point is constructed. Define S R  as the interior 
points of a circle of radius R centred on the point P. The subdomain RR is defined by RnSR and 
its circular boundary is denoted by rR. The flux vector is computed on S R  using (5).  

For the complementary weak form the trial and test spaces are chosen to be linear combinations of 
the eigenjluxes, which are the derivatives of the eigenfunctions, after being obtained by the mod6ed 
Steklou method,’ or analytically. 

The approximated finite element solution, uFE, is applied on the boundary aRR as the natural 
boundary conditions for the complementary problem. The finite element solution corresponding 
to the complementary weak form maximizes the complementary energy in RR. Solving the finite 
element system of equation over RR, one obtains an approximation for the series coefficients, the 
GFIFs. 

2.2. The complementary weak form 

We define the vector space E,(!&) as follows: 

We define by rq that part of the boundary of RR where Neumann boundary condition (qn = 4) is 
prescribed. The space of admissible fluxes is denoted by &(RR) and is defined by 

(7) E C G )  = ((4x9 qy)I(qx, qy) W M  q n  = 4 on rq} 

Note that if (qx, qy) = (au/ax, au/ay) then the condition aq,/ax + aqy/ay = 0 is the Laplace 
equation itself. The complementary weak form is stated as follows: 
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where 

and 
c c 
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(9) 

2.3. Sources of discretization errors 

The extraction method described herein has three sources of discretization errors: 

1. The fluxes are represented by a finite series of N terms. The exact representation is an infinite 
series. 

2. The eigenpairs are only an approximation of the exact values (except when the exact 
solution is analytical). In the general case, therefore, we do not satisfy the condition of static 
admissibility exactly. 

3. The boundary conditions are an approximation of the exact solution. 

The first source of discretization error does not exist in the Laplace problem because the 
eigenpairs are orthogonal with respect to the bilinear form on CIR. 

The second source of discretization error does not exist in case of the Laplace problem since the 
eigenpairs can be found analytically, thus do not have to be approximated. However, we shall 
demonstrate that an approximation of the eigenpairs (obtained by the modified Steklov method) 
is so accurate that the error is negligible for practical purposes. 

2.4. GFlFs computation using the exact eigenpairs 

First we describe the computation of the coefficients of the asymptotic expansion in the vicinity 
of a re-entrant corner using the exact eigenpairs. This eliminates the second source of discretiz- 
ation error. Consider, for example, a re-entrant corner of (2n - o) degrees, where (q,, qy) are 
computed in terms of the exact eigenpairs: 

au sin8du 
r ae case- 

(1 1) 

where u is given for ‘free-free’ boundary conditions (i.e. qn = 0 on the reentrant straight 
boundaries) by 

therefore, (1 1) becomes 

sin [( 1 - a,,) O] 

m 

q =  C Ana,rG-l 
n = O  
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The elements of the compliance matrix [&I, which correspond to the bilinear form BC(q, I), are 
given by 

R a ,  
= lo Jo aiajrai+aj"-lcos[(aj - ai)8]drd0 (14) 

Finally, after integrating, we have the following: 

Consider now the expression for the linear form 9,. This can be divided into two terms: One 
corresponding to the circular boundary called r,, the other corresponding to the straight 
boundaries r, and r, which intersect in the singular point. 

Assume that the solution on r3 is given by ulr, = d(0): 

After substituting 1, which 

The elements of the load 
evaluated explicitly: 

vector {FF3} ,  which correspond to the linear form ( S F 3 ) ( I )  can be 

For the case of 'free-free' boundary condition, qn = 0 on I-, and r'. This condition, in the 
framework of the maximum complementary energy formulation, has to be treated by constrain- 
ing the admissible trial function field. However, by using the exact eigenpairs in constructing the 
trial space, the constraints are automatically satisfied because the chosen q in (13) satisfies the 
condition qn = 0 on r, and r,. 

The 'fixed-free', 'fixed-fixed' and Tree-fixehl boundary conditions are treated analogously. 

Theorem I .  The error in the load vector due to replacing uEx with uFE is bounded by the error in 
energy norm. FJe) 6 C ( R )  II e I I E .  

The proof can be found in Reference 9. 

Remark 1. When the compliance matrix is formulated using the exact eigenpairs, no discretiz- 
ation errors are associated with the compliance matrix of the complementary weak form. Because 
the compliance matrix is diagonal (equation (15)), we conclude that the convergence rate of the 
GFIFs and first derivatives at internal points is at least as fast as the energy norm. 

Numerical examples presented in Reference 9 indicate that errors in the computed GFIFs 
converge much faster than the error in energy norm, in fact, as fast as the errors in the strain 
energy. It is also shown in Reference 9 that the formula used for computing flux intensity factors is 
identical to the one obtained using the contour integral method which is known to be supercon- 
vergent for the Laplace problem. 
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Figure 2. Notation 

2.5. GFIFs computation using the approximated eigenpairs 

In general scalar elliptic problems the exact eigenpairs are not known. The modified Steklov 
method is employed for computing the eigenpairs. The domain of application of the modified 
Steklov method is the annular sector shown in Figure 2. The finite element solution, uFE, can be 
represented by the linear combinations of the eigenfunctions: 

m 

where $(O) are piecewise polynomials. Specifically, referring to Figure 2, on the kth material 
segment we have the linear mapping: 

and 
P+ 1 

i =  1 
J(e(5)) = c ~ p q t ) ,  k = i ,2, . . ., n 

where Ni(g) are the hierarchic shape functions for one-dimensional elements described in 
Reference 10, and n is the number of partitions used for computing the approximated eigenpairs. 

The modified Steklov method solved by the finite element method ensures the convergence of 
the eigenpairs with respect to increasing degrees of freedom (DOF): 

so that the flux vector computed from the approximated eigenpairs, in the limit, belongs to the 
space &(S2,). It is not difficult to show that the resulting flux vectors are square integrable. 
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In the following we formulate the complementary weak form for the case where the eigenpairs 
are only an approximation of the exact values. These approximations are obtained using the 
modified Steklov method reported in Reference 1, where we show that an excellent approxima- 
tion can be achieved with a small effort. We examine this case since in general scalar elliptic 
problems, including the elasticity problems, the eigenpairs cannot by computed analytically for 
general singular points when the materials are anisotropic. 

We now formulate the variational formulation explicitly. Based on (1,9), we obtain 

The expression for the complementary bilinear form is based on (9), and after substituting (21) we 
obtain 

r w  r R  

N being the number of eigenpairs used in (21) (instead of infinity), and 0;" = el, w(') = o. 
Assume that the finite element mesh used for computing the eigenpairs has n elements in the 

circumferential direction and a polynomial degree p. Using a Gauss quadrature of NG points, the 
explicit expression for each term in the compliance matrix is given by 

where W ,  and trn are the weights and abscissas of the Gauss quadrature and n is the number of 
partitions used for computing the approximated eigenpairs (see Reference 11 for details). 

Remark 2. If the exact eigenfunctions were used then we would have (BJij  = c ia i j ,  therefore only 
the diagonal terms would have to be computed. The values (Bc)ij, i # j ,  are computed to assess the 
accuracy of the approximated eigenpairs. 

We proceed now to the evaluation of the linear form corresponding to the principle of 
maximum complementary energy. Consider first the term corresponding to r3. 

Substituting (21) in (10) the linear form corresponding to r3 becomes 
n rw"' r~ D +  1 1 

The explicit expression for each term in the load vector is given by 

I = 1  k = l  m = l  
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Figure 3. The L-shaped example problem and the finite element mesh 

The boundary conditions on rl and r2 are fulfilled automatically because the approximated 
eigenpairs satisfy them. 

Note that the finite element discretization over the domain R may be different from the one 
used for the modified Steklov problem. 

2.6. Numerical example 

The example discussed in this section is constructed so that the exact solution is known. It 
demonstrates: (a) the influence of the approximated eigenpairs, obtained using the modified 
Steklov method, on the accuracy of the extracted GFIFs and (b) the performance and efficiency of 
the proposed extraction method. 

We consider a 90" V-notch in an infinite domain. We 'remove' the L-shaped domain shown in 
Figure 3, and impose on its boundaries the Neumann boundary conditions corresponding to the 
exact analytic solution, which is known. The exact asymptotic solution for this free-free V-notch 
is given by (12) and the derivatives in x and y directions (q,., qy) to be imposed on the boundaries of 
the L-shaped domain are given by (13). 

First, an approximation to the eigenpairs has to be obtained. The modified Steklov method is 
used over a mesh containing two elements shown in Figure 4. As the p-level of the shape functions 
is increased over the mesh in Figure 4, a better approximation of the eigenpairs is obtained. We 
will use the eigenpairs obtained when assigning p-levels 4,5,6,7 and 8 for the computation of the 
approximated GFIFs. 

Once the approximated eigenpairs are available, a finite element solution is sought for the 
L-shaped domain. We construct a mesh containing the minimum possible number of elements 
over the L-shaped domain without any refinements in the vicinity of the singular point, as shown 
in Figure 3. The boundary conditions in (13) were imposed on the L-shaped boundaries, with 
the GFIFs chosen to be: A l  = 1, A2 = 4, A3 = 4, A4 = a, A5 = f and Ai = 0 ( i  = 6,7, . . .). 
The GFIFs were then extracted using the proposed method, taking R to be 0.9. The results of 
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Figure 4. Mesh for the computation of the approximated eigenpairs 

these computations are displayed in Table I. The following conclusions may be drawn from the 
results shown in Table I: 

1. The errors in the approximated ith eigenpair do not influence the accuracy of thejth GFIF. 
This is because the eigenfunctions are orthogonal. 

2. The error in the GFIFs is always bounded by the error in energy norm when the error 
in the eigenpairs is less than 0.1 per cent. Moreover, in this case the error in the 
GFIFs is virtually the same as if the exact eigenvalues had been used to extract the 
GFIFs. 

3. Using the coarsest mesh possible for the extraction of both the eigenpairs and the GFIFs, 
excellent results have been obtained. The relative error in the first five eigenpairs is less than 
0007 per cent, and the relative error in the first five GFIFs is less than 0.7 per cent when the 
relative error in energy norm is 2.6 per cent. 

3. EXTRACTION OF GFIFS FOR THE GENERAL SCALAR ELLIPTIC PROBLEM 

In the following it is shown that extraction of GFIFs for the general scalar elliptic problem 

is possible by utilizing the same methods as for the Laplace problem. In the general case the 
eigenfunctions are not orthogonal with respect to the bilinear form, and therefore the compliance 
matrix becomes fully populated. Nevertheless, the eigenfunctions remain linearly independent, so 
that the GFIFs can be computed using the complementary weak form. 

We start our discussion by formulating the principle of maximum complementary energy for 
the general scalar elliptic problem (we assume that in the neighbourhood of the singular point 
aij = aij(B) and a12 = The weak form is stated exactly as in (8), except that the bilinear and 
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p = 5  

p = 6  

p = 7  

p = 8  

Table 1. Relative error ('YO) in computed GFIFs for the L-shaped domain 

p-level for Error in 
eigenvalue GFIF eigenvalue 
computation # (W p = 4 p = 5 p = 6 p = 7 p = 8 Extrapolated 

p = 4  41 00002 - 1.63 -0.75 - 0.38 -045 - 0.31 - 0.5 
A 2  003 054 0.36 0.36 042 0.41 0-4 
A 3  039 6.79 6.84 6.87 687 6-84 6.87 
A4 073 7.12 7.68 7.64 7.52 156 7.56 
A5 17 28.5 25.55 26.15 34.4 26.8 2685 
41 3 x - 1.62 - 0.73 - 0.36 - 0.43 - 0.30 - 048 
A 2  3 x 10-5 0.12 -0064 -0.064 0.001 -0.0096 -0.016 
A 3  0035 054 0.63 0.61 0.61 061 0-62 
A4 071 7.2 7.76 7.72 7.6 7.64 7.6 
A5 2.4 29.5 26.65 27.5 28.7 28.1 28.35 
41 4.5X10-* - 1.62 -0.73 -0.37 -0.43 -0.29 - 0.48 
A 2  2 . 2 5 ~ 1 0 - ~  0.122 -0.058 -0.058 0,0066 -0.0044 -0.01 
A 3  00018 -0.216 -0135 -0.138 -0160 -017 -0,147 
A4 0,0084 -0.52 0.009 -0.044 -0.136 -0.112 -0.116 
A5 0-49 6.2 3.6 419 505 4-69 4.77 
41 < lo-; - 1.62 - 0.73 - 0.37 - 043 - 0-29 - 0.48 
4 2  3 x 10- 0.13 - 005 - 0.05 -0.016 0005 - 0.001 

A4 00069 -0.71 - 0.184 - 0.235 -0.326 - 0302 -0-304 
A5 0-063 1.235 - 1.235 -0.639 -0212 -0.173 -0.0825 
41 10-9 - 1.62 - 073 - 037 - 0.43 - 0.30 - 0.48 
A 2  < 10-9 0.13 -005 -0.05 0.016 oM)46 -00015 

A 3  7 - 8 ~ 1 0 ~ '  -0.08 -0.01 -0.0048 -0.027 -0.037 -0.037 

A3 2.3 x -0.058 0021 0.027 0.004 - 04)055 0.009 
A4 3 7 x  lo-' - 0.427 0.099 0.047 -0.044 - 0.021 -0.022 
A5 0.0064 2.07 - 0436 0155 1.0 0.63 0.7 15 

p =  co 41 0 - 1.63 - 0.73 - 0.36 - 043 - 0.30 - 0.48 
42 0 - 1.34 -005 -0.05 -0.014 -0.004 -0.016 

A4 0 - 0.41 0108 0.056 -0.03 -0.0096 -0.011 
A 3  0 0 0 0 0 0 0 

AS 0 1.5 - 0.92 - 0.33 049 0.105 0.207 

Relative error in energy norm llellE (Yo) 602 4.65 3-74 3.10 2.62 

linear forms are as follows: 

a U  aU cosz e + al, sin 20 + u2, sin2 e) - - 
ar ar 

1 auav + (a, sin' 8 - a,, sin 28 + a,, cos2 e) - - - r2 ae ae 

= JoR Jz (al 

+ (*(a2, - all)sin28 + rdrd0 (26) 



420 B. A. SZABd AND Z. YOSIBASH 

a v  
(al cosz 8 + alz sin 28 + aZ2 sin' 8) - ar 

+ ($(az2 - all)sin28 + 

where we assumed that the domain OR is defined as in Section 2, i.e. a circular sector, and the 
vector q (resp. 1) is related to u (resp. v )  by equation (11). 

The ith eigen-combination is denoted by Oi(ai, r, 8): 

Oi(ai, r, 8) = ra'f;:(8) (28) 

Any two of mi and aj are linearly independent, however unlike in the case of the Laplace problem, 
they are not orthogonal with respect to the bilinear form gc on a circular sector domain 
QR centred in the singular point with a radius R. 

Theorem 2. In case of the general scalar elliptic problem the eigenfunctionsj@) are no longer 
orthogonal with respect to kZlc ouer OR. 

The proof can be found in Reference 11. 

Remark 3. The lack of orthogonality in the general elliptic scalar problem complicates 
considerably the use of the CIM for the extraction of the GFIFs, requiring the use an ortho- 
gonalization procedure. 

3. I .  Extraction procedures in the vicinity of singular points 

given by 
Following the same steps as in previous section, the ( i ,  j)th term of the compliance matrix is 
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and the i-term of the linear form is 
n p + l  No 

1 = 1  k = l  m = l  

(1) 
(Fc)i = Rai C C 1 a ( e ( t m ) ) W m c i k  

1 

The computation of the matrix B, involves only the eigenpairs. The computation of the vector 
F, involves the eigenpairs and the solution ti given on a circle of radius R around the singular 
point. 

3.2. Model problem 

Consider the general scalar elliptic problem governed by the equation: 

prescribed over a domain 0 whose boundary consists of a reentrant corner of 90" generated by 
two edges, rl and r2. On the two edges rl and r,, which meet at the origin of the co-ordinate 
system (x 1, x2) , homogeneous Neumann boundary conditions are applied: 

2 au C a i j - v j  = O  on rl,r2 
i . j = l  axi 

The solution u can be written in the following form: 
m 

u = C A,u(") + constant 
n = l  

where 

(32) 

(33) 

r and 8 are polar co-ordinates centred on the re-entrant corner such that 8 = 0 coincides with the 
x axis. The first term in the expansion (33) for Vu is unbounded as r + 0. 

Let 0 be the unit circle sector shown in Figure 5, which is divided into six finite elements, such 
that the refined finite element layer around the singular point has the radius 0-15. The circular 
boundary of the domain is loaded by the Neumann boundary condition which corresponds to the 
first symmetric eigenfunction of the asymptotic expansion of u about the reentrant corner: 

=Alr-1/3[2(1 +3~in~8)]-~/ '{[+(1 +3cos2e)(1 +3sin2@-$sin228] 

x cos [+ arctan(2 tan e)] + 2 sin 28 sin [2 arctan(2 tan e)]} (35) 
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Figure 5. Solution domain, mesh design (six elements), and flux boundary conditions for the model problem 

Table 11. First three GFIFs for the model problem with 6-element mesh 
~~ ~~~ ~ ~ 

p = l  p = 2  p = 3  p = 4  p = 5  p = 6  p = 7  p = 8  

DOF 8 22 39 62 91 126 167 214 
IlellE(%) 33.95 7.02 3.74 2.23 1.65 1.32 1.10 0.93 

A1 0.80271 16 09905142 0.9997004 0.9997054 0.9993824 0.9995902 0.9997769 0.9998464 
A2 0.1694275 0.0038147 0.0036318 2.38 x 1.5 x 7 8  x 4.6 x 3.4 x 
A3 1 ~ 1 0 - ' ~  5xlO-'O 4xlO-'O 5xlO-'O 5 ~ 1 0 - ' ~  5x10-" 5x10-" 5x10-" 

while on the other two boundaries homogeneous Neumann boundary conditions are applied. 
The GFIF Al  is arbitrarily selected to be Al  = 1. 

To demonstrate the entire numerical procedure, we do not use the exact eigenpairs in our 
computations but their approximations obtained by the modified Steklov method. These eigen- 
pairs are computed using a coarse 3-element mesh. The first three approximated eigenvalues 
obtained at p = 8 are a1 = 0.666666675, a2 = 1.333333307 and a3 = 2-000000413. 

The first three GFIFs were then extracted, taking R to be 0.5. The number of degrees of 
freedom, the error in energy norm, and the computed values of the three GFIFs are listed in 
Table 11. Of course, Al  has to converge to 1, and A2 and A 3  have to converge to 0. 

We may see from Table I1 that the GFIFs converge strongly and obviously, although not 
monotonically. Our method yields solutions at p-level2 or 3 that are within the range of precision 
normally needed in engineering computations. 



SINGULARITIES IN TWO-DIMENSIONS PART 2 423 

.................................................. ....... .................... .;. ........................ 

--Encrgnorn. ............................................... 

C - + First GFIF. 
7 1  
C - + First GFIF. 

10 100 
DOF. 

Figure 6. Convergence of llellE, the strain energy (Ilelli), and A ,  for the 6-element mesh 

We have plotted the relative error in energy norm, the relative error in strain energy and the 
absolute value of the relative error in A l  on a log-log scale in Figure 6. 

The convergence path of the GFIF A l  follows closely that of the strain energy, which is 
a behaviour referred to as 'superconvergence'. 

Taking advantage of the strong convergence observed, we use now over the same domain only 
three finite elements, without the refined layer towards the singular point. The integration path 
was taken to be R = 0.9, and we plot the same data as in Figure 6 for the 3-element mesh in 
Figure 7. The convergence curve of the GFIF Al is oscillating with a mean being approximately 
the strain energy convergence curve. 

This anisotropic model problem clearly demonstrates the effectiveness and the superconver- 
gent property of the proposed method for anisotropic materials. 

4. GSIFS FOR THE ELASTOSTATIC PROBLEM 

This section is devoted to the computation of the generalized stress intensity factors associated 
with the elastostatic problem. Although the basic method has already been presented in the 
previous two sections, new difficulties arise because of the existence of complex eigenpairs. 

As shown in Reference 11, when one of the eigenpairs is complex then both the real and the 
imaginary part of the solution must be considered. Assume that the jth eigenpair is complex, 
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Figure 7. Convergence of IlellE, the strain energy (Ilelii), and A, for the 3-element mesh 

i.e. aj = aia’ + iay’ and the corresponding complex eigenvector associated with u, is {aj} = 
{a:a) + iay’}, while the one associated with uy is {bj} = {bja’ + iby’}. We need to consider both 
the real and the imaginary parts of the solution, i.e. the span of the space in which the solution lies 
contains the two eigenfunctions corresponding to the real and imaginary parts: 

When the jth eigenvalue is real, then the second eigenfunction vector vanishes, and the only 
eigenfunction vector corresponding to the jth eigenvalue is: 

Once the solution is given in terms of the eigenpairs, the expressions for the bilinear form (ac) 
and the linear form (Fc) associated with the complementary weak form can be evaluated. 
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Before doing so, we examine an interesting feature of the stress intensity factors (K, and K,,) for 
crack configurations in cases when the first eigenvalue is complex. It was shown in 1959 by 
Williams’’ that the stresses near the crack tip have an oscillatory character as r -, 0. Therefore, 
the linear solution is physically inadmissible because it predicts that the upper and lower surfaces 
of the crack should wrinkle and overlap near the ends of the crack. Nevertheless, the size regions 
in which overlapping occur is significantly smaller when compared with crack size for actual 
materials (see for example References 13 and 14). This region can be neglected in a similar manner 
as the plastic zone, when failure theorems based on linear fracture mechanics are applied. 
Moreover, the stress intensity factors do not have the simple physical interpretation, as in the 
homogeneous case, where the symmetric and skew-symmetric parts of the solution appear 
separately. Hence, in the formulation of failure criteria, it is necessary to assume that some 
function of K I  and K I I  (and, possibly, additional GSIFs), has to reach a critical value. 

Having this in mind, we can proceed and evaluate the expressions needed for the computation 
of the GSIFs. Assume that oo and a1 lie in the statically admissible space (see detailed definition in 
Reference lo), then W, and 9, are given by: 

where [El is the material matrix, [ A z ]  is the matrix given in Reference 1, and &2$) is the part of 
the boundary where the displacement vector i is prescribed. 

4. I .  Extraction of the GSIFs using approximated eigenpairs 

The stress tensor is evaluated in terms of the displacement vector given in (36) as follows: 

= [El [D]u (39) 

[D] is the differential matrix operator given in equation (27) in Reference 1. The 3 x 1 vector, 
corresponding to [DJu will be denoted by Du, and its elements can be explicitly obtained using (36): 

“+ 1 

m = l  

2 + [ - aj:)sinecosdj + a ~ ) s i n e s i n d j ] N ~ ( t ) -  
0 - el 
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m = l  

- sin e sin Sj(aj")ax) + ay)u;E)) 

+ cos 8 cos Sj(a;")b;t) - ay'bg)) 

- cos 8 sin dj(a?) b;) + ay)bK))] N m ( 8 ( t ) )  

+ [a~)cos8coshj  - a ~ ) c o s e s i n d j  

- b;:) sin 0 cos S j  + b;:) sin 8 sin S j ]  N:( g) ~ (42) 
2 

w - e l  
def (1) where Sj = a j  In r, and N, are the shape functions on an edge. If aj is complex, then the elements 

of the j + 1 vector Du, are: 
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The numerical evaluation of the integral (46) requires Gauss quadrature in both the r and 
0 directions. When comparing to the scalar elliptic problem, where we could reduce the double 
integration to integration in one dimension only, this integration is less efficient, and we have 

As previously explained, the stress tensor defined in (39) automatically satisfies the boundary 
conditions on all boundaries except rR, so that the linear form (38) degenerates to an integral over 
the circular boundary rR alone. Defining the vector io %if (& cos 6, d,, sin 6, li, sin 6 + dy cos 6)’ 
(38) becomes 

The jth term of the load vector corresponding to the linear form can be explicitly computed 

4.2. Isotropic model problem 

Let us consider the edge-cracked panel in an isotropic material studied by Szab6 and 
BabuSka’. Plane strain situation and Poisson’s ratio of 0.3 were assumed. The first and second 
GSIFs were computed by the CIM and CFM and it was demonstrated that the rate of 
convergence using these methods is as fast as the rate of convergence of the strain energy. It 
should be noted that the exact eigenpairs were used in Reference 2. 

To demonstrate the overall numerical method, the approximated eigenpairs obtained by the 
modified Steklov method were used. These approximated eigenpairs are computed using a 
4-element mesh at p = 6. The two eigenvalues obtained are u1 = 0.49999967, a2 = 0~50000051 
(the exact values are 4). 

The tractions that exactly correspond to the stresses of Mode 1 and Mode 2 stress fields were 
applied on the boundaries of the solution domain chosen to be defined exactly as in Reference 2, 
with same finite element mesh. See Figure 8. We select the first two GSIFs to be A (A is arbitrary) 
and defined the normalized stress intensity factors A”, and as follows: 

(50) dcf 
Ai = (Ai)FE/A, i = 1,2 

In this way both normalized GSIFs have to converge to 1 as the number of degrees of freedom is 
increased. 

The first two normalized GSIFs are extracted taking R to be 0.5. The number of degrees of 
freedom, the error in energy norm, and the computed values of the normalized GSIFs are listed in 
Table 111. The relative error in the energy norm, the relative error in the strain energy, and the 
absolute value of the relative error in the first GSIF, computed by our method and by the CIM, 
are plotted against the number of degrees of freedom on a log-log scale in Figure 9. The same 
data for the second GSIF is shown in Figure 10. 

It is seen that the rate of convergence of the GSIFs is faster than the rate of convergence of the 
solution measured in energy norm and both the CIM and our method have similar convergence 
patterns. As the error in energy norm decreases the CIM (based on the exact eigenpairs) performs 
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Figure 8. Solution domain and mesh design for a crack in an isotropic material 

Table 111. The first two GSIFs for a crack in an isotropic material 
____ ~~~~~~ ~ 

p = l  p = 2  p = 3  p = 4  p = 5  p = 6  p = 7  p = 8  

DOF 53 155 273 439 653 915 1225 1583 
llellE(%) 29.92 11.07 5.52 3.15 2.24 1.78 1.48 1.26 

A, 0.8144 0.9548 0.9912 0,99783 0.99795 099825 0.99862 099882 
2 2  08317 0.9641 0.9946 0,99942 0.99888 0.99898 0.99926 0.99943 

better than our method (based on the approximated eigenpairs). However, up to the relative error 
of approximately 0.1 per cent the performance of both methods is virtually the same. 

This example problem demonstrates the efficiency of the proposed extraction method when 
applied to isotropic materials. 

4.3. Crack at a bimaterial interface 

A bimaterial is a composite of two homogeneous materials, with continuity of tractions and 
displacements across interfaces maintained. When the materials are isotropic, a closed form 
solution for the stress tensor can be obtained using Muskhelishvili's' methods. Referring to 
Figure 11, we define 

where 

K = {  3 - 4v for plane strain 
(3 - v)/(l + v) for plane stress 
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Figure 9. Convergence of IlellE, the strain energy ( l l e l~~ ) ,  and A ,  for a crack in an isotropic material 

and p is the shear modulus. Following SUO,'~+ and ignoring terms which remain bounded at the 
crack tip, the asymptotic stress fields in material 1 can be put into the form: 

{KI[cos(~Inr)az + sin(e1nr)aSI 
1 

6.. =- 
" J2.l 

+ K ~ ~ [  - sin(eInr)oz + cos(~lnr)a$]) i , j  = r, 8 
where 

a: = [ - sinhE(n - 8)cos(@) + e-&(ff-gcos(+8)(l + sin2(@) + ~sin(tI))]/cosh~n 

or0 = [sinh E(II - 8)cos($8) + e ~ E ~ x ~ e ~ ~ ~ ~ ( ~ ~ ) ( c ~ ~ 2 ( ~ 8 )  - ~sin(O))]/cosh EII 

CT$ = [sinh E( I I  - 8) sin(@) + e-'('" sin($3)(cos2(@) - E sin(O))]/cosh E X  

o:r = [coshE(n - 8)sin(#) - e-"'"-@sin(@)(l + cos2(*8) - ~sin(e))]/cosh~n 

& = [ - coshE(n - O)sin(@) - e-e('"-e)sin(~8)(sin2(~8) + E S ~ ~ ( ~ ) ) ] / C O S ~ E I I  

& = [cosh E(II - 8)cos($B) + e-&('"-') cos(48)(sin2(f8) + E sin(O))]/cosh EZ 

'The expressions for the displacements in Reference 16 are not continuous across the interface at 0 = 0, therefore could 
not possibly be valid 



430 B. A. SZAB6 AND 2. YOSIBASH 

--BnuglI lWRl -A 

Figure 10. Convergence of Ilelle, the strain energy (llelli), and A ,  for a crack in an isotropic material 

t 

Figure 1 1 .  Crack at a birnaterial interface example problem 
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Figure 12. Solution domain and mesh design for a crack at a bimaterial interface 

The stress fields in material 2 can be obtained by replacing the combination EA to - ~n 
everywhere in (54). The first eigenvalue for this crack problem is complex and is given by 4 & it. 
Analytic methods for the computation of the stress intensity factors are available only for some 
simple geometries and loadings. Because of the complexity of these methods, numerical proced- 
ures are a necessity. 

An early numerical method for extracting stress intensity factors (SIFs) for cracks along 
bimaterial interfaces from finite element solutions is given in Reference 17, where a special hybrid 
crack tip finite element was used. Nong et d.’* used the contour integral method for 
bimaterial interfaces. Although these methods provide good results, they require complicated 
computational procedures, have to be tailored to a specific finite element code, cannot analyse 
anisotropic materials and are restricted to specific geometries. Smelser” used the crack flank 
displacement data for extracting the SIFs, however, the reported data have low accuracy. All of 
these methods require the knowledge of the exact eigenpairs, and are strictly restricted to 
a particular geometry. 

The accuracy and convergence behaviour of our method is demonstrated on the bimaterial 
fracture mechanics problem shown in Figure 11 where plane strain situation is assumed. The 
exact eigenpairs are utilized in equation (37). As suggested in the previous model problem, the 
tractions that exactly correspond to the singular stress field in (52) were applied on the sides of 
a circular solution domain shown in Figure 12. The outer radius of the domain has the radius of 
1.5 and the two refined layers around the singular point have the radii 0.15 x 1.5 and 0-152 x 1.5. 
The polynomial level of the trial and test functions is increased over the shown mesh from 1 to 8. 
The stress intensity factors K I  and K I I  in the expressions for the applied tractions are arbitrarily 
selected to be K. Again, we define the normalized stress intensity factors X I  and I?,[ analogously 
to (50) and expect that the extracted values for the Rs will converge to 1 as the number of degrees 
of freedom is increased. 
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Figure 13. Convergence of IlellE, the strain energy (Ilellf). and the errors in 8, and R,, for a crack at a bimaterial interface 

Figure 13 shows the relative error in the energy norm, the relative error in strain energy and the 
absolute value of the relative error in the extracted SIFs as the number of degrees of freedom is 
increased on a log-log scale. The computations were done using an integration radius of 1.3. It is 
seen, as in the case of an isotropic material, that the existence of complex eigenpairs has no 
influence on the performance of the proposed method, and the SIFs converge to the exact values 
virtually as fast as the convergence rate of the strain energy. This example demonstrates that an 
accurate and efficient numerical solution of fracture mechanics problems, even for such complic- 
ated situations as the crack at a bimaterial interface, is possible. Additionally, the method is 
equally well suited for any other singular point, without further changes. 

5. SUMMARY AND CONCLUSIONS 

The computation of engineering data from finite element solutions of two-dimensional linear 
elliptic boundary value problems of second order was investigated. The principal objective was to 
develop efficient and reliable methods for the computation of the coefficients of asymptotic 
expansions in the vicinity of singular points, called generalized flux intensity factors (GFIFs) and 
generalized stress intensity factors (GSIFs). A key requirement was that the methods must be 
applicable to anisotropic and heterogeneous materials. The reason for this requirement is that 
investigation of failure initiation events in composite materials involves the key parameters that 
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characterize the solutions in the vicinity of singular points. Another important requirement was 
that the method developed in a two-dimensional setting has to be extendible to three dimensions. 

The investigation addressed two important areas: (a) the characterization of the solution by 
means of eigenfunctions in the vicinity of singular points, which was reported in Reference 1 and 
(b) extraction of the key parameters from the finite element solution. 

A new indirect method for extracting the GFIFs/GSIFs and first derivatives from the finite 
element solution, based on the complementary weak form was developed. This new superconoer- 
gent method was formulated and analysed in detail on the basis of the Laplace problem in two 
dimensions in Reference 9. Mathematical analysis, followed by numerical examples, demon- 
strated the efficiency and accuracy of the results. 

It was shown theoretically that the computed values converge to the exact ones at least as fast 
as the energy norm. It was demonstrated numerically that the convergence is as fast as the energy 
norm squared, that is the strain energy. 

The proposed method has five major advantages: (a) The error in the pointwise data of interest 
exhibits superconvergence. (b) The method is general in the sense that it is applicable to any point 
of the domain using the same algorithm. (c) The method is applicable to anisotropic materials, 
and any type of singularities, including those associated with multi-material interfaces. (d) The 
method can be used in conjunction with any finite element analysis program. (e) The method is 
extendible to three-dimensional problems. 

The formulation and numerical examples for the anisotropic scalar problem, as well as for the 
elasticity problem, are provided. It is demonstrated that the general behaviour of the extracted 
values is very similar to that observed for the Laplace problem. 
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