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SUMMARY

The displacements of three-dimensional linearly elastic plate domains can be expanded as a compound
power-series asymptotics, when the thickness parameter � tends to zero. The leading term u0 in this
expansion is the well-known Kirchho?–Love displacement Aeld, which is the solution to the limit case
when �→ 0. Herein, we focus our discussion on plate domains with either clamped or free lateral
boundary conditions, and characterize the loading conditions for which the leading term vanishes. In
these situations the Arst non-zero term uk in the expansion appears for k =2; 3 or 4 and is denoted
as higher-order response of order 2; 3 or 4, respectively. We provide herein explicit loading conditions
under which higher order responses in three-dimensional plate structures are visible, and demonstrate
the mathematical analysis by numerical simulation using the p-version Anite element method. Owing
to the need for highly accurate results and ‘needle elements’ (having extremely large aspect ratio up
to 10 000), a p-version Anite element analysis is mandatory for obtaining reliable and highly accurate
results. Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Plate domains are three-dimensional structures with one of their dimensions, usually denoted
by ‘thickness’ (2�), much smaller compared to the other two dimensions. In the linear theory
of elasticity, the displacements solution u is of interest and can be considered as a function
of the co-ordinates x and of �: u= u(x; �). If the loadings behave uniformly with respect to
�, see (3) and (4) later, it is natural to expand u(x; �) as an asymptotic series in �. It is now

∗Correspondence to: Zohar Yosibash, Mechanical Engineering Department, Ben-Gurion University of the Negev,
P.O. Box 653, Beer-Sheva 84105, Israel

†E-mail: zohary@pversion.bgu.ac.il
Received 10 March 2000

Copyright ? 2001 John Wiley & Sons, Ltd. Revised 28 February 2001



1354 M. DAUGE, A. R 7OSSLE AND Z. YOSIBASH

well understood that this problem has a singular perturbation nature as �→ 0 giving rise to
boundary layer e?ects, and that such an expansion can be provided in the general form, see
also References [1–3],

u(x; �)� u0
(
x;
x
�

)
+�u1

(
x;
x
�

)
+�2u2

(
x;
x
�

)
+ · · ·+�kuk

(
x;
x
�

)
· · · (1)

where u0; u1; : : : ; uk are functions of the co-ordinates x1; x2 and x3=�. Detailed mathematical
analysis on the asymptotics in thin isotropic plates, (see References [4–6] for clamped plates
and Reference [7] for other lateral boundary conditions) makes it possible to explicitly quantify
the various terms in expansion (1). Moreover, numerical realization of several terms in (1)
has been presented in Reference [8].
Herein, we address plates with either hard-clamped or free lateral boundary conditions, and

based on the mathematical analysis in References [9; 10] we present explicitly expressions
for loading conditions for which the leading term u0 vanishes in expansion (1), providing a
displacement Aeld with a Arst non-vanishing term which is not u1 (that is zero too) but u2 (or
even u3 or u4) denoted as higher-order response of order 2 (resp. 3 or 4). In these situations it
may happen that a boundary layer term of the same order as the actual leading term appears in
the displacement Aeld. It is important to realize that there are loading conditions (which will
be explicitly given herein) under which the Kirchho?–Love solution of a three-dimensional
plate vanish.
As to the practical engineering point of view, typical loadings where higher-order responses

are excited may be very rare. A clamped thin plate on an airplane or a thin spoiler on a
car subjected to pressure on top and bottom and with body forces due to gravitation, all
having speciAc magnitudes, might be one such example. Beyond the engineering applicabil-
ity in daily use of the presented results, the speciAc loading conditions explicitly provided
herein, exciting higher-order responses, are of relevance from the computational point of view.
These could serve as benchmarks for numerical codes simulating the response in thin elastic
structures.
In the same spirit of Reference [8] (where we presented visualization of boundary layers in

thin plates under ‘usual loadings’), we herein visualize these higher-order responses using the
p-version of the Anite element method (FEM). Two of the major advantages of the p-FEM
over traditional h-FEM are crucial for conducting this kind of analysis—namely: the possibility
of using extremely large element aspect ratios (ratio between larger and smaller sides of an
element) without deterioration of the numerical results, and exponential convergence rates,
assuring high accuracy and reliability of the computed data.
This paper is organized as follows: In Section 2 we provide the necessary notations and

preliminaries followed by explicit details on the three-dimensional solution for clamped and
free plates. In Section 3 the general necessary and suQcient conditions on the loadings to pro-
vide higher-order responses are summarized, and explicit loading examples are provided which
exhibit these higher-order responses. Numerical examples for demonstrating and visualizing
higher-order responses, predicted by the mathematical analysis, are provided in Section 4.
These numerical solutions are obtained by the p-version Anite element method. We con-
clude in Section 5. An appendix with some of the formulae used in the paper is provided at
the end.
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Figure 1. Typical plate of interest and notations.

2. NOTATIONS AND PRELIMINARIES

2.1. The elasticity problem

We consider a thin elastic, isotropic and homogeneous three-dimensional domain R deAned
as follows:

R=!× (−�;+�) with !⊂R2 a regular domain
and associated Cartesian co-ordinates are x=(x1; x2; x3), see Figure 1. Let (u1; u2; u3)T denote
the components of the displacement and let e denote the linearized strain tensor eij = 1

2(@iuj
+@jui), where @i ≡ @=@xi. The stress tensor � is given by Hooke’s law �=[A]e; where [A]=
(Aijkl) is the compliance tensor of an isotropic material expressed in terms of the LamSe
constants � and �:

Aijkl = ��ij�kl+�(�ik�jl+�il�jk)

In the sequel, we will use either the LamSe constants or the equivalent engineering material
coeQcients:

Young modulus E=
�(3�+2�)

�+�
and Poisson ratio �=

�
2(�+�)

The tractions (surface forces) are denoted by t= � · n, where n is the outward normal vector
on the domain’s boundary. We consider herein either clamped (u= 0), or free (t= 0) boundary
conditions on the lateral face of the plate

@RL= @!× (−�;+�)
The tractions on the upper face of the plate (T+= {x | x3= �}) and the corresponding lower

face of the plate (T−= {x | x3 =−�}) are denoted by t+ (corr. t−). The volume forces are
denoted by f .
With above notation, we may state the weak formulation of the elasticity problem for the

free plate

Seek u∈H1(R)3 such that∫
R
[A]e(u) : e(v)=

∫
R
f · v+

∫
T+
t+ · v+

∫
T−
t− · v; ∀v∈H1(R)3 (2)

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 53:1353–1376



1356 M. DAUGE, A. R 7OSSLE AND Z. YOSIBASH

whereas for the clamped plate one simply needs to seek a solution in the space [H1
@RL
]3, which

are functions in H1(R)3 with the additional constraint that u= 0 on @RL.
Of course, in the case of free boundary conditions the applied tractions t± and the volume

forces f are supposed to be equilibrated versus the rigid displacements.

2.2. Scaled co-ordinates and assumptions on data

We denote by the Greek index � the in-plane variables {1; 2}, by s a curvilinear co-ordinate
along the lateral boundary of the plate (@!) and by n the distance to @!. We also use the
subscripts n and s for the normal and tangential components of a Aeld on the boundary @!.
The subscript ∗ is used as condensed notation of in-plane variables. Thus we denote:

x∗
def= (x1; x2); u∗

def= (u1; u2)T, div∗u∗
def= @1u1+@2u2, ∇∗=(@1; @2)T and U∗

def= @11+@22.
It is convenient to represent all quantities of an asymptotic expansion in a Axed reference

domain, thus we stretch the plate along the vertical axis and deAne the stretched transverse
variable

X3
def= x3=�

Moreover, a correct description of the boundary layer terms requires the introduction of the
stretched distance to @!:

N def= n=�

In such an asymptotic analysis, it is natural to assume that the volume forces behave as Axed
proAles in the scaled vertical variable X3, compare with the reference work [11]. Moreover,
like in the previous works [9; 10; 7], we suppose that they are of order of � in the vertical
direction, and of order O(1) in the in-plane directions, namely

f�(x)=F�(x1; x2; X3); f3(x)= �F3(x1; x2; X3) (3)

with the data F=(F1; F2; F3)T regular up to the boundary, i.e. F∈C∞( V!× [−1; 1])3.
Correspondingly we assume for the tractions on the upper and lower faces of the plate:

t±� (x)= �T±
� (x1; x2; X3 =±1); t3(x)= �2T±

3 (x1; x2; X3 =±1) (4)

The above assumptions are the correct ones so that the scaled displacement U (x1; x2; X3)
deAned as (u∗; �u3)(x) has a limit (which is generically non-zero) as �→ 0. Capital letters are
usually used in the sequel to represent quantities independent of �.
Note that, as we are in the framework of linearized elasticity, by superposition we can

construct displacement asymptotics for any volume forces f(x; �) and tractions t±(x; �) which
can be expanded as power series of �.

2.3. The three-dimensional solution

In this subsection we provide expressions for the displacements in terms of in-plane functions
(functions based on the variables x1; x2), � and loading conditions. The mathematical rigorous
proofs for the following representation are provided in Reference [7] in a general setting,
whereas herein we summarize the essential and provide explicit representation for a restricted
class of cases. Due to the symmetry properties of isotropic plates, it is well known that

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 53:1353–1376
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the displacements u can be split into a bending part and a membrane (or stretching) part
according to

ub; �(x3) = 1
2(u�(x3)− u�(−x3)); ub;3(x3)= 1

2 (u3(x3)+u3(−x3))
um; �(x3) = 1

2(u�(x3)+u�(−x3)); um;3(x3)= 1
2(u3(x3)− u3(−x3))

ub is the solution of (2) corresponding to the bending parts of the volume forces fb and
tractions tb, and similarly for the membrane.
We are going to describe now (see also the presentation in Reference [8]), the asymptotic

expansion of u(x; �) under assumptions (3) and (4). This expansion involves three sorts of
terms:

(i) Kirchho?–Love displacements,
(ii) Displacements v= v(x∗; X3) with zero integral mean value

∀x∗ ∈ V!
∫ +1

−1
v(x∗; X3) dX3 = 0

(iii) Boundary layer terms �=�(s; N; X3) exponentially decreasing as N →∞.
The Kirchho?–Love displacements are expressed by generator functions V with three com-

ponents ("1; "2; "3)T(x∗) only depending on in-plane variables, namely the membrane ones are
generated by V∗=("1; "2) and the bending ones by "3. We denote

UKL
m (V∗)(x)

def= ("1(x∗); "2(x∗); 0) (5)

UKL
b ("3)(x)

def=
(
−X3@1"3(x∗);−X3@2"3(x∗); 1� "3(x∗)

)

=
1
�
(−x3@1"3(x∗);−x3@2"3(x∗); "3(x∗)) (6)

Though containing �, deAnition (6) reveals to be a most convenient one. We denote in a
natural way

UKL(V) def= UKL
m (V∗)+UKL

b ("3)

Under assumptions (3) and (4), the displacement solution of (2) can be expanded as

u�UKL(V0)+� (UKL(V1)+v1+�1)+ · · ·+�k(UKL(Vk)+vk+�k) · · · (7)

Remark. Compared to the general expansion (1), we see that u0 can be identiAed to
UKL(V0), and for any k¿1; uk is identiAed to the sum UKL(Vk)+vk+�k .

Thus the expansions of the bending and membrane parts are

ub �UKL
b ("

0
3)+�(U

KL
b ("

1
3)+v

1
b+�1b)+�2(UKL

b ("
2
3)+v

2
b+�2b)+ · · · (8)

um �UKL
m (V0∗)+�(UKL

m (V1∗)+v1m+�1m)+�2(UKL
m (V2∗)+v2m+�2m)+ · · · (9)
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Remark. The displacements v1 with zero integral mean value in (8) and (9) are

v1b(x∗; X3) =
�

6(1− �)
(0; 0; (3X 23 − 1)U∗"03)

T (10)

v1m(x∗; X3) =
�

1− �
(0; 0;−X3 div∗ V0∗)T (11)

They are in fact completely determined by V0.
Using (5), (6) and (10), (11), we can represent the leading terms modulo O(�2) in expansion

(8) and (9) as follows:

ub =




−X3@1"03 − �X3@1"13 + 0 + 0

−X3@2"03 − �X3@2"13 + 0 + 0

1
�
"03 + "13 + �"23 + �

�
6(1− �)

(3X 23 − 1)U∗"03


+��1b+O(�2)

(12)

um =



"01 + �"11 + 0

"02 + �"12 + 0

0 + 0 − �
�

1− �
X3 div∗ V0∗


+��1m+O(�2) (13)

where the symbol O(�2) means that the remainder is uniformly bounded by c �2, c being
independent of �.

Remark. In the hard-clamped case the Arst membrane boundary-layer term �1m (resp. bend-
ing �1b), is only present if div∗ V0∗ is non-zero on @! (resp. U∗"03 �=0 on @!). In the free
situation �1≡�1b and �1 is present only if (@n+$)@s"03 is non-zero on @!, with $ denoting
the curvature of @!. Visualization of these proAles is provided in Reference [8].

2.4. Membrane and bending equations for the generators

As shown in the previous subsection, the displacements can be expressed in term of in plane
functions, Vk , called generators. The generator functions Vk∗ and "k3 are deAned on ! and they
are solutions to the following problems. Vk∗ is solution of the ‘membrane equation’

�U∗Vk∗+(�̃+�)∇∗ div∗ Vk∗=Rk
m (14)

whereas "k3 solves the ‘bending equation’

(�̃+2�)U2∗"
k
3 =Rk

b (15)

with �̃=2��(�+2�)−1. The right-hand sides Rk
m and Rk

b depend on the data F and T
±, and

only on x∗ and not on �.

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 53:1353–1376
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The right-hand side of (14) for V0∗ is given by

R0m(x∗)=− 1
2

[∫ +1

−1
F∗(x∗; X3) dX3+T+∗+T

−
∗

]

and the right-hand side of (15) for "03 is:

R0b(x∗)=
3
2

[∫ +1

−1
F3 dX3+T+3 +T

−
3 +div∗

(∫ +1

−1
X3 F∗ dX3+T+∗ − T−

∗

)]

For k=1, we have simply R1m =0 and R1b = 0, whereas for k=2 formulas are much more
involved and require the introduction of several new notations. For the sake of completeness,
we simply quote them from Reference [9] in the appendix.

2.5. Boundary conditions for the generators

The boundary conditions for the generators on @! depend of course on the speciAed boundary
conditions on the lateral face of the plate.

(i) For the hard clamped plate: The boundary operators are the Dirichlet conditions asso-
ciated with the membrane and bending operators in (14) and (15). For k=0 and 1, the
boundary conditions are
"03 = 0; @n"

0
3 = 0 for the bending equation and V0∗= 0 for the membrane equation.

"1n= c1 div∗V0∗, "1s =0, for the membrane equation and "13 = 0, @n"13 = c2 U∗"03, for the bend-
ing equation, where c1 = c1(�; �) and c2 = c2(�; �) are non-zero universal coeQcients.

(ii) For the free plate: The boundary operators are the Neumann conditions associated with
the correct bilinear forms corresponding to the membrane and bending operators in (14)
and (15).

For k=0 these are: for the membrane equation

�(@s"0n + @n"0s + 2$"
0
s ) = 0 (16)

�̃ div∗ V0∗ + 2�@n"0n =0 (17)

and for the bending equation

�̃U∗"03 + 2�@nn"
0
3 = 0 (18)

(�̃+ 2�)@nU∗"03 + 2�@s(@n + $)@s"03 =
3
2

[∫ +1

−1
X3Fn dX3 + T+n − T−

n

]
(19)

The generating function V1∗ satisAes homogeneous boundary conditions like V0∗ in (16) and (17).
Since Equation (14) for V1∗ is also homogeneous, then V1∗ is identically zero.

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 53:1353–1376
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For the bending equation

�̃U∗"13 + 2�@nn"
1
3 = c3@s(@n + $)@s"03 (20)

(�̃+ 2�)@nU∗"13 + 2�@s(@n + $)@s"13 = d(s) (21)

where c3 = c3(�; �) is a universal coeQcient and d(s) depends on special traces of "03 as well
as on Fn and T±

n .

3. HIGHER-ORDER RESPONSES

Under special loading conditions, which will be described in the sequel, the leading term in
expansion (7) vanish, i.e. the generator V0≡ 0, providing a displacement Aeld of higher order.
We deAne the order of the response according to:

De8nition 3.1. With assumptions (3) and (4) and if V0≡ 0, we call order of the response
the smallest integer k such that at least one of the three terms Vk ; vk or �k involved in
expansion (7) is not zero.

Readers interested in more detailed proofs of the results stated herein are referred to Refer-
ence [12]. The displacement asymptotic expansion for hard clamped plates is Arst considered
followed by free plate lateral boundary conditions. We also highlight the di?erence in the
higher-order responses due to the di?erent lateral boundary conditions.
The reader is referenced to the appendix for detailed deAnition of the symbols G, and H

appearing in the sequel, although these deAnitions are not essential for the understanding of
higher-order responses. These symbols reYect displacement functions of the type v, and are
generated by operations on the loadings (F;T±).
The symbols, [F]m in the sequel, is deAned as following:

De8nition 3.2. [F]m denotes the mth moment with respect to X3 of F :

[F]m=
∫ +1

−1
Xm
3 F(x∗; X3) dX3

3.1. Hard clamped plates

From equations (14) and (15) for V0 and the associated homogeneous boundary conditions, it
is clear that if R0m and R0b are zero, then V0≡ 0. In this case, as R1m and R1b are zero too and
the boundary data of V1 depends linearly on V0, we also have V1≡ 0. Formulas (10) and (11)
yield that v1≡ 0. Moreover, as �1 also depends linearly on V0, it is zero too. Thus the order
of the response is at least 2.

Theorem 3.3 ([9]). For any loading (f ; t±) such that R0m = 0 and R0b = 0, and that either R
2
m

or R2b or G(F;T±) is not identically zero, the order of the response is 2. The Arst non-zero

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 53:1353–1376
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term in expansion (7) of u is

�2


UKL(V2) +G∗(F;T±)︸ ︷︷ ︸

= v2

+�2


 (22)

As corollaries of Theorem 3.3 we exhibit special load conditions to excite order 2 responses
in bending and membrane solutions.

Corollary 3.4 ([9]). Let f3 = t±3 = 0; f∗=−3X3(1; 1)T; t+∗ =(�; �)T and t−∗ =−(�; �)T repre-
senting a bending load. Then we have an order 2 response and the expansion of the displace-
ment u= ub starts like

ub = �2






−X3@1"23 + 0 + G1

−X3@2"23 + 0 + G2

1
� "
2
3 + "33 + 0


+ �2b + O(�)


 (23)

with G1 =G2 = (2�)−1(X 33 − X3).

Corollary 3.5 ([9]). Let f3 = t±3 = 0; f∗=−(1; 1)T; t±∗ =(�; �)T representing a membrane
load. Then we have an order 2 response and the expansion of u= um starts like

um = �2





"21 + G1

"22 + G2

0


+ �2m + O(�)


 (24)

with G1 =G2 = (3�)−1(3X 23 − 1).
We may have higher orders than 2:

Theorem 3.6 ([9]). For any loading case which satisAes (f∗; t±∗ )= 0 and

([F3]0 + T+3 + T−
3 )=∇∗([F3]1 + T+3 − T−

3 )=U∗([F3]2 − [F3]0)=0 in !

then R0m =R2m =R0b =R2b = 0 and G(F;T±)= 0, and the order of the answer is ¿3.

As corollaries of Theorem 3.6 we exhibit special load conditions to excite order 3 responses
in bending and membrane solutions. Then Arst non-zero term in the expansion (7) of u is

�3


UKL(V3) + (0;H3(F;T±))︸ ︷︷ ︸

= v3

+�3


 (25)
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Corollary 3.7 ([9]). Let f3 = �(X 23 − 1=3) and t±3 = 0. Then we have an order 3 response
and the expansion of the displacement u= ub starts like

ub = �3






−X3@1"33 + 0 + 0

−X3@2"33 + 0 + 0
1
� "
3
3 + "43 + H3


+ �3b + O(�)


 (26)

Here H3 is a non-zero even polynomial of degree 4 in X3.

Corollary 3.8. Let f3 = �; t±3 =−�2. Then we have an order 3 response and the expansion
of the displacement u= ub starts like in (6).

Corollary 3.9 ([9]). Let f3 = 0; t+3 = �2 and t−3 =−�2. Then we have an order 3 response
and the expansion of the displacement u= um starts like

um = �3





"31 + 0

"32 + 0

0 + H3


+ �2m + O(�)


 (27)

with H3 = (�+ 2�)−1X3.

Remark. There exist loads f and t± which may generate fourth-order response. SpeciAc
loadings for this case can be found in Reference [9]. But if the loads are not identically zero
and satisfy (3) and (4), we cannot have order 5 responses or larger.

3.2. Free plates

Theorem 3.10 ([10]). For any loading f and t± such that R0m = 0; R0b = 0 in ! and 3
2 [
∫ +1
−1 X3

Fn dX3+T+n −T−
n ]= 0 on @!, the order of the response is ¿2. If either R2m or R2b or G(F;T±)

or one of the boundary conditions for V2 is not identically zero, then the order of the response
is 2 and the expansion of u starts like in (23) and (24).

Theorem 3.11 ([10]). The order of the response is ¿3 if and only if the generators Vk ≡ 0;
k=0; 1; 2, and additionally G(F;T±)= 0. This is exactly the case if f∗= t±∗ = 0 and

([F3]0 + T+3 + T−
3 )= ([F3]1 + T+3 − T−

3 )= ([F3]2 − [F3]0)=0 in !

Then the expansion of u starts like in (26) and (27).

Comparing Theorem 3.11 (for the free plate) with Theorem 3.6 (for the hard clamped
plate) one notices that if a loading produces an order 3 response for the free plate then the
same loading will produce a higher-order response for the hard clamped plate as well, but
contrary there exist loadings which produce a higher-order response in the hard-clamped plate
and does not produce it in the free plate, see Reference [12].
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Figure 2. Rectangular plate under consideration.

Figure 3. Finite element mesh for the plate
with 2�=0:1.

Figure 4. Finite element mesh and boundary
conditions for the plate with 2�=0:001.

4. NUMERICAL VISUALIZATION OF HIGHER-ORDER RESPONSES USING p-FEM

The theoretical results are visualized by computing functionals associated with the displace-
ment Aeld for free and hard clamped lateral boundary conditions, and for various loadings
exciting the higher-order terms. The computations are done within the Anite element code
Stress Check.‡ We consider a rectangular plate with dimensions 4× 1× 2� as shown in
Figure 2. The material properties are: Poisson ratio �=1=8 and Young modulus E=27=4.
All lateral boundary conditions are either free or hard clamped, thus there are two axes of
symmetry, so that only a quarter of the plate may be analysed, namely plate ABCG, with
symmetry boundary conditions on AG and GC.
A three dimensional p-version Anite element model is constructed having two elements in

the thickness direction, four elements in the x2 direction and six elements in the x1 direction.
In the neighbourhood of the edges, the mesh is graded so that there are two elements of
dimension � each. See Figure 3 for a typical mesh for 2�=0:1 and Figure 4 for 2�=0:001
and hard clamped lateral boundary conditions. The Anite element model is constructed

‡Stress Check is a trade mark of Engineering Software Research and Development, Inc., 10845 Olive Blvd., Suite
170, St. Louis, MO 63141, USA.
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parametrically so that the value of 2� may vary, and we change it from 0.1 (=10−1) to
0.001 (=10−3). Although not visible in Figure 4, there are two elements across the thickness
and two elements each of dimension � in the neighbourhood of the boundary. The p-level
over each element has been increased from 1 to 8 and the trunk space has been used (see
Reference [13]). There are 12 568 degrees of freedom at p=8. An advantage of using p-
version Anite element methods is this possibility of having ‘needle elements’ in the boundary
layer zone with aspect ratios as large as 10 000 without signiAcant degradation in the numer-
ical performance. An exponential convergence rate is obtained (due to the use of high-order
elements) and the convergence of the computed data has been examined as well for increasing
p-levels in order to evaluate the reliability of the numerical results.
By considering (8) and (9), one notices that in the generic case the displacement Aeld is

dominated by the Kirchho?–Love components, in particular the transversal bending component
of UKL

b ("
0
3) is much larger than any other component of the displacement. In contrast to that,

for the higher-order responses the operators G and H play an important role in the expansion
of the displacement Aeld, see (22)–(24) and (25)–(27). In order to be able to visualize single
terms in the expansion for the considered examples and in particular to extract constants with
respect to X3 as well as expressions with vanishing integral mean value, we introduce for
j=1; 2; 3 and i; m ∈ N the following quantities:

Jm[uj; Pi]=
1

(2�)m

∫ +1

−1
uj(x∗; X3)Pi(X3) dX3 (28)

where Pi is the ith Legendre polynomial. Since Vk are constants in X3 then they are
L2-orthogonal to Pi (i �=0). In contrast to that, the expressions vk are orthogonal to P0. Based
on the parity properties of the membrane and bending parts, the quantities Jm[uj; Pi] vanish
either for all even or for all odd values of i depending on the type and on the component of
the displacement Aeld under consideration. The quantities in (28) will enable us to visualize
in the higher-order response, the single parts in the leading terms and in particular to make
the appearing boundary layer e?ects visible.

4.1. Hard clamped plate, bending response of order 3

The Arst example which we consider should be understood as a motivating example in order
to indicate the existence of higher-order responses and their signiAcance. The loadings for this
example read: f�=0; t±� =0, f3 = �; t±3 =−,�2 with , a real parameter. In the following we
are going to change , such that the existence of a higher-order response will be visible. For
,=1, the loading is as in Corollary 3.8, thus one expects u3 to behave as �2 as �→ 0. For
any other , �=1, the ‘bending’ solution, with the Kirchho?–Love vertical component u3→∞
like 1=� is expected as �→ 0.
To be able to obtain a global information about the behaviour of the displacement Aeld we

introduce a global L2-norm (on the whole plate)

I(uj)=

√
1
2�

∫
R
|uj|2 dx1 dx2 dx3 (29)

We expect that for , �=1 and for �→ 0; I(u3) tends to inAnity with an order O(�−1) as predicted
by (8), but for ,=1; I(u3) will converge to zero with an order O(�2). This should also have
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Figure 5. I(u3) for various , as 2�→ 0.

some inYuence for , close to one, but the change for I(u3) from tending to inAnity with
an order O(�−1) to tending to zero with an order O(�2) should be smooth (with maybe high
gradients) with respect to the change of , near ,=1. Indeed, as expected by the mathematical
analysis, the numerical results obtained from the Anite element solution, shown in Figure 5,
demonstrate this behaviour.

4.2. Hard clamped plate, bending response of order 2

The second example which we consider is a bending example and the loadings are the
following: f1 =f2 =−3X3, f3 = 0; t±1 = t±2 =±�; t±3 = 0. This loading according to Corollary
3.4 produces an order 2 response.
In Figure 6 we present the functional J2[u3; P2] along the line x1 = 1; 06x260:15, i.e.

with respect to the physical distance to the lateral boundary. Since P2 is orthogonal to the
constant (over the thickness) terms "k3, we expect that J2[u3; P2] will vary in the boundary
layer zone only due to the presence of the boundary layer term ’2b;3 in the leading term
of the asymptotic expansion and then will vanish as we move inside the plate. We more-
over expect to see how the width of the boundary layer varies in dependence of �, since
we have chosen a representation in the physical variable. It can be noticed that indeed the
boundary layer is only active in a strip of a width of order � in the vicinity of the lateral
boundary.
However, such an evaluation does not allow a comparison of the single functionals J2[u3; P2]

for di?erent values of � in the boundary layer zone. That is the reason why in the following
the functionals Jm[uj; Pi] are always evaluated with respect to the stretched distance x2=2�. So
we evaluate Jm[uj; Pi] on a set of equidistant points along the line x1 = 1; 06x2=2�63. We
notice in this case, as shown in Figure 7, that the curves for di?erent values of � overlap, i.e
they are independent of �. Moreover, J2[u3; P2] is almost zero for x2=2�¿1, which manifests a
rapidly decreasing proAle. All of this is in accordance with the prediction of the mathematical
analysis.
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Figure 6. Hard clamped J2[u3; P2].
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Figure 7. Hard clamped J2[u3; P2] vis. stretched distance.

In Figure 8 we present J1[u3; P0] with respect to the physical variable x2. We expect to see
"23 only, since all the other terms are of higher order. Moreover, if we can see a boundary
layer zone at all, it should be of width � as in Figure 6. But as said above in order to be able
to visualize the boundary layer behaviour we are interested in the evaluation with respect to
the stretched variable x2=2�, which we present in Figure 9.
Since J2[u3; P0] is nothing but the integral mean value of u3 across the thickness, we now

expect to see the inYuence of both "23 and ’
2
b;3. At the Arst look one would expect that because

of the presence of "23 in the asymptotic expansion m=1 would hold and moreover, it would
be 1=� larger than ’2b;3. But as it can be seen from Figure 9 this is not true and m=2 turns
out to be the correct value. The reason for this is that we have evaluated J2[u3; P0] with
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Figure 8. Hard clamped J1[u3; P0].
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Figure 9. Hard clamped J2[u3; P0].

respect to the stretched variable x2=2�, while "23 in fact depends on the physical distance x2.
But, if one develops "23 in its Taylor series with respect to x2 around x2 = 0, then in this
series the constant (in x2) vanishes because of the lateral Dirichlet condition "23 = 0 on @!,
and the Taylor series starts with a linear (in x2) part. Considering now the Taylor series of
"23 with respect to the stretched variable x2=2� (around x2 = 0), i.e. we replace any x2 in the
series above by �(x2=�), it turns out that the asymptotic expansion of u3 indeed starts with �2,
such that m=2 is the correct choice. In Figure 9 there is almost no boundary layer behaviour
visible, which means that "23 dominates ’

2
b;3.

In Figure 10 we visualize J2[u1; P1]. We expect to see the inYuence of all the three terms
−X3@1"23; G1 and ’2b;1 which are contained in the leading term of the expansion. But in fact
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Figure 10. Hard clamped J2[u1; P1].

J2[u1; P1] varies in the boundary layer zone due to e?ect of the boundary layer proAle ’2b;1 and
becomes constant as we move away from the boundary inside the plate, which is the e?ect
of G1. Indeed, J2[u1; P1] tends to −1=90 in the interior of the plate which is the exact value of
J2[�2G1; P1], i.e. �2G1 represents the leading term in the expansion of u1 outside the boundary
layer zone. Here we recall that it holds Gb;�=(2�)−1(X 33 − X3), compare Corollary 3:4. The
explanation why we cannot see −X3@1"23 is similar to the one in Figure 9. Since x1≡ s in the
boundary layer zone, there @1"23 coincides with @s"

2
3, which vanishes for x2 = 0 because of the

lateral Dirichlet condition "23 = 0 on @!. But this means that the Taylor series of @1"23 in x2
around x2 = 0 starts with the linear term and hence the Taylor series in x2=2� starts altogether
with �3 and thus is in fact not present in the leading term.
In Figure 11, we present J2[u2; P1]. In contrast to Figure 10, where we only saw G1 and

’2b;1, here we really would expect to see the inYuence of all the three terms −X3@2"23; G2 and
’2b;2 which build up the leading term of the expansion. The reason for this di?erence is that
in the boundary layer zone @2"23 coincides with @n"

2
3 due to the fact x2≡ n there. In contrast to

@s"23 in the previous graph, now @n"23 is in general non-zero for x2 = 0, compare Theorem 5:1
of Reference [9], so that its Taylor series with respect to x2 around x2 = 0 starts with the
constant term and hence now should be visible in the graph. Indeed this fact can be stated
in the Agure. In the boundary layer zone we see J2[u2; P1] varying due to the e?ect of ’2b;2.
Although J2[u2; P1] becomes more or less constant as we move inside the plate, this constant
cannot be only the e?ect of G2, since the value of the constant is approximately −0:0004 and
not −1=90 as in the previous graph. This discrepancy is in fact produced by the presence of
−X3@n"23 in the leading term, or better by the constant term of its Taylor series in x2 in the
same manner as it is explained above.

4.3. Hard clamped plate, membrane response of order 2

The next example is a membrane one with the loadings: f�=−1; f3 = 0; t±� = �; t±3 = 0,
which in accordance with Corollary 3.5 produces an order 2 response.
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Figure 11. Hard clamped J2[u2; P1].
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Figure 12. Hard clamped J2[u1; P2].

The values of the considered functionals are for m=2 independent of � which indicates
that the asymptotic expansion starts in accordance with the analysis with �2. We Arst consider
the Arst component of the displacement Aeld u1. The behaviour of the second component is
very similar.
In Figure 12 we present J2[u1; P2]. The graph shows clearly the existence of a boundary

layer proAle in the leading term of the expansion. This boundary layer proAle is only present
in a vicinity of the lateral boundary. Since in this case G1 is simply a multiple of the Legendre
polynomial P2 (cf. Corollary 3:5), and "21 is of course a constant in X3; J2[u1; P2] tends to a
constant as we move away from the boundary, representing the presence of G1.
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Figure 13. Hard clamped J2[u1; P4].
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Figure 14. Hard clamped J2[u3; P1].

In Figure 13 J2[u1; P4] shows, as in the preceding graph, a boundary layer behaviour in a
vicinity of the lateral boundary but then in contrast to it becomes zero outside the boundary
layer, since as said above G1 is a multiple of P2 and hence orthogonal to P4.
In Figure 14 we visualize with the help of J2[u3; P1] the behaviour of the third component

of the displacement Aeld u3. We see a boundary layer behaviour in a neighbourhood of the
lateral boundary and then the considered functional tends to zero as we move away from the
boundary. The same behaviour is visible for J2[u3; P3] (not presented herein).
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Figure 15. Hard clamped J3[u3; P0].

4.4. Hard clamped vis free lateral boundary conditions

The last example which we investigate shows the inYuence of the lateral boundary con-
ditions on the higher-order responses. We consider the following bending loadings: f�=0;
f3 = �(X 23 − 1

3 ); t
±=0. In accordance with Corollary 3.7 this loading produces an order 3

response in the hard clamped plate, but according to Theorems 3:10 and 3:11 only an order
2 response in the free plate.
In Figure 15 one notices the behaviour of J3[u3; P0] in the hard clamped case. Convergence

for m=3 is noticed (and small values of �, which is not that fast as �→ 0) although m=2
would be the correct value predicted by the analysis. But this can be explained analogously
to Figure 9 by the Taylor expansion of "33 with respect to x2 around x2 = 0 and the fact that
due to the boundary condition "33 = 0 on @!, this Taylor series starts with the linear term and
hence altogether in x2=� with �3.
For the free lateral boundary conditions we Arst consider the behaviour of J1[u3; P0] as

shown in Figure 16. As predicted by the analysis here m=1 is the right choice. In contrast
to the hard clamped situation now the constant part of the Taylor series of "23 with respect to
x2 around x2 = 0 is present and non-zero for free lateral boundary conditions. In comparison
with the preceding graph now the dramatic inYuence of the lateral boundary condition on
the higher-order response is visible which manifests itself in the discrepancy of the values
of m in the considered lateral boundary conditions (m=1 in the free and m=3 in the hard
clamped case). We emphasize that although the same loading is considered in both cases of
lateral boundary conditions, the asymptotic expansion in the hard clamped case starts with
two powers of � later than in the free one.
Actually, the discrepancy of the �-powers in the asymptotic expansions is indeed only one

power of �, since one more �-power is due to the di?erent behaviour of the Taylor series of the
leading generators in the two di?erent cases of boundary conditions. This di?erent behaviour
is due to the fact that we evaluate the functionals with respect to the scaled variable x2=�
although in reality the leading generators in the expansion depend on the physical variable
x2. That this is indeed the explanation can be seen easily by Arst subtracting from J1[u3; P0]
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Figure 16. Free J1[u3; P0].
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Figure 17. Free [J1[u3; P0]− J1[u3; P0]x2 = 0]=(2�).

its limit value for x2 = 0 and then dividing the result once more by �, see Figure 17. Then
the curves of the corresponding di?erent �-values do overlap. This action corresponds to a
proceeding in which we neglect the constant term in the Taylor expansion of "23 with respect
to x2 around x2 = 0, hence starting with the linear term as in the hard clamped situation. Then
of course we would have m=2 analogously to the hard clamped case, which reveals that we
have indeed only one power of � deviation in the asymptotic expansions and the other power
is due to the evaluation of the functionals with respect to the ‘wrong’ variable.
The reason for the dramatic change in the asymptotic expansion depending on the lateral

boundary conditions is exclusively due to the presence of the Kirchho?–Love term "23 in
the free situation. This fact is veriAed by the two graphs in Figures 18 and 19, where we
show the behaviour of the functional J3[u3; P2] for hard clamped and free lateral boundary
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Figure 18. Hard clamped J3[u3; P2].
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Figure 19. Free J3[u3; P2].

conditions. Let us recall that the Kirchho?–Love terms are orthogonal to P2 and thus are
invisible in J3[u3; P2]. We see that apart from the boundary layer proAles which clearly have
to di?er from each other, the same behaviour independent of the lateral boundary conditions
is noticed. In both cases J3[u3; P2] tends to the same constant as we move away from the
boundary layer zone which is due to the presence of H3.

5. CONCLUSIONS

We have shown that there exist loading conditions applied to three-dimensional plate thin
elastic structures, for which the leading term in the asymptotic solution (as thickness tends to
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zero) vanish (the limit Kirchho?–Love displacement is zero). However, this does not mean
that the three-dimensional displacements are zero and the knowledge of a number of terms in
the asymptotic expansion is necessary if one wants to understand the nature of the response of
the thin structure. Contrary to the standard case, the Arst non-zero term combines in general
a Kirchho?–Love displacement with a boundary layer term and a displacement resulting from
higher-order moments of the loading.
We can quantify this fact by an evaluation of the orders of magnitude of the elastic energy∫

R[A]e(u) : e(u) of the di?erent terms involved in standard and higher-order responses. For a
standard response, the energy of the limit Kirchho?–Love displacement is O(�), like that of
the further term �v1 (see (7), (10) and (11)), and the boundary layer term ��1 has a O(�2)
energy. But for a response of order 2, the energy of the Kirchho?–Love displacement is O(�5),
less than the energy of �2v2 which is O(�3), and still less than the energy of �2�2 which is
O(�4) (see (3:1)). The comparison is similar for responses of order 3.
Concerning the loading cases that we numerically investigated, computations were always

in accordance with the structure of the Arst non-zero term in the asymptotics as forecast by
the theory. From the practical point of view, it is important to realize that bending loading
conditions may exist such that the vertical displacement does not approach inAnity as the
thickness of the plate tends to zero (Kirchho?–Love behaviour), but may even approach to
zero.
Thus, higher-order responses yield less energetic displacements (the energy has the same

behaviour than in the case when the plate is Axed on one of its faces T±). But the maximum
energy is concentrated in a boundary layer term and in displacement resulting from higher-
order moments of the loading.
From the practical engineering point of view, typical loadings where higher-order responses

are excited may be very rare. A clamped thin plate on an airplane or a thin spoiler on a car
may be subjected due to the wind to pressure tractions on top and bottom of magnitude �2,
and if at the same time body forces due to gravitation are of magnitude of �, then a bending
response of order 3, as described in Section 4.1, will be excited.
An important question resulting from the presented analysis is associated with dimensionally

reduced plate models, i.e. if one of the explicit bending loading conditions would have been
applied to a plate model, would it manifest the higher-order response as the corresponding
3-D plate? Unfortunately, this question remains open (except for the Kirchho?–Love model
which one knows it cannot mimic the boundary layers zone), because the tractions t± cannot
be speciAed on dimensionally reduced plate models.

APPENDIX

Let us introduce the primitives

∮ X3
F dY3 :=

∫ X3

−1
F(Y3) dY3 − 12

∫ +1

−1

∫ Z3

−1
F(Y3) dY3 dZ3

∫
—

Y3
F dZ3 :=

1
2

(∫ Y3

−1
F(Z3) dZ3−

∫ +1

Y3
F(Z3) dZ3

)
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Now we need two functions of the data (F;T±): G and H. These functions are part of
formulas giving not only the right-hand sides for V2, see (A4), but also the Arst non-zero term
in the presence of a higher-order response, see Section 3. In the examples that we illustrate,
the relevant components of G(F;T±) and H(F;T±) are simple polynomial functions, see the
corollaries in Section 3. The function G=G(F;T±) is deAned in C∞( V!× [−1; 1])3 by

G3 = 0 and G∗(x∗; X3)=−1
�

(∮ X3 (∫
—

Y3
F∗

)
dY3 − X3

T+∗ − T−
∗

2

)
(A1)

The function H=H(F;T±) is deAned in C∞( V!× [−1; 1])3 by

H3 =− 1
�+ 2�

(∮ X3 (∫
—

Y3
F3

)
dY3 − X3

T+3 − T−
3

2

)
and

H�=−
∮ X3

(
@�H3 +

1
�
Y3F�(G) +

�
�

∫
—

Y3
{
@�3H3 − 12

∫ +1

−1
@�3H3 dZ3

})
dY3 (A2)

where the operator F : v �→F(v) is deAned from C∞( V!× [−1; 1])3 into C∞( V!)3 by

F�(v)=
�̃
2

∫ +1

−1

∫
—

Y3
@�2e23(v) dZ3 dY3 and F3(v)=�

∫ +1

−1
@2e23(v) dY3 (A3)

�; 2=1; 2 with double index implying summation.
Finally, the right-hand sides of Equations (14) and (15) for k=2 are given by

R2m =F∗(G)− �̃
4�

∇∗([F3]1 + T+3 − T−
3 )

and

R2b = 3F3(H) +
3�(3�+ 4�)
2(�+ 2�)

U∗ div∗[G∗]1 (A4)

For further details the reader is referred to Reference [9].
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