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SUMMARY

The solution to the Laplace operator in three-dimensional domains in the vicinity of straight edges
is presented as an asymptotic expansion involving eigenpairs with their coe@cients called edge +ux
intensity functions (EFIFs). The eigenpairs are identical to their two-dimensional counterparts over a
plane perpendicular to the edge. Extraction of EFIFs however, cannot be obtained in a straightforward
manner over this two-dimensional plane. A method based on L2 projection and Richardson extrapola-
tion is presented for point-wise extraction of EFIFs from p-Bnite element solutions and illustrated by
examples. A similar but more e@cient method, based on ‘energy projection’, for extracting EFIFs is
proposed. Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION AND NOTATIONS

The solution of the Laplace problem in three-dimensional domains, in the vicinity of singu-
larities, can be decomposed into three di<erent forms, depending whether it is in the neigh-
bourhood of an edge, a vertex or an intersection of the edge and the vertex. Mathematical
details on the decomposition can be found e.g. in References [1–6] and the references therein.
Herein we address edge singularities alone, and in particular, the extraction of the so-called
edge +ux intensity functions (EFIFs). Only straight edges are considered (for curved edges
see Reference [2]) and the surfaces which intersect to form an edge are +at planes. A typical
three-dimensional domain denoted by K, containing edge singularities, is shown in Figure 1.
Edge singularities arise in the neighbourhood of the edges Lij and away from the vertices.
We consider the equation:

∇2
3Du=0 in K (1)
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Figure 1. Typical 3-D edge singularities. Figure 2. The edge sub-domain E(L14).

with the following boundary conditions:

B1(u) = g1 on QD ⊂ @K (2)

B2(u) = g2 on QN ⊂ @K (3)

where B1 is the identity operator, B2 is the outward normal derivative operator @=@n, gi
are given functions on the boundary and QD ∪QN = @K. In the vicinity of edges of interest,
homogeneous boundary conditions are assumed Bi(u)≡ 0.

Consider one of the edges denoted by L14 connecting the vertices P1 and P4 and away from
any of the vertices. We create a cylindrical sector sub-domain of radius r=R with the edge
L14 as its axis as shown in Figure 2. The solution in the neighbourhood of the edge can be
decomposed as follows:

u(r; �; x3)=
K∑

k=1

L∑
‘=0

ak‘(x3)r�k (ln r)‘sk‘(�) + v(r; �; x3) (4)

where L¿0 is an integer which is zero except when �k is an integer, �k+1¿�k are called
edge eigenvalues, ak‘(x3) are called edge +ux intensity functions EFIFs and are analytic in
x3 up to the vertices. The functions sk‘(�) are analytic in �, called edge eigenfunctions (the
function v(r; �; x3) belongs in Hq(E), the usual Sobolev space, where q can be as large as
required and depends on K). We shall assume that �k for k6K are not integers, and that no
‘crossing points’ occur (see a detailed explanation in Reference [2]) therefore, (4) becomes

u(r; �; x3)=
K∑

k=1
ak(x3)r�k sk(�) + v(r; �; x3) (5)
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FLUX INTENSITY FUNCTIONS FOR THE LAPLACIAN 227

For (1), we may perform separation of variables in the neighbourhood of the edge singu-
larity as shown in (5). Each function, (the nth for example, r�nsn(�)) is independent of x3
and satisBes the Laplace equation over the plane (r; �) which is perpendicular to the edge (the
marked plane in Figure 2). This is exactly a 2-D problem and the eigenpairs are identical
to the 2-D eigenpairs (for detailed mathematical analysis see Reference [6, Chapter 2.5]).
Although for the Laplace operator the eigenpairs can be computed analytically, this is not the
case for general scalar elliptic problems of the form

k11(�)
@2u
@x21

+ 2k12(�)
@2u

@x1@x2
+ k22(�)

@2u
@x22

= 0

where kij(�) may be discontinuous in which case sk(�) are continuous piecewise analytic. For
these cases numerical methods as the modiBed Steklov method described in Reference [7]
should be used for determining the eigenpairs in the neighbourhood of edge singularities on a
two-dimensional plane perpendicular to the edge (provided that in the x3 direction the domain
remains isotropic and the opening angle ! remains constant as well as the boundary conditions
on the intersecting planes at the edge).
Section 2 provides in detail the asymptotic expansion of the solution to the Laplace equa-

tion in the neighbourhood of an edge singularity, followed by an analysis of a numerical
method for extracting the pointwise values of the edge +ux intensity functions (the L2 pro-
jection method) in Section 3. An example problem with an exact solution for any polyno-
mial edge +ux intensity function is constructed in Section 4 against which numerical tests
for demonstrating the mathematical analysis are reported. We thereafter introduce in Section
5 another numerical method for extracting the pointwise values of the edge +ux intensity
functions, based on the energy projection method. This method is more accurate and e@-
cient compared with the method presented in Section 3. We conclude with a summary in
Section 6.

2. THE ASYMPTOTIC EXPANSION IN THE NEIGHBOURHOOD
OF AN EDGE SINGULARITY

Once the eigenpairs for the 2-D Laplacian are obtained, one may construct the full series
expansion solution for the 3-D Laplacian. Let r�nsn(�) be an eigenpair of the two-dimensional
Laplacian (denoted by V2D) over the x1–x2 plane perpendicular to an edge along the x3-axis.
Thus,

V2D[r�nsn(�)]= r�n−2[�2nsn(�) + s′′n (�)]=0 (6)

Let an(x3) be the edge +ux intensity function associated with the eigenpair, it is clear that
an(x3)r�nsn(�) does not satisfy the three-dimensional Laplacian, V3D =V2D + @23 = 0, where

@23
def= @2=@x23, unless an(x3) is a linear function in x3:

V3D[an(x3)r�nsn(�)]= @23an(x3)r
�nsn(�) �=0 (7)
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Augmenting the 2-D eigenfunction an(x3)r�nsn(�) by (−1=4(�n+1))@23an(x3)r
�n+2sn(�) then

substituting in the Laplace equation, one obtains

V3D

[
an(x3)r�nsn(�)− 1

4(�n + 1)
@23an(x3)r

�n+2sn(�)
]
=

−1
4(�n + 1)

@43an(x3)r
�n+2sn(�) �=0 (8)

The edge +ux intensity function is a smooth function of the variable x3, so that it may be
approximated by polynomials. Examining (8), one may notice that if an(x3) is a polynomial
of degree smaller or equal to three then the two terms inside the bracket are su@cient to form
the solution to the 3-D Laplacian, associated with nth eigenpair. Otherwise, one needs to add
a new term: 1=(32(�n + 1)(�n + 2))@43an(x3)r

�n+4sn(�), so that the residual becomes

V3D

[
an(x3)r�nsn(�)− 1

4(�n + 1)
@23an(x3)r

�n+2sn(�)

+
1

32(�n + 1)(�n + 2)
@43an(x3)r

�n+4sn(�)
]

=
1

32(�n + 1)(�n + 2)
@63an(x3)r

�n+4sn(�) (9)

The residual vanishes now if an(x3) is a polynomial of degree less than or equal to Bve. We
may proceed in a similar fashion, and obtain the following function Sn(r; �; x3) associated with
the 2-D function r�nsn(�):

Sn(r; �; x3)= r�nsn(�)
∞∑
i=0

@2i3 an(x3)r
2i (−1=4)i∏i

j=1 j(�n + j)
(10)

This function satisBes identically the 3-D Laplace equation: V3DSn ≡ 0. If series (10) is trun-
cated at the N th term the remainder which does not satisfy the 3-D Laplace equation is

@2N+2
3 an(x3)r�n+2N sn(�)

(−1=4)N∏N
j=1 j(�n + j)

(11)

Thus the three-dimensional edge singular solution (5) can be also represented as

u(r; �; x3) =
K∑
i=k

Sk(r; �; x3) + v(r; �; x3)

=
K∑

k=1
ak(x3)r�k sk(�) + ck1@23ak(x3)r

�k+2sk(�)

+ ck2@43ak(x3)r
�k+4sk(�) + · · ·+ v(r; �; x3) (12)

where cij are given constants. In Appendix A it is proven that the above series expansion can
be brought to the classical representation of the solution in terms of Bessel functions. Having
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FLUX INTENSITY FUNCTIONS FOR THE LAPLACIAN 229

computed the 3-D expansion of the solution in terms of eigenpairs, one may proceed to the
computation of the edge +ux intensity functions an(x3).

Remark 1
The eigenfunctions sn(�) are orthogonal in the sense that∫ !ij

�=0
snsm d�=0 for m �= n

i.e., any two terms in the 2-D singular series expansion are orthogonal to each other. This
property is exploited in methods as the contour integral method (see e.g. Reference [8]) for
extracting e@ciently the +ux intensity factors in 2-D domains. However, in 3-D domains, since
higher order terms (r�n+2; r�n+4; : : :) in expansion (11) consist of the same functions sn(�) as
the other lower order terms, then terms in the series expansion are no longer orthogonal.
This impose di@culties in implementing the contour integral method for 3-D domains, and
remedies must be sought.

3. EXTRACTING POINTWISE VALUES OF THE EFIFs BY
THE L2 PROJECTION METHOD

Let us deBne the space spanned by the 2-D Laplacian eigenpairs by S2D:

S2D
def={un(r; �)= r�nsn(�)|V2Dun=0; Bi(u)=0; i=1; 2 on the planes

intersecting at the edge} (13)

We wish to obtain a L2 projection of the solution of the 3-D Laplace equation in the vicinity
of an edge in the plane perpendicular to the edge, intersecting it at a given point x∗3 , into a
subspace SN

2D⊂S2D. This subspace SN
2D is spanned by the Brst N eigenpairs. Therefore, each

uN∈SN
2D is a linear combination of functions in SN

2D:

uN=
N∑
i=1

bi(x∗3 )r
�i si(�) (14)

The projection operation is aimed at Bnding these bi(x∗3 ) so that the error u(x∗3 ) − uN (x∗3 ) is
orthogonal to the space SN

2D at the point x∗3 . i.e. it has to be orthogonal to any vN (x∗3 )∈SN
2D:∫

r

∫
�
(u− uN )vN |x3=x∗3 r dr d�=0 ∀vN (x∗3 )∈SN

2D (15)

The above can be rephrased in the form
Find uN (x∗3 )∈SN

2D so that∫
r

∫
�
uvN |x3=x∗3 r dr d�=

∫
r

∫
�
uN vN |x3=x∗3 r dr d� ∀vN (x∗3 )∈SN

2D (16)

vN being in SN
2D allows the representation

vN (x∗3 )=
N∑
i=1

di(x∗3 )r
�i si(�) (17)
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Let us Brst concentrate on the right-hand side (RHS) of (16), which after substitution of (14)
and (17) becomes

RHS= b1(x∗3 )d1(x
∗
3 )

∫
r

∫
�
r2�1+1s21(�) dr d�

+ b1(x∗3 )d2(x
∗
3 )

∫
r

∫
�
r�1+�2+1s1(�)s2(�) dr d�

+ b2(x∗3 )d1(x
∗
3 )

∫
r

∫
�
r�1+�2+1s1(�)s2(�) dr d�

+ b2(x∗3 )d2(x
∗
3 )

∫
r

∫
�
r2�2+1s22(�) dr d�+ · · · (18)

The eigenfunctions of the Laplace equation with homogeneous boundary conditions in the
vicinity of the edge are orthogonal (see Remark 1), so that after integrating (18) in the radial
direction from r=0 to R becomes

RHS=
N∑
i=1

bi(x∗3 )di(x
∗
3 )

R2�i+2

2�i + 2

∫
�
s2i (�) d� (19)

Let us now consider the LHS. Although u is given (and may thereafter be replaced by uFE
if not known), we will use its full expansion given by (12). Substituting (12) and (17) in
the LHS of (16) one obtains

LHS= a1(x∗3 )d1(x
∗
3 )

∫
r

∫
�
r2�1+1s21(�) dr d�

+ c11(@23a1(x
∗
3 ))d1(x

∗
3 )

∫
r

∫
�
r2�1+3s21(�) dr d�

+ c12(@43a1(x
∗
3 ))d1(x

∗
3 )

∫
r

∫
�
r2�1+5s21(�) dr d�

+ · · ·
+a2(x∗3 )d2(x

∗
3 )

∫
r

∫
�
r2�2+1s22(�) dr d�

+ c21(@23a2(x
∗
3 ))d2(x

∗
3 )

∫
r

∫
�
r2�2+3s22(�) dr d�

+ c22(@43a2(x
∗
3 ))d2(x

∗
3 )

∫
r

∫
�
r2�2+5s22(�) dr d�

+ · · ·

=
∞∑
i=1

∫
�
s2i (�) d�

R2�i+2

2�i + 2

{
ai(x∗3 )di(x

∗
3 ) + R2 ci1(�i + 1)

�i + 2
(@23ai(x

∗
3 ))di(x

∗
3 )

+R4 ci2(�i + 1)
�i + 3

(@43ai(x
∗
3 ))di(x

∗
3 ) + R6 ci3(�i + 1)

�i + 4
(@63ai(x

∗
3 ))di(x

∗
3 ) + · · ·

}
(20)
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Since RHS has to be equal to the LHS for every di(x∗3 ), by substituting (19) and (20) in (16)
one obtains a set of equations for the coe@cients bi(x∗3 ):

bi(x∗3 ) = ai(x∗3 ) + R2 ci1(�i + 1)
�i + 2

(@23ai(x
∗
3 )) + R4 ci2(�i + 1)

�i + 3
(@43ai(x

∗
3 )) + O(R6) (21)

Examining (21) it is seen that bi(x∗3 )’s are not equal to ai(x∗3 ) as desired, but include additional
terms. These are associated with R2n@2nx3 ai(x

∗
3 ), n=1; 2; : : : . To eliminate these higher order

terms, one needs to compute the bi(x∗3 )’s at decreasing values of R¡1, followed by Richard-
son’s extrapolation as in Reference [9]. The accuracy of the method will be demonstrated
by the numerical examples. It is clear that when the loading is constant or depends linearly
on x3, then ai(x3) are at most linear in x3, so that (21) simpliBes to bi(x∗3 )= ai(x∗3 ) and the
extracted values are independent of R. This will be demonstrated by numerical examples in
Section 4.

3.1. The L2 projection method—numerical implementation

Since the exact solution u in (16) is unknown, we use instead an approximation, namely
the Bnite element solution uFE. This approximation introduces the second source of numerical
error (the Brst source is due to the Bnite R and the need of Richardson’s extrapolation). Any
function uN∈SN

2D may be represented as

uN=(b1 b2 · · · bN )




r�1s1(�)

r�2s2(�)

:

:

r�N sN (�)




def= bT




r�1s1(�)

r�2s2(�)

:

:

r�N sN (�)




(22)

and similarly,

vN = {r�1s1(�) r�2s2(�) · · · r�N sN (�)}d (23)

Substituting (22) and (23) in (16), with u replaced by uFE, one obtains the following system:
Find b such that

∫ R

r=0

∫ !14

�=0
uFE{r�1s1(�) r�2s2(�) · · · r�N sN (�)}d(x∗3 )r dr d�

=
∫ R

r=0

∫ !14

�=0
bT (x∗3 )




r�1s1(�)

r�2s2(�)

:

:

r�N sN (�)




{r�1s1(�) r�2s2(�) · · · r�N sN (�)}d(x∗3 )r dr d� ∀d(x∗3 )

(24)
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(24) can be brought to a matrix representation:

LTd(x∗3 )= b
T (x∗3 )[S]d(x

∗
3 ) ∀d(x∗3 ) (25)

where

Sij =
∫ R

r=0

∫ !14

�=0
r�i+�j si(�)sj(�)r dr d�=

R�i+�j+2

�i + �j + 2

∫ !14

�=0
si(�)sj(�) d� (26)

and in view of Remark 1:

Sij =




R2�i+2

2�i + 2

∫ !14

�=0
s2i (�) d�; i= j

0; i �= j
(27)

The elements of the vector L have to be computed numerically because uFE is extracted from
the Bnite element solution:

Li =
∫ R

r=0

∫ !14

�=0
uFE(r; �; x∗3 )r

�i+1si(�) dr d� (28)

Since (25) has to hold for any d(x∗3 ), then it is equivalent to

LT= bT (x∗3 )[S] (29)

Substituting (27) and (28) in (29), and noticing that [S] is a diagonal matrix, one obtains
explicit equations for the required elements of the vector b:

bi(x∗3 )=Li

/(
R2�i+2

2�i + 2

∫ !14

�=0
s2i (�) d�

)
(30)

Notice that the numerical error caused by the replacement of u with uFE is re+ected in Li,
however this error is smaller than the pointwise error. This is due to the cancelations in the
integration.
Because the accuracy of the Bnite element solution uFE in the elements near the singularity

is low, the following strategy is adopted for the computation of the bi’s. Instead of integrating
on a sector from r=0 to R, the integration in (26) and (28) is performed over a circular
ring, r=0:9R to R. Thus instead of using (30) for the computation of the bi’s, we use the
following:

bi(x∗3 )=
∫ R

0:9R

∫ !14

�=0
uFE(r; �; x∗3 )r

�i+1si(�) dr d�
/(

(1− 0:92�i+2)R2�i+2

2�i + 2

∫ !14

�=0
s2i (�) d�

)
(31)

The numerical error in uFE can be controlled by an adaptive Bnite element solution using
p-extension.
The vector b(x∗3 ) has to be extracted with a tight control of the numerical error using

(30) at various R’s of decreasing order. Then Richardson’s extrapolating method has to be
applied for estimating the exact value at R→ 0. The overall algorithm is illustrated in the
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next subsection on the basis of a model problem constructed such that the exact solution is
known.

4. AN EXAMPLE PROBLEM AND NUMERICAL EXPERIMENTATION

In order to test the accuracy of any numerical algorithm for extracting edge +ux intensity
functions one needs to generate example problems having analytical solutions. These example
problems must allow a general solution in terms of EFIFs, i.e. they have to represent constant,
linear, quadratic, etc. variation of the EFIFs along an edge of interest. In view of the analytical
functional representation of the solution in the neighbourhood of the singular edge (12) we
may construct a family of example problems as follows. Consider a domain shaped as a
sector of a cylinder as shown in Figure 3. The edge of interest is OD aligned along the
x3 axis. On the faces ODEA and ODCB we impose +ux free boundary conditions: qn=0. On
the cylindrical boundary AECB, at which r=2, Dirichlet boundary conditions are imposed
according to the series (12):

u(r=2; �; x3) = (a11 + a12x3 + a13x23)2
�1 cos(�1�)− a13

1
2(�1 + 1)

2�1+2 cos(�1�)

+ (a21 + a22x3 + a23x23)2
�2 cos(�2�)− a13

1
2(�2 + 1)

2�2+2 cos(�2�) (32)

where �i = i$=!. Note that the +ux free boundary conditions on ODEA and ODCB are iden-
tically satisBed by (32). On the face x3 = 0 of the domain we impose the Dirichlet boundary
conditions:

u(r; �; x3 = 0) = a11r�1 cos(�1�)− a13
1

2(�1 + 1)
r�1+2 cos(�1�)

+ a21r�2 cos(�2�)− a13
1

2(�2 + 1)
r�2+2 cos(�2�) (33)

x1

x2

x3

r θ

ω
r=2

L

A

O B

CD

E

Figure 3. 3-D domain for example problems for EFIFs.
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On the boundary of the domain x3 =L we may impose Dirichlet boundary conditions according
to (32), i.e.:

u(r; �; x3 =L) = (a11 + a12L+ a13L2)r�1 cos(�1�)− a13
1

2(�1 + 1)
r�1+2 cos(�1�)

+ (a21 + a22L+ a23L2)r�2 cos(�2�)− a13
1

2(�2 + 1)
r�2+2 cos(�2�) (34)

or we may impose +ux free boundary conditions which will excite vertex singularities. Choos-
ing a11 = 1, and a21 = 2 for example, and letting the other aij=0, the EFIFs will be constant,
and the numerical algorithm for extracting EFIFs should recover a11 and a21. Choosing in
addition a12 = 3, for example, we generate a model problem for which the EFIF a1(x3) has
a linear variation along the edge. If we wish to have parabolic variation of both a1(x3) and
a2(x3), we may chose in addition a22 = 4, a13 = 5 and a23 = 6. We may proceed in a similar
manner and obtain higher polynomial variation of the EFIFs, or add more terms thus having
more EFIFs. The numerical computation of EFIFs should recover these values of aij if the
algorithm is accurate.
It is important to emphasize that in the neighbourhood of O and D vertex singularities

may arise, and therefore the EFIFs should be extracted away from these vertices. As the
‘length’ of the domain is increased (L taken larger), the vertex in+uence decreases. In the
Bnite element simulation, a graded mesh towards O and D is recommended, and the EFIFs
might be extracted in the mid-portion of the edge OD.

4.1. Computing EFIFs using L2 projection method—an example problem

Consider the domain presented in Figure 3 with the following boundary conditions: on ODEA
and ODCB: qn=0. On the cylindrical boundary (r=2), and on x3 = 0 and x3 =L=2 Dirichlet
BCs. are imposed according to

u= (a11 + a12x3 + a13x23 )r
�1 cos(�1�)− a13

1
2(�1 + 1)

r�1+2 cos(�1�)

+ (a21 + a22x3 + a23x23 )r
�2 cos(�2�)− a13

1
2(�2 + 1)

r�2+2 cos(�2�); �i = i$=!

A Bnite element mesh containing 12 solid elements (hexahedra and pentahedra) is con-
structed with three reBned layers in the neighbourhood of the singular edge (radius of smallest
element is 0:153×2). The Bnite element mesh with the zoomed area in the neighbourhood of
the singular edge is shown in Figure 4. We perform on the given mesh two analysis. In the
Brst, we chose ai1 = 1, ai2 = 0:5, and ai3 = 0 i=1; 2, thus the Brst two EFIFs are linear in x3:

a1(x3)=1 + 0:5x3; a2(x3)=1 + 0:5x3

According to the mathematical analysis the extracted EFIFs based on L2 projection should be
independent of the radius (@2k

3 ai(x3)=0 ∀k=1; 2; : : :) and accurate.
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Figure 4. 3-D p-FEM (12 elements).

Figure 5. Convergence of the error in energy-norm for second analysis.

In the second analysis we chose ai1= 1; ai2 = 0:5, and ai3 = 2 i=1; 2, thus the Brst two
EFIFs are parabolic in respect to x3:

a1(x3)=1 + 0:5x3 + 2x23 ; a2(x3)=1 + 0:5x3 + 2x23

For this case one should clearly see a strong dependence of the extracted EFIFs on the radius
of the integration area R, and that the extracted values converge to the exact solution as
R→ 0.

Since the Bnite element solution is used in the numerical procedure described in Section 3.1,
the error of approximation must be determined before computing the EFIFs. Figure 5 shows
the estimated relative error in energy norm as a function of the number of degrees of freedom
(DOF) for the second analysis. The degrees of freedom were systematically increased by
p-extension on the Bxed mesh shown in Figure 4.
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Table I. Values of b1 and b2 for Brst analysis where a1(x3)= 1 + 0:5x3,
a2(x3)= 1 + 0:5x3.

R=1 R=0:2 R=0:1 R=0:01 aEXi

b1(x∗3 = 0:5) 1.250 1.250 1.250 1.250 1.250
b1(x∗3 = 1:0) 1.500 1.500 1.500 1.499 1.500

b2(x∗3 = 0:5) 1.250 1.250 1.250 1.250 1.250
b2(x∗3 = 1:0) 1.500 1.500 1.500 1.500 1.500

Table II. Values of b1 and b2 for second analysis where a1(x3)= 1 + 0:5x3
+2x23 ; a2(x3)= 1+0:5x3 + 2x23 .

R=1 R=0:2 R=0:1 R=0:01 aEXi

b1(x∗3 = 0:5) 1.206 1.729 1.745 1.750 1.750
b1(x∗3 = 1:0) 2.955 3.476 3.492 3.499 3.500

b2(x∗3 = 0:5) 1.360 1.735 1.747 1.750 1.750
b2(x∗3 = 1:0) 3.109 3.483 3.494 3.499 3.500

Table III. b1(x∗3 = 0:5) for various values of R; p=8, and the
Richardson’s extrapolated values as R→ 0.

R b1(x∗3 = 0:5) def= b(0)1 b(1)1 b(2)1

1.0 1.206
1.7477

0.75 1.443 1.7494
1.7490

0.5 1.613

The Brst two non-zero EFIFs extracted using di<erent radii at x∗3 = 1 and 0:5, for the Brst
analysis are summarized in Table I.
As predicted by the mathematical analysis, the extracted EFIFs are independent of the radius

R (outer radius of integration for the L2 projection).
For the second analysis, with ai3 �=0, the extracted EFIFs are R-dependent. We summarize

in Table II the Brst two non-zero EFIFs extracted using di<erent radii at x∗3 = 1 and 0:5.
It is seen that the extracted EFIFs in this case have a strong dependency on the radius of
the domain on which the extraction is performed, and indeed as R→ 0, the extracted value
approaches the exact EFIFs. However, based on the mathematical analysis, it is possible to
use Richardson’s extrapolation starting with the value of R and extrapolate to R=0. As an
example, let us extract the values of b1 and b2 at R=1; 0:75; 0:5, where these are known to be
wrong. Using Richardson’s extrapolation, with the residual error behaving as R2 (this is known
from (21)), we show that very close approximation for ai can be obtained. For example let us
chose the point x∗3 = 0:5 and extract b1(x∗3 = 0:5). The second column in Table III represents
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Table IV. b2(x∗3 = 0:5) for various values of R; p=8, and the
Richardson’s extrapolated values as R→ 0.

R b2(x∗3 = 0:5) def= b(0)2 b(1)2 b(2)2

1.0 1.360
1.7485

0.75 1.530 1.7499
1.7496

0.5 1.652

the extracted values from the FE solution. One observes that although the extracted values at
large R are far from the exact values, the extrapolated value is very close to the exact value
(0:03 per cent relative error).
The same procedure is applied to b2(x∗3 = 0:5) as shown in Table IV. The extrapolated value

of b2(x∗3 = 0:5) is again very close to the exact solution.

5. THE ENERGY PROJECTION METHOD

Similarly to the L2 projection method, the energy projection method projects u into SN
2D. The

di<erence is the projection method which is based on the gradient of the function, i.e. we
wish to Bnd a member in SN

2D which is as close as possible to the function u so that the
error between their gradients is minimized:
Find uN (x∗3 )∈SN

2D so that∫
r

∫
�
grad uNgrad vN |x3 = x∗3 r dr d�=

∫
r

∫
�
grad u grad vN |x3 = x∗3 r dr d�; ∀vN (x∗3 )∈SN

2D (35)

herein grad should be understood as the gradient within the plane perpendicular to the edge
at the point x∗3 .

Using Green’s theorem (35) becomes
Find uN (x∗3 )∈SN

2D so that

∫
�

[
uN @v

N

@r

]
R; x∗3

R d�−
∫
r

∫
�
uNV2DvN |x∗3 r dr d�

=
∫
�

[
u
@vN

@r

]
R; x∗3

R d�−
∫
r

∫
�
uV2DvN |x∗3 r dr d� ∀vN (x∗3 )∈SN

2D (36)

Since vN (x∗3 )∈SN
2D it satisBes identically V2DvN =0 so that (36) simpliBes to

Find uN (x∗3 )∈SN
2D so that

∫
�

[
uN @v

N

@r

]
R; x∗3

R d�=
∫
�

[
u
@vN

@r

]
R; x∗3

R d� ∀vN (x∗3 )∈SN
2D (37)
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Inserting Equations (12), (14) and (17) into (37), and noting the orthogonality of the
eigen-functions si(�), one obtains after steps similar to these in Section 3:

bi(x∗3 )= ai(x∗3 ) + R2ci1(@2
3ai(x

∗
3 )) + R4ci2(@43ai(x

∗
3 )) + O(R6) (38)

This equation is very similar to (21) obtained by the L2 projection method, only that the
coe@cients multiplying the powers of R2i are somewhat simpler. Therefore, from the theo-
retical point of view, the application of the energy projection method is expected to provide
exactly same behaviour as the L2 projection method. However, the practical use of the energy
projection method is superior to the previous one for the following reason:

• The energy projection method requires integration over a 1-D circular arc, as opposed to
2-D integration required for the L2 projection method, i.e. a more e@cient method.

It is important to note that for a general scalar second order boundary value problem
(‘anisotropic’ heat transfer equation) the conclusions of the aforementioned analysis are simi-
lar. The mathematical analysis is more complicated because

∫
si(�)sj(�) d� �=0 for i �= j, thus

an explicit equation for each bi cannot be obtained.
The numerical implementation of the energy projection method is along the lines outlined

in Section 3.1, so that we provide the Bnal formulation:

bi(x∗3 )=
�i
∫ !14

�=0
uFE(R; �; x∗3 )si(�) d�

R�i

∫ !14

�=0
s2i (�) d�

(39)

6. SUMMARY AND CONCLUSIONS

The computation of the stress intensity functions in the neighbourhood of edges in a three-
dimensional linear elastic body is of major importance in engineering practice, and some
methods for extracting these from Bnite element solutions have been earlier proposed (see for
example Reference [4] and references therein). However, a detailed mathematical framework
of the type discussed in the present paper seems not to be available, and the methods are
not the most e@cient and accurate due to the need of extracting the EFIFs very close to
the edge. Towards developing e@cient and accurate methods, we consider in this paper the
solution of the Laplace equation on 3-D domains in the vicinity of straight edges. This is
because both Laplace and elasticity problems are elliptic and therefore their solutions have
similar characteristics.
Herein we present the solution in the vicinity of an edge as an asymptotic series involv-

ing 2-D eigenpairs with their coe@cients called edge +ux intensity functions (EFIFs). The
eigenvalues are identical to their 2-D counterparts over a plane perpendicular to the edge,
however, additional terms are visible in the asymptotic series as compared with the purely
2-D case. Thus, the EFIFs cannot be obtained in a straightforward manner over this two-
dimensional plane, and special methods for their computation have to be used. It is important
to note that straightforward implementation of 2-D e@cient extraction methods for the EFIFs
as the contour integral method (also known as the dual singular function method [10]), or
the cuto< function method [8], are not possible either, and will lead to false results unless
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a proper treatment is incorporated. We present a special method based on L2 projection and
Richardson extrapolation for point-wise extraction of EFIFs from p-Bnite element solutions.
The mathematical analysis is demonstrated by numerical experimentation. A similar but more
e@cient method, based on ‘energy projection’, for extracting EFIFs is also proposed.
Understanding the characteristics of 3-D solutions in the neighbourhood of edges for the

Laplace equation, and developing e@cient methods for the extraction of EFIFs, enables us to
extend these methods to elastic domains and compute edge stress intensity functions e@ciently.

APPENDIX A

Herein we show that the asymptotic expansion of the solution in the neighbourhood of an
edge presented in Section 3 can be brought to the classical expansion of the 3-D solution in
terms of Bessel functions. First, we obtain the classical solution, and the point of departure
is the Laplace equation in cylindrical coordinates:

1
r
@
@r

(
r
@u
@r

)
+

1
r2

@2u
@�2 +

@2u
@x23

= 0 (A1)

By separation of variables, u(r; �; x3)=R(r)s(�)Z(x3), so that (A1) becomes

1
rR

d
dr

(rR′) +
s′′

r2s
+

Z ′′

Z
=0 (A2)

The last term is independent of r and �, so it must be a constant denoted by Z ′′=Z = &.
Multiply by r2, (A2) becomes

r
R

d
dr

(rR′) +
s′′

s
+ r2&=0 (A3)

Again, the second term is � dependent while other terms are r dependent, so that s′′=s has to
be a negative constant if oscillatory solution in � is sought, i.e. s′′=s=−�2, thus, s(�) is of
the form

s(�)= ei�� (A4)

The values of � are determined by satisfying boundary conditions at �=0 and !14 — these
are the eigenpairs for the 2-D problem, and there is an inBnite number of distinct eigenpairs
sn(�) which are sin(�n�) and cos(�n�).

The case s′′=s=+�2 is excluded because it produces a solution which is exponential in �,
thus cannot satisfy boundary conditions. Coming back to (A3):

r2R′′ + rR′ + (&r2 − �2
n)R=0 (A5)

there are two possibilities:

0¿&=−(2:

DeBne q= (r so that R(r)=R(q=() def= Q(q), and (A5) becomes

q2Q′′ + qQ′ − (q2 + �2
n)Q=0 (A6)
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Equation (A6) is the modiBed Bessel equation and its solution for a domain where r=0 is
included is the modiBed Bessel function of Brst kind of order �n (see [11, pp. 108–110]):

R(r)= I�n(q)=
∞∑
k=0

(q=2)2k+�n

Q(k + 1)Q(�n + k + 1)
(A7)

where Q(q) is the Gamma function [11, p. 1]:

Q(q) def=
∫ ∞

0
e−t t q−1 dt (A8)

Since Z ′′=Z = &=−(2, we immediately obtain an oscillatory behaviour in x3, and by impos-
ing the boundary conditions at given x3 we again obtain an inBnite number of distinct values
of (m, i.e. any Zm(x3) is given by linear combination of sin((mx3) and cos((mx3).
Summarizing, the complete solution u, oscillatory in � and x3 is

u(r; �; x3)=
∞∑

n;m=1
I�n((mr)sn(�)Zm(x3) (A9)

0¿&=+(2:

In this case (A5) becomes

q2Q′′ + qQ′ + (q2−�2
n)Q=0 (A10)

Equation (A10) is the Bessel equation and its solution for a domain where r=0 is included
is the Bessel function of Brst kind of order �n (see [11, p. 102]):

J�n(q)
def=

∞∑
k=0

(−1)k(q=2)2k+�n

Q(k + 1)Q(�n + k + 1)
(A11)

Since now Z ′′=Z = &=+(2, we immediately obtain an exponential behaviour in x3: Z(x3)=
e±(x3 .

Summarizing, the complete solution u, oscillatory in � and exponential in x3 is

u(r; �; x3)=
∞∑
n=1

J�n((r)e
±(x3sn(�) (A12)

The value of ( is determined by boundary conditions on r= constant. For example, if u=0
on r=C, then J�n((C)=0, so that (C is a zero of J�n .

We now prove that the asymptotic solution presented in Section 3 can be brought to the
classical solution (A12) if its behaviour in x3 is exponential, or to the classical solution (A10)
if its behaviour in x3 is oscillatory. To this end, we Brst need to introduce the following
connections. Integrating by parts (A8) it is easily shown that the Gamma function satisBes
the following identity:

Q(q+ 1)= qQ(q) (A13)
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and by recursive substitution it can be shown that

Q(q+ k + 1)= (q+ k)Q(q+ k)= (q+ k)[(q+ k − 1)Q(q+ k − 1)]

= · · · =Q(q+ 1)
k∏

‘=1
(q+ ‘); k ∈N (A14)

Noting that Q(j)= j!, for any positive integer j, let us consider the following expression:

Q(j + 1)Q(q+ j + 1)= [jQ(j)][(q+ j)Q(q+ j)]

= [j(j − 1)Q(j − 1)][(q+ j)(q+ j − 1)Q(q+ j − 1]

= · · · =Q(q+ 1)
j∏

k=1
k(q+ k); j∈N (A15)

or writing (A15) in a di<erent form

1∏j
k=1 k(q+ k)

=
Q(q+ 1)

Q(j + 1)Q(q+ j + 1)
(A16)

Substituting (A16) in the expression (10) of Section 3, the latter becomes

Sn(r; �; x3)= r�nsn(�)Q(�n + 1)
∞∑
k=0

@2k
3 an(x3)r2k

(−0:25)k
Q(k + 1)Q(�n + k + 1)

(A17)

Assume an(x3) has an exponential behaviour in x3, i.e. it may be represented as follows:

an(x3)= e±(x3 ;⇒ @2k
3 an(x3)= (2ke±(x3 (A18)

Then after substituting (A18) in (A17) and rearranging, one obtains

Sn(r; �; x3)=
2Q(�n + 1)

(�n
e±(x3sn(�)

∞∑
k=0

(−1)k(r (=2)2k+�n

Q(k + 1)Q(�n + k + 1)
(A19)

Note that the deBnition of the Bessel function of Brst kind of order � in (A11), Sn(r; �; x3)
can be represented in terms of the Bessel function:

Sn(r; �; x3)=
2Q(�n + 1)

(�n
e±(x3J�n((r)sn(�) (A20)

Because [2Q(�n + 1)=(�n] is a constant we can include it in the constant appearing in sn(�),
so that (12) in Section 3 is identical to the classical solution (A12).
If instead an(x3) has an oscillatory behaviour in x3, i.e. it may be represented as follows:

an(x3)= e±i(x3 ;⇒ @2k
3 an(x3)= (−1)k(2ke±i(x3 (A21)
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Then after substituting (A21) in (A17) and rearranging, one obtains

Sn(r; �; x3)=
2Q(�n + 1)

(�n
e±i(x3sn(�)

∞∑
k=0

(r (=2)2k+�n

Q(k + 1)Q(�n + k + 1)
(A22)

Notice the deBnition of the modiBed Bessel function of Brst kind of order � in (A7), Sn(r; �; x3)
can be represented in terms of the modiBed Bessel function:

Sn(r; �; x3)=
2Q(�n + 1)

(�n
e±i(x3I�n((r)sn(�) (A23)

The constant [2Q(�n+1)=�n] is included in the constant appearing in sn(�), and 1=( is included
in the constant of the oscillatory function in x3, so that (12) in Section 3 is again identical
to the classical solution (A9).
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