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Abstract

The present work addresses the various ingredients required for reliable finite element simulations of cold isostatic pressing (CIP) of

metal powders. A plastic constitutive model for finite deformation is presented and implemented into an explicit finite element (FE) code.

The FE implementation is verified so that numerical errors (both temporal and spatial errors) are kept under control. Thereafter, uniaxial

die compaction experiments are performed required for determining the material parameters in the constitutive model. Subsequently they

are applied for the simulation of a ‘‘complex’’ CIP process. The experimental observations of the complex CIP process were used to

validate the overall method by comparing the FE results (final dimensions and average relative density) to the experimental observations.

The numerical results (final dimensions and relative density) are in good agreement with the experimental observations.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Powder compaction processes are in use for manufactur-
ing products with pre-defined shape and preferred density
distribution. Determining the shape and density of a
complicated product by a trial and error experimental
based procedure is an expensive and time-consuming
process. Hence numerical simulations are an attractive
tool to reduce the amount of experiments and to provide
better understanding of their results. Such simulations
necessitate an appropriate constitutive model that realisti-
cally describes the material behavior and an accurate
numerical method for the solution of the nonlinear system
of evolution/equilibrium equations. Herein, we address a
special case of powder compaction process, named ‘‘cold
isostatic pressing’’ (CIP), for which the constitutive model
of powder materials was recently proposed by Bier and
Hartmann [1]. This constitutive model contains several
material parameters and evolving internal variables, which

should be identified for the powder of interest by simple
experimental observations.
Although, numerical simulations by finite element

methods (FEM) are nowadays common in the industrial
manufacturing operations, CIP has been mostly based on
experience and trial and error methodology. It is only
recently that finite elements have been applied for the
simulation of CIP processes (see Refs. [2,3] and the
references therein). The main difficulties in using FE
methods for CIP simulation rely on the complex finite
strain constitutive models and its numerical treatment as
well as the specific material parameters that have to be
determined by experiments.
Constitutive models for powder compaction and deter-

mination of the material parameters on the basis of
experimental data are considered by several authors [4–7].
Often experimental data from the literature are utilized,
e.g. Khoei and Azami [8] used the data of an iron and
copper powder mixture published by Doremus et al. [9] for
the identification of the material parameters of their new
cone-cap plasticity model. Chtourou et al. [10] present a
detailed description of the parameter identification for their
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own cap model for a steel powder. They derive their
material parameters from a variety of tests consisting of
resonant frequency measurements, hydrostatic compac-
tion, triaxial compaction and uniaxial compression tests.
Such detailed test data are desirable to gain maximum
information on the considered material. Unfortunately
such a detailed examination may not always be realized.
Accordingly, the material parameters are identified based
on a limited number of experimental data implying the
possibility of an increasing sensitivity of the computed
response.

The newly developed constitutive model for metal
powder compaction presented in Ref. [1] (and slightly
refined herein) is implemented into the commercial FE
code Abaqus/explicit as a VUMAT user subroutine. The
material parameters identified for fine grained copper
powder is described in Ref. [11]. Here, we propose a
slightly different model taking into account particular
properties of the relative density in the limit case of infinite
large hydrostatic pressure. The main goal treats the
validation aspect of having a small experimental data set
and its ‘‘extrapolation’’ to different loading processes. For
the material parameters identification of the copper
powder, simple die compaction experiments on cylindrical
specimens, shown in Ref. [11], are conducted. A sensitivity
study of the material parameter’s influence on the final
geometrical shape and density distribution was performed.
To validate the simulation, we investigated the influence of
the friction between the die and the powder on the FE
results.

Thereafter, we performed experiments and FE simula-
tions of a more ‘‘complex’’ geometry, a cylinder with a
rigid spherical insert undergoing die compaction followed
by a CIP process. To demonstrate the validity of our
methods we compare the final shape and average density of
the specimens with the FE results.

The paper is structured as follows: in Section 2 we
present the constitutive model and its implementation in
the explicit commercial FE code Abaqus/Explicit. In
Section 3, we verify our FE implementation by refining
the numerical discretization and monitoring the conver-
gence of the properties of interest. We validate the
constitutive model by comparing the FE results obtained
by simulating the die compaction process to experimental
observation. The sensitivity of the results due to the friction
between the metal powder and the die is also investigated
and shown to be small. In Section 4, the experimental
results and FE simulations of a CIP process on ‘‘complex’’
cylinders with rigid spherical inserts are documented and
compared to validate our methods, and we conclude by a
summary and conclusions in Section 5.

2. Constitutive modeling and stress computation

Predicting the realistic response of boundary-value
problems requires a constitutive model that represents the
‘‘material behavior’’. Because CIP and die-compaction

processes involve finite strains and physically nonlinear
observations, a yield function based on finite-strain
elastoplasticity model proposed in Ref. [1] is applied (here
a slightly modified form is proposed). The constitutive
model is proven to be thermo-mechanically consistent in
the sense that it fulfills the Clausius–Duhem inequality in a
sufficient manner. For a self-explanatory presentation, the
constitutive model is recapped in the following.
The model is based on the multiplicative decomposition

of the deformation gradient, F ¼ GradvRðX; tÞ, F ¼ FeFp,
where x ¼ vRðX; tÞ defines the motion of the material point
X at time t. Fe symbolizes the elastic part and Fp the plastic
part implying an incompatible intermediate configuration.
On the basis of this decomposition strain tensors can be
defined, implying a dependency on purely elastic or
inelastic deformations

Ĉe ¼
1

2
ðFT

e Fe � IÞ,

Ĉp ¼
1

2
ðI� F�Tp F�1p Þ,

Ĉ ¼ Ĉe þ Ĉp ¼ F�Tp EF�1p ; with the Green strain tensor
E ¼ 1

2
ðFTF� IÞ, as well as their derivative in form of

Oldroyd-derivatives relative to the inelastic intermediate
configuration

Ĉp

D

¼ D̂p ¼
_̂Cp þ L̂

T

p Ĉp þ ĈpL̂p,

where D̂p is the symmetric part of Lp ¼ _FpF
�1
p . On the basis

of these strain and strain-rate measures the constitutive
model is motivated. First of all, the elasticity relation of
Simo–Pister type is chosen, see Ref. [12],

T̂ ¼ ðL ln Je � mÞC�1e þ mI, (1)

where the elasticity parameters L and m are Lame
constants. Using the purely elastic part of the deformation,
where T̂ ¼ Fp

~TFT
p ¼ ðdetFÞF

�1
e TF�Te defines the stress

tensor operating in the intermediate configuration, Je ¼

detFe the elastically volumetric deformation and the elastic
right Cauchy–Green tensor Ce ¼ FT

e Fe. ~T denotes the
second Piola–Kirchhoff tensor and T the Cauchy stress
tensor (true stresses). In other words, the elasticity relation
depends only on the elastic part of the deformation. The
evolution of the inelastic strains is defined by an associated
flow rule in form of a normality rule

Ĉp

D

¼ l
qF̂

qP̂
¼ l

qF̂

qI1
Iþ

qF̂

qJ2
P̂D

 !
, (2)

where P̂ ¼ ðIþ 2ĈeÞT̂ ¼ ĈeT̂ ¼ T̂Ĉe (isotropic elastic be-
havior is assumed), i.e., P̂ ¼ ðdetFÞFT

e TF
�T
e , defines the

Mandel stress tensor, see Ref. [13]. l is the plastic
multiplier. The proposed yield function depends on the
first and second invariants I1 ¼ trðP̂Þ and J2 ¼

1
2
ðP̂D � P̂DÞ
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of the Mandel stress tensor as well as on two additional
internal variables x and a in the form F̂ ðI1; J2; x; aÞ ¼
F ðI1;

ffiffiffiffiffi
J2

p
; x; aÞ. The dependency on I1 implies pressure

dependency of the yield function which reads

F ðI1;
ffiffiffiffiffi
J2

p
Þ ¼ ck ln

eg1 I1 ;
ffiffiffiffi
J2

p� �
=ðckÞ
þ eg2ðI1 ;

ffiffiffiffi
J2

p
Þ=ðckÞ

2

0
@

1
A

based on the log-interpolation of two simple yield functions

g1ðI1;
ffiffiffiffiffi
J2

p
Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ aðI1 � 3xÞ2

q
� k,

g2ðI1;
ffiffiffiffiffi
J2

p
Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ d

p
� A1 þ A2e

A3I1 ; d40

using the abbreviations

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðI0 � 3xÞ2

q
,

A1 ¼ kð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

Þ
�I0=ðð1þrÞð3x�I0ÞÞ,

A2 ¼
lnð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

Þ

ð1þ rÞð3x� I0Þ
.

g1ðI1;
ffiffiffiffiffi
J2

p
Þ defines an ellipsoid and g2ðI1;

ffiffiffiffiffi
J2

p
Þ an expo-

nential-type yield function (see Fig. 1 and Refs. [1,11] for
further details). This unique, in the sense that only one
closed region in stress space exists, single surface yield
function is smooth and convex. In view of the flow rule (2)
the derivatives read:

qF̂

qI1
¼

qF

qI1
¼

qF

qg1

qĝ1

qI1
þ

qF

qg2

qĝ2

qI1
,

qF̂

qJ2
¼

1

2
ffiffiffiffiffi
J2

p
qF

q
ffiffiffiffiffi
J2

p ¼
1

2
ffiffiffiffiffi
J2

p
qF

qg1

qĝ1

q
ffiffiffiffiffi
J2

p þ
qF

qg2

qĝ2

q
ffiffiffiffiffi
J2

p

� �
,

qF

qg1

¼
eg1=ðckÞ

eg1=ðckÞ þ eg2=ðckÞ
;

qF

qg2

¼
eg2=ðckÞ

eg1=ðckÞ þ eg2=ðckÞ
,

qĝ1

qI1
¼

aðI1 � 3xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ aðI1 � 3xÞ2

q ;
qĝ2

qI1
¼ A2A3e

A3I1 ,

qĝ1

q
ffiffiffiffiffi
J2

p ¼

ffiffiffiffiffi
J2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ aðI1 � 3xÞ2

q ;
qĝ2

q
ffiffiffiffiffi
J2

p ¼ 1.

I0, r and c are parameters defined in the ‘‘I1;
ffiffiffiffiffi
J2

p
-plane’’:

I0 describes the intersection of both partial yield surfaces g1

and g2 with the hydrostatic axis in the tensile range
and r controls the intersection point of the ellipsoid and
the exponential function in the pressure region and c

determines the ‘‘sharpness’’ of the transition. x and
a are internal variables which evolve during the loading
process.
It is guaranteed that during the yield functions evolution

its convexity is satisfied. x evolves according to

xðrK Þ ¼ a1rK þ a2r
3
K �

a3

rK � rK0

�
a3

rK0

,

rK ¼
1

2
lnðdetCpÞ ¼ lnðdetFpÞ ð3Þ

with the plastic right Cauchy–Green tensor Cp ¼ FT
pFp. a1,

a2, a3 and, rK0
are material parameters and rK is related to

the relative density which can be seen for the case of rigid
plasticity (no elastic domain). In this case detF ¼ detFp

holds. Accordingly, it describes the evolution of the relative
density

r
rC

detF ¼
r0
rC
! rrel detF ¼ rRrel.

Herein we denote by rC the density of copper and by rR
the density in the reference configuration, where rdetF ¼
rR is exploited. The time derivative of the relative density
rrel ¼ r=rC leads to

d

dt
rrel

� �
detFþ rrel

d

dt
detF ¼ 0, (4)

i.e., with d=dtðdetFÞ ¼ ðdetFÞtrD, D ¼ symL symbolizes
the spatial strain-rate tensor, we obtain

d

dt
rrel ¼ �rreltrD. (5)

In the case of D ¼ Dp

d

dt
rrel ¼ �rreltrD̂p ¼ �rreltr Ĉp

D

¼ �rrel _rK .

Here, use is made of

d

dt
detFp ¼ ðdetFpÞðtrL̂pÞ ¼ ðdetFpÞðtrD̂pÞ
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ffiffiffiffiffi
J2

p
plane.
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describing the relationship of

_rK ¼ trD̂p ¼ tr Ĉp

D

.

The second quantity, which describes the hardening
behavior of the powder material, results from the axes-
ratio a of the ellipsoid where its evolution reads

_a ¼
cD

aw
ðP̂� xIÞ �

qF

qP̂
� abD

� �
_s,

i.e.,

_a ¼ l
cD

a
ðI1 � 3xÞ

qF

qI1
þ 2J2

qF

qJ2

� �
� bDaw

� �
(6)

with

w ¼ ŵðI1; J2; x; aÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

qF̂

qI1

 !2

þ 2J2
qF̂

qJ2

 !2
vuut .

In this respect the rate of the plastic arc-length

_s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĉp

D

� Ĉp

D
r

¼ lw

is proposed. Accordingly, the material parameters a1, a2, a3

and rK0
with rK0

¼ ln rRrel describe the volumetric and cD
and bD mainly the deviatoric material behavior and
determine the evolution of the yield function during
loading processes. These parameters are identified for
regular copper powders based on the experimental results
of Carnavas [14] in Ref. [1] and for irregular copper
powder, based on die compaction experiments of cylind-
rical specimens performed by us, in Ref. [11].

Herein we use many of the material parameters as in
Ref. [11] and determine others so that the modified
constitutive model (3) is taken into account having the
property that the relative density starts from 0.42 and
cannot exceed the maximum of 1. In the following the
material parameter identification is briefly recapped. For

more details we refer to Refs. [1,11]. Particularly, we take
over the assumptions already applied in Ref. [11] for the
parameters I0, r and c. These parameters are not identified
but set a priori to reasonable values, i.e., I0 ¼ 1MPa, r ¼

0:3 and c ¼ 0:01, see Table 1, due to their geometric
meaning in the yield function, see Fig. 1. c defines the
interpolation factor in the yield function F controlling the
closeness to the smaller of the interpolated partial yield
functions. The other parameters are identified from
uniaxial die-compaction experiments with intermediate
unloading and reloading cycles, where a two stage
procedure is proposed in Ref. [11]. In a first step a rough
estimate for the parameters of the elasticity relation (1), m
and L, is assumed and the other parameters appearing in
the evolution equation for a and xðrkÞ, which describe the
growth of the yield surface, are determined by a least
squares fit of the simulated loading behavior to the
measured loading behavior (there the measured radial
and axial stresses srad and saxial are considered). All these
investigations can be done on the level of the 3-D
constitutive model, because a homogeneous deformation
is assumed. In the second stage, m and L are determined
from the unloading behavior for a fixed plastic deforma-
tion resulting in two linear equations which lead to
analytical expressions for m and L, for details see Ref.
[11]. This procedure is done twice since the elastic
parameters influence the loading process and, accordingly,
the identification of the inelastic material parameters. It is
shown in Ref. [11] that 2 iterations are appropriate to
determine the parameters. The only difference in the
current paper is the assumed relation between x and rk

where, instead of xðrkÞ ¼ �b1=b2 expð�b2rkÞ þ b3rk as-
sumed in Ref. [11], the new proposal (3) is applied
containing the coefficients a1, a2, a3 (instead of b1, b2,
b3Þ. In order to simplify the identification process all
parameters, except for a1, a2, a3 are taken directly from
Ref. [11] (namely cD, bD, a0, m and LÞ and only the
parameters a1, a2, a3 are determined through a least
squares fit of a simulation of the loading process to the
measured loading process behavior of the radial and axial
stresses srad and saxial. The entire set of parameters is
compiled in Table 1.
In Ref. [11] it has also been shown that the material

parameters m and L should be density dependent (in this
respect see also the discussions in Refs. [15,16]). Never-
theless the influence of keeping these parameters as
constants was found to be of minor importance as one
may see at the elastic loading and unloading curves: the
estimated constant parameters produce predictions that lie
in between the experimental data (see Fig. 15 in Ref. [11]).
In a future investigation a thermomechanical consistent
model, which is also capable to consider density dependent
m and L will be derived.
In Table 1 the material parameters used in subsequent

analyses are summarized.
Implementation of the constitutive model in an explicit FE

code: Since the complicated loading process in real

ARTICLE IN PRESS

Table 1

List of the experimentally identified material parameters

Parameter Identified by die compaction

L (GPa) 5.2

m (GPa) 8.3

I0 (MPa) 1.0

r 0.3

c 0.01

cD ðMPaÞ�1 0.0001

bD ðMPaÞ�1 2.68

rK0
�0.868

a1 24.7926

a2 23.5836

a3 15.9724

a0 (initial condition) 0.558

M. Szanto et al. / International Journal of Mechanical Sciences 50 (2008) 405–421408
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applications imply the computation of the underlying
initial boundary-value problem, use is made of Abaqus/
explicit. To this end, the constitutive model has to be
incorporated into the FE program using the VUMAT-
interface. Explicit finite elements, see, for example,
Belytschko et al. [17], are based on the discretized equation
of motion

MaðtÞ ¼ pðtÞ � gðt; u; qÞ, (7)

with the mass matrix M, the externally prescribed force
vector pðtÞ and the internal force vector gðt; u; qÞ which
contains the current stress state. a and u are the
acceleration and the displacement vector respectively and
q contains all internal variables of all Gauss-points of the
structure. Eq. (7) has to be fulfilled at each time tn:

Man ¼ pðtnÞ � gðtn; un; qnÞ. (8)

Applying this relation requires the internal force vector
gðtnþ1; unþ1; qnþ1Þ for the next step, i.e., the stresses at the
time tnþ1, which depend on the constitutive model, on the
displacements (deformation gradient) and the internal
variables, defined by a case distinction (elasticity or
plasticity in dependence of the loading condition). In the
purely elastic case only Eq. (8) has to be computed. In the
inelastic case (at these Gauss-points where plastic loading
occurs), the second order system of differential algebraic
equations (DAE)

Man ¼ pðtnÞ � gðtn; un; qnÞ, (9)

_q ¼ rðtn; un; qn; knÞ, (10)

fðtn; un; qnÞ ¼ 0 (11)

has to be solved. This is solved in the context of explicit
formulation by a partitioned integration method, i.e., for
different parts of the coupled system different integrators
are applied. A central difference method is applied to
discretize (9) leading to the displacements

unþ1 ¼ un þ Dtnþ1 v
n�

1
2
þ

Dtnþ1 � Dtn

2
an

� �
(12)

with

v
n�

1
2
¼

1

Dtn

ðun � un�1Þ and Dtnþ1 ¼ tnþ1 � tn,

Dtn ¼ tn � tn�1.

The first order DAE-system (10) and (11) is usually solved
by a Backward–Euler method where the computed
displacements (12) are used

qnþ1 ¼ qn þ Dtnþ1rðtnþ1; unþ1; qnþ1; knþ1Þ,

fðtnþ1; unþ1; qnþ1Þ ¼ 0.

f are all yield conditions currently active and knþ1 the
plastic multipliers concerned. In other words an explicit
method is combined with an implicit method.

In respect to the numerical treatment of the constitutive
model, the evolution equations (2)–(4) and the stresses (1)

are expressed by quantities relative to the reference
configuration, ~T ¼ hðC;CpÞ, and integrated by means of
an elastic predictor—plastic corrector scheme on the basis
of Backward–Euler method, see Hartmann and Bier [18]
for a detailed explanation. There, a fully implicit solution
scheme and time-adaptive procedures are investigated.

3. Die-compaction: verification and validation of the

FE code

The constitutive model has been implemented in the
explicit commercial code Abaqus/Explicit. Herein we
present the verification of the FE implementation and its
validation by comparison to the die compaction experi-
ments. In the following section, the validation of the code
under a 3-D setting is performed by analyzing a CIP
process and comparing the results to experimental ob-
servations.

3.1. Verification of FE simulations

The material parameters in Table 1, identified by die-
compaction experiments, were used in a FE analysis that
simulates the experiments for verification and validation
purposes. A 2-D axisymmetric domain is considered, where
only one forth of the geometry is modeled. Following the
experimental setup [11] the computational domain is shown
in Fig. 2. The specimen is 14mm in diameter and 17.3mm
in height. The die and punches are made of 4340 steel, with
Young’s modulus E ¼ 200GPa, Poisson ratio n ¼ 0:3 and
yield strength of sY ¼ 1300MPa, guaranteeing the elastic
behavior. On the top of the upper punch, a pressure of
500MPa is applied (loading), which is removed during the
unloading process.
A systematic space enrichment is performed by increas-

ing the mesh densities of 2� 1, 8� 6 (48 elements), 16� 12
(192 elements). In these analyses quadrilateral axisymmetric

ARTICLE IN PRESS
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Fig. 2. Geometry of the die-compaction model.
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reduced integration elements are used. The upper and
lower punches are represented by a single element and the
cylindrical die consists of 3 elements in the vicinity of the
specimen, see Fig. 3.

Contact surfaces with optional friction defined between
the punches, cylindrical die and the specimen, whereas in
the present subsection frictionless assumption is used.

For this analysis the relative density rrel is necessary,
which is determined by the determinant of the deformation
gradient at the Gauss-point (here, the one-point integration
is exploited), see Eq. (4). The initial relative density, as
determined by experimental results in Ref. [11], is rRrel ¼ 0:42.

The computational results of the axial displacement at
the top of the specimen ðz0 ¼ 17:3Þ and the relative density
versus the load, using frictionless contact for the different

mesh densities of the specimen are plotted in Figs. 4 and 5,
respectively. The displacement under the maximum and
after the release of the load for the different mesh densities
is reported in Table 2.
The relative density for the frictionless boundary conditions

should be identical over the specimen. However, because of
the numerical explicit scheme, a small deviation of less then
0.2% exists, hence the relative density, plotted in the different
figures is the average value over the entire specimen.

3.2. Die compaction: experimental vs. computational

validation

The die-compaction experiments (with a load of
500MPa) and the material parameter identification based

ARTICLE IN PRESS

Fig. 3. Discretization (different mesh densities) of the die compaction analysis.

Fig. 4. Die compaction: axial displacement versus the load using

frictionless contact for different mesh densities.
Fig. 5. Die compaction: average relative density versus the load using

frictionless contact for different mesh densities.

M. Szanto et al. / International Journal of Mechanical Sciences 50 (2008) 405–421410
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on their results are reported in Ref. [11]. In order to
compare the observations of the experiments (loading and
unloading) with the FE solutions we used the 48 elements
mesh described in the previous section. The FE axial
displacement (at z0 ¼ 17:3) and averaged relative density
versus the applied load are plotted in Figs. 6 and 7,
respectively (peak values reported in Tables 3 and 4). The

ARTICLE IN PRESS

Table 2

FE results for the die-compaction simulation (for frictionless contact)

DOF (number of elements) Step size during unloading Step size during loading Maximum displacement Maximum displacement

Uz ðz0 ¼ 17:3Þ at
unloading (mm)

Uz ðz0 ¼ 17:3Þ at loading
(mm)

9 (2) 1� 10�6 1� 10�6 8.834270 8.724890

117 (48) 1� 10�6 1� 10�6 8.807767 8.698715

425 (192) 1� 10�7 1� 10�8 8.754762 8.646366

Fig. 6. Experimental and FE axial displacement on the top vs. applied

load.

Fig. 7. Experimental and FE average relative density vs. applied load.

Table 3

Maximum relative density in die compaction—FE and experimental

results

Relative density r=r0

FE results with material

parameters identified

Die compaction

experimental data

by die compaction exp.

Loading 0.854 0.858

Unloading 0.845 0.845

Table 4

Maximum axial displacements [mm] in die compaction—FE and

experimental results

Axial displacement uz ðz0 ¼ 17:3Þ

FE results with material

parameters identified

Die compaction

experimental data

by die compaction exp.

Loading 8.834 8.835

Unloading 8.794 8.700

Fig. 8. Radial stress vs. average relative density of the 3 different

experimental data.

M. Szanto et al. / International Journal of Mechanical Sciences 50 (2008) 405–421 411
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FE results are compared to die-compaction measurements
available from three different experiments.
The radial stress applied inside the die is computed in

Ref. [11] based on the measured radial displacement
outside the die at a fixed position, under the assumption
of linear elastic response of the die. The measured radial
displacements are in a scale of mm. These small values may
result in some loss in accuracy. Hence, the values of radial
stress have relatively large deviation between the data of
the 3 experiments as shown in Fig. 8.

3.3. Die compaction: on the influence of friction

The purpose of the die compaction experiment was to
identify the material parameters by obtaining a state of
homogeneous deformation. However, due to the inevitable
friction between the die and the metal powder one cannot
obtain a pure state of homogeneous deformation. There-
fore, it is important to identify the effect of the friction on
the parameter identification. Hence, a parametric compu-
tation for friction coefficients of 0, 0.1, 0.2, 0.3, between the
metal powder and the dies was performed. Using the
material parameters obtained from die-compaction experi-
ment with the assumption of frictionless contact we
performed FE analyses of the die-compaction experiment
using the 48 elements mesh. The axial displacement versus
the load, and the average relative density for different
friction coefficients is plotted in Figs. 9 and 10, respec-
tively. The relative density distributions shown in Fig. 11
confirm the anticipated increase in the relative density
distribution with the increase of friction coefficient, and
indicate higher values at the top close to the upper punch.
Hence, values of the relative densities plotted in the
following figures, are average values. The results of
the averaged relative densities indicate only a small
dependence of the process on the friction between the
specimen and the die. The displacement, relative density
and stresses at maximum load and after unloading are
reported in Tables 5 and 6.
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Fig. 9. Die compaction FE analysis: axial displacement vs. load for

different friction coefficients.

Fig. 10. Die compaction FE analysis: average relative density vs. load for

different friction coefficients.

Fig. 11. Die compaction FE analysis: effect of the friction coefficient on the relative density distribution in die compaction.
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3.4. A preliminary sensitivity study

To obtain a ‘‘feeling’’ on the influence of a small change
in material parameters on the final dimension and density
following a die compaction analysis, we performed two
rough sensitivity studies. For this purpose we performed
FE analysis of die compaction using the 48 elements mesh.
In the first sensitivity study we varied mutually the
parameters a1, a2, a3, that define the evolution of the yield
surface, by �10% (equivalent to variation of �10% in x).
The resulting FE axial displacements and the relative
densities as a function of the load are plotted in Fig. 12.
One may notice that there is a change in the response at the
same order of magnitude (about 10%) because of the
change of material parameters, i.e., the influence is
proportional.

In the second sensitivity analysis the variation in the
parameters a1, a2, a3, and rk0, that define the evolution of
the yield surface, were tested separately. Each parameter, xi

was varied by a small amount of Dxi, and the numerical
gradient was computed as follows:

rel_gradðxiÞr=r0
¼ xi �

r=r0ðxi þ DxiÞ � r=r0ðxiÞ

Dxi

,

rel_gradðxiÞu ¼ xi �
uðxi þ DxiÞ � uðxiÞ

Dxi

. ð13Þ

The resulting FE variation in axial displacements and the
relative densities as a function of the load are plotted in
Figs. 13(a) and (b). These results indicate that variation in
rk0 has the highest impact on the results, whereas the
variation in a2 has the least influence on the results.

When examining the spring-back displacement after
unloading, one notices it is considerably smaller than

the total displacement. This is because the unloading
is in the elastic range. Thus the governing parameters
are the ‘‘Lame constants’’ m and L. These parameters are
assumed to be constant during the entire die compaction
process (see Ref. [11]). In other words the value of the
spring-back displacement can be controlled by these
parameters.

4. CIP of a complex specimen

In order to validate our constitutive model and
FE implementation a more complex geometry is consid-
ered, undergoing a die-compaction followed by a CIP
process. A cylindrical sample made of copper powder
(same as used in Section 3) with a rigid sphere insert
is considered as shown in Fig. 14(a). The specimen is
loaded in two stages. At first, from a relative density of
approximately 0.42 to an average relative density of about
0.53, by die compaction (axial load), compressing it to
52MPa. In the second stage, the specimen is removed from
the die and placed in a pressure chamber, where it is
subjected to a uniform isostatic pressure (CIP) of 300MPa.
The specimen dimensions, after die compaction, are shown
in Fig. 14(b).
In the experimental data of compaction with a spherical

insert the initial height of the loose powder in the die was
not measured, i.e., in order to use the material properties
determined in Section 3, we assume an initial relative
density of 0.42, which corresponds to a height of 29.0mm.
We obtain after the die compaction process an average
density of 0.53 at a height of 23.5mm, identical to the
experimental value. After the unloading of the die, the
specimen was placed in the pressure chamber and loaded
by an isostatic pressure to 300MPa, after which the
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Table 5

Computational results of the stresses, for different friction coefficients

Friction coefficient Maximum axial stress (MPa) Maximum axial stress Maximum radial stress (MPa) Maximum radial stress

at unloading (MPa) at unloading (MPa)

0 500 0 242.523 156.127

0:1 500 22.5501 248.022 171.056

0:2 500 23.6828 249.211 178.855

0:3 500 27.9833 250.828 185.435

Table 6

Density and displacements, for different friction coefficients

Friction coefficient Maximum relative

density r=r0

Relative density r=r0
at unloading

Maximum axial

displacement

Axial displacement at

unloading

Maximum radial

displacement

uz ðz0 ¼ 17:3Þ (mm) uz ðz0 ¼ 17:3Þ (mm) ur ðr0 ¼ 7:0Þ (mm)

0 0.854269 0.845503 8.83427 8.79390 13:58404 � 10�3

0:1 0.850413 0.842918 8.76558 8.75319 13:35707 � 10�3

0:2 0.845201 0.840304 8.69091 8.68818 12:93288 � 10�3

0:3 0.838787 0.831523 8.61834 8.51043 12:61476 � 10�3
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pressure was released and the specimen removed from
the chamber. The final shape of the specimen is shown in
Fig. 15.

In view of the radial and axial symmetry, only one fourth
of the domain was modeled as in the previous section.
The available axisymmetric elements in the software
product Abaqus/Explicit allow only bilinear quadrilaterals
(4-nodes) with reduced integration or quadratic triangular
elements with reduced integration. We have used both for
the numerical experiments. Four different meshes were
considered: two quadrilateral meshes, one with a coarse
and another with a fine mesh, and two triangular meshes,
one with 3-noded (linear) and second with 6-noded
(quadratic) elements. The four meshes are shown in
Figs. 16 and 17. The inserted sphere is made of a stainless
steel which is simulated by a rigid inclusion (Young
modulus of the sphere is considerably higher compared

to the copper powder). Furthermore, another simplifica-
tion is introduced by clamping the circular boundary of the
powder which imply full contact between the powder
and the circular sphere. The die and punch are made of
high grade steel thus are modeled as rigid bodies which are
in frictionless contact with the metal powder (allow to
slide).
Following the actual experimental procedure, the FE

analysis was divided in four stages:

1. Die compaction from a height of 29 to 23.5mm.
2. Release of the punch followed by a release of the die by

their motion away from the compacted specimen.
3. CIP of the specimen, by applying a uniform pressure of

300MPa on outer boundary.
4. Decrease of the pressure to zero (unloading).

For the explicit scheme we chose a very small time step of
Dt ¼ 10�7 to assure small temporal integration errors. The
entire process was divided into 16� 107 time-steps as
follows: 5� 107 time-steps for the die compaction, 2� 107

for the release of the die, 7� 107 for the CIP process and
2� 107 for the pressure release (unloading).
Fig. 18 presents the relative density distribution after die

compaction for the four different meshes used in our
analysis. Following the die compaction and the release of
the specimen from the dies, the CIP process was modeled
by applying a uniformly distributed pressure of 300MPa
over the outer surface following by unloading where the
pressure is gradually reduced to zero. The relative density
distribution at the end of the process, (i.e., after the CIP
and unloading) plotted in Fig. 19.
We also summarize the maximum and minimum

height and diameters as obtained from the FE analyses
compared to the experimental observations in Table 7
(see definitions of Hmax, Hmin, Dmax, Dmin in Fig. 15).
The reported experimental data are the average of 5
specimens tested (detailed information on the experimental
measurements is provided in Appendix A). Because it
was not possible to measure the relative density pointwise
in the experimental specimens (the obtained measurement
error was too large), we computed from the FE simulation
the average relative density to compare it to the one
obtained in experiments—this comparison is shown also in
Table 7.
The averaged specimen’s density was measured in the

experiments by the ‘‘water displacement method’’ also
known as the ‘‘Archimedes method’’. The samples were
infiltrated with distilled water in vacuum (density of
distilled water is taken as 1 g=cm3 at room temperature).
Denoting the three measured masses of a sample by:
W D mass of dry sample (known from the powder’s
mass prior to the experiment), W W its mass with water
and W S mass of specimen immersed in water, and denoting
by R the spherical insert radius with its mass equal
to minsert ¼ rinsert �

4
3
pR3 we computed the following
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Fig. 12. Die compaction FE analysis: (a) influence of material parameters

on axial displacement vs. load response, (b) influence of material

parameters on average relative density vs. load response.
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quantities:

W D1 ¼W D �minsert,

W W1 ¼W W �minsert,

W S1 ¼W S � ðminsert � V insert � rwaterÞ.

Then we computed the average density of the copper
specimen by

V OpenPorosity ¼ ðW W1 �W D1Þ=rwater,

V PM ¼ ðW D1 �W S1Þ=rwater þ VOpenPorosity

¼ ðW W1 �W S1Þ=rwater,

rPM ¼
W PM

V PM

¼
W D1

ðW W1 �W S1Þ=rwater

.

One may also noticed that the deformed shape of the
specimen after the CIP process, as shown in Fig. 19, results
in a non-flat surfaces at the top (and bottom) of the
specimen and barrel at the circumference, as also observed
in the experiments.
The obtained results are in very close agreement with the

experimental observations.
It is also evident that the numerical errors are small since

the results of the various models are very close.
Notes on the time step size: The FE solution is obtained

by the combination of an explicit scheme for the
momentum equation and an implicit scheme for the
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Fig. 13a. Die compaction FE analysis: influence of material parameters on axial displacement vs. load response.

M. Szanto et al. / International Journal of Mechanical Sciences 50 (2008) 405–421 415



Author's personal copy

constitutive equations. In explicit schemes the time step size
has to be small enough to assure stability, i.e., if the time
increment is larger than the CFL condition, the increment
is said: to have exceeded the stability limit. Based on the
element-by-element estimate, the stability limit in the linear
elastic range defined as

Dtstable ¼
LE

Cd

,

where Cd ¼

ffiffiffi
E
r

q
, r is density, E the Young modulus and LE

the smallest element size.
In the plastic range, the tangent modulus is smaller then

E, and for the CIP process r increases as the deformations
increase. On the other hand, in extensive deformation, LE

can decrease significantly. Usually the effect of the material
properties is more significant then the geometric effect and

the stability limit in the linear elastic range is an upper
bound for the time step size.
In large distortion cases, it is a common practice to

increase r artificially in order to increase time step size and
reduce computational time. However, the increase in r
results in artificial inertia forces, which can be significant in
high speed process simulation.
Using the values of L, m from Table 1 and r0 ¼

8:9 � 10�6 kg=mm3 for copper, results in LE ¼ 2:3 �
106Dtstable mm=s ( at r=r0 ¼ 0:42 for loose powder at the
beginning of the simulation).
The equations of the implicit scheme for the constitutive

model evolve in time, hence it is time step size dependent as
well. At each time step, the yield function F should
converge up to a pre-determined residual value e. It is
evident that as e is smaller more iteration or smaller time
step is required for convergence. Moreover, for the
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Fig. 13b. Die compaction FE analysis: influence of material parameters on average relative density vs. load response.
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proposed constitutive model, the convergence space is
small, thus small step size is essential to reach convergence
at all. The convergence rate depends on the elements shape
and deformation gradient value, hence the most effective
way would be to adjust the time step to an optimal size at
each time step. Unfortunately, this is impossible in
Abaqus/Explicit with VUMATs.

In the user subroutine, the residual was set to 10�11, and
the maximum number of iterations to 100 at each
integration point.

In the computation of the cylindrical sample with a rigid
insert, the maximum time step size was set to 10�7, at this
value, the subroutine converged in every step for all cases.

In an attempt to reduce computational time, the time
step size was increased to 5 � 10�7. The result was
insignificant in the total CPU time, because the number
of iterations, at most of the steps, was higher. However, at
some steps the maximum number of iteration was reached
with a residual of 10�9=10�10 which is higher than required.

In the explicit scheme, the upper bound for the smallest
element size, in that case is: LE ¼ 2:3 � 106 � 1 � 10�7 ¼
0:23mm. This value is relatively large and in order to
reduce it the density was increased by a factor of 100, to
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Fig. 14. Cylindrical specimen with a rigid insert. (a) Dimensions (mm)

before die compaction, (b) dimensions (mm) before CIP.

Fig. 15. Final shape of the specimen, after CIP and spring-back (bottom picture shows the specimen after being sliced).

Fig. 16. Four-node quadrilateral FE meshes.

Fig. 17. Triangular FE mesh.
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Fig. 18. Relative density distribution after release from die compaction.

Fig. 19. Relative density distribution at the end of the process (i.e., after CIP unloading).

M. Szanto et al. / International Journal of Mechanical Sciences 50 (2008) 405–421418



Author's personal copy

obtain LE
X0:023mm. Since the process is relatively slow,

the effect of this value on the solution is insignificant. The
code automatically reduces the time step size when smaller
values resulted by the computation of the stability limit.

5. Conclusions

The various steps required for a reliable simulation of
CIP of metal powders by a commercial explicit FE code
have been addressed and demonstrated by comparison of
the FE results to experimental observations. The constitu-
tive model for metal powder developed in Ref. [1,11] has
been slightly revised herein and implemented as a user
subroutine into the commercial FE code Abaqus/explicit.

The required material parameters of the copper powder
were identified by die compaction experiments and used to
verify the FE implementation. These were subsequently
used for the simulation of die compaction followed by CIP
of a cylinder with a rigid spherical insert for which
experimental observations were available. We have shown
that the FE results (dimensions and average relative
density) and experimental observations were in very good
agreement.

It has to be pointed out that a relatively large
computational time was required for each FE analysis on
a 2.8GHz PC. This is due to the explicit algorithm chosen
in conjunction with the very small yield surface of the metal
powder at low densities. Implementation of the constitutive
model into an implicit FE algorithm using high order shape
functions, although requiring the computation of a tangent
stiffness matrix, is expected to provide a dramatic
improvement in efficiency of the computations as will be
reported in a future work.
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Table 7

Specimen dimensions (mm) after CIP: FEM analysis and experiments

Hmin (mm) Hmax (mm) Dmin (mm) Dmax (mm) r=r0 ave

Experiment 21.09 21.30 17.35 17.61 0.826

(standard deviation) (0.07) (0.01) (0.02) (0.02)

Coarse 4-node bilinear 20.95 21.20 17.40 18.05 0.803

(error compared to exp. in %) (0.67) (0.47) (0.30) (2.56) (2.78)

Dense 4-node bilinear 20.95 21.45 17.40 17.53 0.828

(error compared to exp. in %) (0.67) (0.70) (0.30) (0.40) (0.24)

3-node linear triangular 20.90 21.00 17.60 17.95 0.808

(error compared to exp. in %) (0.90) (1.41) (1.44) (1.98) (2.18)

6-node quadratic triangular 20.80 21.45 17.50 17.80 0.816

(error compared to exp. in %) (1.37) (0.70) (0.86) (1.13) (1.21)
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Appendix A. Detailed experimental data of a cylindrical specimen with spherical insert

Specimen D

(mm)

H

(mm)

Mass (gm)/(only

powder)

Relative

density

ha hb h upper

punch

h bottom

punch

Hmax Hmin Dmax Dmin

Sphere insert of diameter 11.89 mm and mass of 6.8749 m. Die compaction at 52 MPa performed prior to 300 MPa CIP

A1

Initial dimens. 20.03 32.66 0.407 59.68 23.59 28.65 21.96

Dimens. after die compaction 20.1 23.44 38.48 (31.6051) 0.534

Dimens. after CIP 21.28 21.18 17.58 17.35

A2

Initial dimens. 20.03 33.21 0.399 61.77 22.05 28.65 21.96

Dimens. after die compaction 20.1 23.47 38.4692 (31.5943) 0.533

Dimens. after CIP 21.31 21.13 17.6 17.38

A4

Initial dimens. 20.03 32.53 38.442 (31.5671) 0.408 61.98 21.16 28.65 21.96

Dimens. after die compaction 20.1 23.5 0.532

Dimens. after CIP 21.32 21.05 17.64 17.33

A5

Initial dimens. 20.03 32.58 38.44(31.5651) 0.408 61.83 21.36 28.65 21.96

Dimens. after die compaction 20.1 23.5 0.532

Dimens. after CIP 21.31 21.07 17.62 17.33

A6

Initial dimens. 20.03 32.5 38.447(31.5721) 0.409 61.85 21.26 28.65 21.96

Dimens. after die compaction 20.1 23.5 0.532

Dimens. after CIP 21.3 21.03 17.63 17.35

D (mm) H (mm) Relative density Hmin (mm) Hmax (mm) Dmin (mm) Dmax (mm)

Average and standard deviation of experimental data

Initial dimension
Average value 20.03 32.696 0.406
Standard deviation 0 0.294 0.004

Dimens. after die compaction
Average value 20.1 23.482 0.533
Standard deviation 0 0.027 0.001

Dimens. after CIP
Average value 21.092 21.304 17.348 17.614
Standard deviation 0.062 0.015 0.020 0.024
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