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Extracting generalized edge flux intensity functions with the
guasidual function method along circular 3-D edges
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Abstract Explicit asymptotic series describing solutions to the lkap equation in the
vicinity of a circular edge in a three-dimensional domairswecently provided in Yosibash
et al, Int. Jour. Fracture 168 (2011), pp. 31-52. Utilizing it, we extend tlggiasidual func-
tion method QDFM) for extracting the generalized edge flux intensitydiions (GEFIFs)
along circular singular edges in the cases of axisymmetigcren-axisymmetric data.

This accurate and efficient method provides a functionat@pmation of the GEFIFs
along the circular edge whosecuracy may be adaptively improved safiproximate the
exact GEFIFs. It is implemented as a post-solution operdtiaconjunction with thep -
version of the finite element method. The mathematical ambf the QDFM is provided,
followed by numerical investigations, demonstrating tfficiency, robustness and high ac-
curacy of the proposed quasi-dual function method. The emagttical machinery developed
in the framework of the Laplace operator is important toiresits possible extension for
the elasticity system.

Keywords Quasi-dual function method edge flux intensity functions penny-shaped
crack - 3-D singularities

1 Introduction

Methods for computing stress intensity factors (SIFs) farck tips and generalized SIFs
(GSIFs) for V-notch tips in two-dimensional (2-D) domainene addressed in many papers
in the past five decades, starting with [8,9]. In realistregidimensional domains however,
edge singularities (crack fronts and V-notch tip curvespated much scarcer attention due
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to the complexity of the solution in the vicinity of edges ¢ept a pioneering work as early
as 1946, by Sneddon [13], for the penny-shaped crack in amtenfilomain). The SIFs
and GSIFs are variable along such edges, defining univdtiattions called edge stress
intensity functions (ESIFs) and generalized edge stresasity functions (GESIFs).

In the vicinity of straight and circular edges an expliciy@ptotic series of the singular
solutions was provided [5,11, 14, 15]. Each term of thiseseis characterized by:

— anexponentq; which belongs to a discrete sdtv,, & € N} of eigenvalues de-
pending only on the geometry and the operator, and whichrdétes the level of non-
smoothness of the singularity. Amygenvalueq,, is computed by solving a 1-D prob-
lem.

— ageneralizegigenfunctiorexpansiongy, ; ¢(») ( is anangular coordinate transverse
to the edge) which depends on the geometry of the domain anopirator. The terms
of this expansion are computed by solving a set of 1-D problem

— afunctionalong the edge, denoted hy, () (6 is a coordinate along the edge) and
called “generalized edge flux/stress intensity functioBEFIF/GESIF) which deter-
mines the “amount of energy” residing in each singularity.

Based on the explicit representation of the solution to theldce and elasticity system
in the vicinity of a circular edge in [15], here we extend theasjdual function method
(QDFM) presented in the framework of 3-D straight edges jii]$ to circular edges. This
extension is demonstrated on the basis of the the LaplacgiequThis is because it is a
simpler elliptic operator that allows more transparentyitacomputations and invokes all
necessary characteristics of the elasticity system. Tthassharacteristics of the QDFM for
circular edges can be more easily addressed so to be extdmetedfter to the elasticity
system for the computation of ESIFs for cracks occurringaligun pipes and pressure
vessels.

We construct the quasidual functions (QDF(),(ﬁ,J;L) adapted to circular edges. They

are the essential ingredient used to define a new functianak J,, [r, K,(L%)] , Which is

a surface integral on a torus of minor radigg having the singular edge as its axis. The
result of this functional determines an explicit repreagonh of the GEFIF of the solution
7 in a certain basis of functions, as opposed to other methansding pointwise values
along the edge. Since the GEFIF on a circular edge is a perodction, it will be natural

to construct the QDFs in such a way that the functional detezsithe Fourier coefficients
of the GEFIF. Furthermore, the new method allows to extlaetGEFIFs away from the
singular edge, thus enables the use of coarse meshes arnatediehe necessity of complex
refined mesh generation in the vicinity of 3-D singular eddé® obtained results are both
accurate, efficient and robust.

Notation and preliminaries are introduced in section 2 dweddual-function method in
2-D domains, known also as the contour-integral method][2 Tecalled. It serves as the
basis to the QDFM. In section 3 we extend the QDFM to circutamdins by providing a
mathematical analysis on its theoretical performances tlién used in section 4 to extract
the GEFIFs from axisymmetric solutions along circular &sand circular V-notch edges.
Our method can be compared with the method of the singulaplment of [3]. Numerical
examples using the -version of the finite element method are also provided toatestnate
the efficiency of the QDFM in practical applications. Cimukdges in nonaxisymmetric
cases are addressed in section 5, and we summarize ous liesséttion 6.



2 A Path-Independent Integral Around a Corner in 2-D

The Laplace equation in a 2-D domain expressed in polar auwates (p, ) located in the
singular pointP (see Figure 1) is given by

1 .
ar== (p0p)? + aw,] =0 in®, 1)

with either Dirichlet or Neumann homogeneous boundary itimmd (BCs) on the faces’
and Iy (¢ = v1,p2 ) intersecting aP,

7=0 on [y UIly Dirichlet BCs (2
or
on

where 7 is the outward normal vector. Any Dirichlet or Neumann baanydconditions
may be prescribed away from the singular point. Solutiond Yavith (2) or (3) expand in

=Vr-n =0 on 71Ul Neumann BCs 3

Fig. 1 2-D domain and notations.

the vicinity of P as asymptotic series composed of primal eigenfunctionsgandralized
flux intensity factors (GFIFS Ay, )

=Y App™ () 4)

k>0

where both the eigenvalues;, and eigenfunctionsp,(p) may be, for the Laplace equa-
tion, explicitly computed [7]. They can be expressed a®¥edl

_
_Ld

Qg

and
sin 7 (o + 1) (Dirichlet)
¢k‘(‘p) = ke
cos “(p+¢1)  (Neumann)



Each primal eigenpair is associated with a dual eigenpait, v (¢) ), that satisfies the
PDE and BCs but does not belong to the energy space (equivalére H'(£2) Sobolev
space). For the Laplace equatiafn,(¢) = ¢ (¢) . These dual eigenpairs are used to con-
structdual singular functions

. ef v
K(o) & Bjip~ Y 1;(p), )

where:
1

with the constantD; defined as the scalar product of the angular functions:

®2 P2
Dj= [ ¢j@ilp)de= | &p)dp. 7
®1 P1
The dual-function method, known also as the contour-iategrethod, is very effi-
cient for the extraction of the generalized flux intensitgtfes (GFIFs) utilizing a path-
independent integral [2, 1] along a path starting Bn and terminating oni :

Here dI" = pdy . Furthermore,J - [r, K("‘i)} is path-independent.

3 The Surface-Integral Jp[T, K%‘f,’;l)] Around a Circular Edge in 3-D and Its Use for

Extracting GEFIFs
3.1 Local coordinates around a circular edge

Consider a circular singular edge in a 3-D domain, geneliayadtating the singular point
P around thez3 axis as shown in Figure 2. Cylindrical coordinates &red, z3) with
the distancer to the axis and the rotation angt. In general, neither the domain, nor the
boundary conditions have to be axisymmetric, but for eaggesgentation we consider the
3-D domain generated by the cross-secti@n Locating a polar coordinate systep, o)

at P, we have the relations

r=R+pcose and z3=psineg.
and the Laplace operator can be written(jn ¢, ) coordinates as (see [15]):

1 1 = .
= Ut Zeosor A with
p2 (1+ % cos )2 (030, pOp, ) Wit
N def P 2 9 (9)
A = (1 + 5 cos go) [(p@,,) + aw]

P oo P leos 0pd. — si PY?
+ (1 + R cos <p) X (R) [cos ppdp — sin pdy,| + (R) Jpe
In the vicinity of the circular edge let the function satisfy

AT =0, ie. 5(@; Op, pOp, 09)T (0, p,0) =0, (20)



with homogeneous Dirichlet or Neumann BCs on the re-enfeas

7=0 0n ¢ = p1,p = o, Dirichlet BCs (11)
Vr-n=0 0n ¢ =¢1,p =y, Neumann BCs (12)

The interior equation (10) with (11) or (12) is completed byri-zero) regular boundary
conditions on the rest of the boundary of.

Fig. 2 3-D domain of interest2 and the (p, ¢, ) coordinate system.

3.2 Primal singular functions and their shadows

According to [10], solutionsr to the 3-D problem (10) with BCs (11) or (12) expand as
asymptotic series in powers gf and logp as p — 0. The structure of this asymptotic
series is driven by the principal part?“? of the operatorA , frozen along the edgéJsing
(9), we find AP™P = p=2 [(pap)2 + 8W] . Note that “freezing the operatorA along the
edge, means in particular thétis kept constant so thaiy, disappearsAs a consequence,
the 3-D asymptotic series is generated by the 2-D eigenpajrsand ¢; presented in
Section 2. Due to the regularity of data, the 3-D asymptatiges takes the general form of
asumink > 1 of singular packets

(9, 0,0) = > Ap(0)p™ bo,k,0(#) + 3k[Ak] (@, 0, 6). (13)
pi}okz()

The functions ¢ 1, o def ¢y, are calledorimal functionsand p“* ¢ 1, o(¢) are theprimal
singular functionsEach of the higher order term%;, has a composite structure involving
so-called shadow functions. Since the operatbrhas constant coefficients with respect
to the variabled and involves no first-order derivative with respectéo the general form
appearing in [10] simplifies. In the non-resonant casejiten o, —«; is never an integer)



3 involves even-order derivatives of;, and a two-parameter family of shadow functions:
¢e ks for £=0,2,4,... andi=0,1,2,...
i+0
k2L 3ilddend) = > Y %A0) 6™ (F) o) (14)

0=0,2,4,- i>0

£+i>0

Fortunately, the important case of cracks, which is a presonant, enters also in this frame-
work by virtue of the absence of logarithmic terms, [4]. Thneswrite

T=> > 9GAL0) p™ Y (%)Hé be,k,i () (15)

k>0 £=0,2,4,--- i>0
where A, (6) are the generalized edge flux intensity functions (GEFIFs).
Remark 1The explicit ODEs for the determination @f, ;. ; provided in [15] are written in

a more abstract form here for the purpose of mathematicafpfa/here we also introduce
many notations and indices local to this section).

The generalized relations satisfied by all , ; may be described with the help of the
expansion of the Laplace operatar defined in (9) with respect to powers d .

2 2 )
A= Z Z (%) * 85 My ;(p; 0, pOp) (16)
£=0i=0

where the M, ; are partial differential operators of ordet 2, with coefficients indepen-
dent of p . Explicitly we have (note thatVp o = p? AP™P )
Moo = (pp)* + O,
Mp,1 = 2cosp [(Pap) >+ 5 (p0p) + asw} —sin ¢ Jy,
Mo,z = coso [(p0)) 2 + (p0) + O | — 3 sin 200,
My;=0,9=0,1,2, Mzp=1, M1 =0, Mz =0.

17

For eachk , the equations thap, j, ; satisfy are found relying on the fact that each singular
packet in (13)

A (0)p™* bo.k,0(p) + 31[Ak](w, p, 0)
is a formal solution of (10), for any coefficie, . Thus we find for eacht > 1

2 2 , g
S5 (L) 0k Meati 00000 X X 0540 (2) T buito) =0
R R

£=01i=0 2>04'>0
(18)
Using the relation

i/+€/ i/+€/
My (3 0y, pByp) p™* (%) = p* (%) My i (oy, + € +1')

where M, ;() is a shorthand forM, ;(¢; 0y, 8) , equation (18) becomes

2 2

i+0+i 0 '
PSS S (L) O 0) Mo st + £+ ) ki (9) =0 (19)

£=04=0¢'>014>0



Setting A\ = ¢+ ¢ and p =1+, we find the equivalent relation

2 2
Y3 Y (%)“’ OAR(O) Myi(ag, + A — L+ p—D)dr_ghpui(9) = 0. (20)

A>0 >0 £=0i=0

This relation holds for any functiom,(6) and for all p > 0 if and only if

2 2

Z Z My (o +X =L+ p—10) dr_pppu—ile) =0, VYA,pu>0 (21)
£=01=0

Equation (21) is the key for the recursive construction efshadow terms (the explicit re-
cursive equations are given in [15]). In [12] we provide fotas for the functionsp, . ; (¢)
in the case of a penny-shaped crack ar@ba V-notch with Neumann BCs.

3.3 Dual singular functions, their shadows, and the susiategral

To extract the generalized edge flux intensity functio)g6) , we extend the path independent-
integral presented in the previous section.
Similar to the primal functions and their shadows, for ahy 1, we introduce the dual

function vy ;o def ¢; and its shadows)y, ; ; so that same relations as (21) are satisfied

2 2

DD Myi(—aj+ A =L+ p—i)Yr_gju—i(®) =0, YApu>0 (22)
£=01:=0

Explicit instances of equation (22) are provided in sediérand 5. Formulas for the func-
tions vy . ;(¢) are given in [12] in case of homogeneous Neumann BCs.

Quasidual function§QDF) are defined as the sum of a dual eigenfunction afid a
nite number of its dual shadows. To each QDF is associated an e®rpaey} , two non-
negative cut-off integers. and m and a (test) functionB; = B;(#) , defining the function

K% B)) as:

m n
; def o h+f
KRB Y B0 Y (%) vnss(e) (23)
h=0,2,4,-- f=0

The angular functionsB; are not specified at this stage and will be later chosen asoig
metric functions. When no confusion is possible, the mentib B; will be omitted in the
notation of the QDF.

Multiplying Ar =0 by K,(f‘gf , then integrating over the subdomain* (see Figure
2) and applying Green’s theorem one obtains,

0= / (K3 vr — 7K ) - hdl + / TAKLS) d0. (24)
o0

The Laplace operator applied oﬁ,(f‘fn) ,i.e. AK,,(L‘,",J;L) is zero only whenn, m — oo . For

afinite n and m AKTS%) # 0, thus the last term in (24) does not vanish in general.



On the two flat surfaced’ and I'x, homogeneous boundary conditions are prescribed
thus eitherr = 0 and K,,(L‘f‘,il) =0,0r 9,7 =0 and 8,~LK,(L‘f,%5) =0, for a circular closed
edge thus (24) reduces to:

27 ) )
0= / / (KT — 7VKS) -

o () ()
+ / / (Kn(,){rjn VT — TVKn(,)frJn) N
$p2

oo (B + po cos ) podipdd (25)

o (R + p1 cos p)p1dedd + / TAKv(L(irJﬁ) as.

*

Since V-#a|, =08, and V- qf, = -8, ,we obtain:

AP (ay) ()
/ / (Kn,ﬂn OpT — TOp Ky i )p (R + po cos ) podpdt (26)
(0]

2T 2 .
= / / (K,(ﬁ,%@)@pr - T@,,Kfﬁ,{@)) (R + p1 cos p)p1dpdd — / TAK,,(L?‘,’;L) dsn.
1 P1

*

Definition 1 For p > 0 small enough, we define the surface-integsalr, K,(f%)] over
the torus of minor radiug and major radiusRk that surrounds the circular edge by:

Jp |:T K ?‘in) def/() / K,(f;n)ap T —T0pK (aj)) (R+ pcosp)pdepdd. (27)

With the new notation, (26) becomes
Tpo [T, K,,(;,";;B] —Jp [r, K,‘;igg)] - / rAKYS) o, (28)

In contrast with the homogeneous 2-D case as shown in se2fi@f (7), the integral
Jo T K,,(L‘f‘,’;?] is surface-dependent, i.e., it dependsmon

Lemma 1 For any chosenr satisfying Ar = 0 and zero BC’s in a neighborhood of
the circular edge, for any chosen positive integgrs n and m , for any smooth chosen
function B; , there holds forpg > p; > 0 small enough

Jpo [ K| = I [ K3 | = 0 (p“l“"ﬁmi“{"”’”}“
PO

ﬂo) (29)
P1
(aj) (aj)

Proof We have to evaluateAK, ;. For this we considedKn,m . Applying (16), and in
similarity with (19) we find

i+t f
AK) = po ZZ Z Z ( ) e 95T"B; My i(—a; +h+ f)vn s (30)

=04=0 h=0 f=0
m+2 n+2 min{2,m+2—A} min{2,n+2—p}

DD DY > (5) e, @

A=0 p=0 i=0
My i(—aj + X =L+ p—i) Yr_gjpu—i-



Using (22) we observe that the terms involving values\ofind 1 such thatmin{2, m +
2 — A} =2 and min{2,n + 2 — u} = 2 cancel in the sum (31), so it becomes

() . m+2 m+2—X\ n+2 min{2,n+2—pu} A
Ak = Y Y Y Y (&) Tas (32)
A=m+1 ¢=0 pn=0 =0
Mpi(—aj + A =L+ p—19) Ya_pju—i
m 2 n+2 n4+2—p

Y Y Y Y (%)M_M%\BJ

A=0 ¢=0 p=n+1 =0 )
My (=i + X =L+ p—1) Yr—pjpu—i-

Then formula (29) is a straightforward consequence of tipaesion (15) ofr , and of the
identities (9), (32) and (28).

3.4 Extracting circular GEFIFs using the quasidual-fumttinethod

We now prove the following theorem that shows how tlig integral evaluated with the
guasi-dual functions (23) allow an accurate evaluation ofrmants of the coefficientsi,,
in the expansion (15).

Theorem 1 Letthe functionr satisfy interior equatior§10) with boundary condition§l1)
or (12). With K,,(L‘f‘,il) [B,] defined by(23)and D; in (7), there hold the following formulas
for theextraction of the GEFIFA; of 7, cf (15).

(i) Concerning the first GEFIFA; , we have:

ABy da) e (p”min{"’m}) (33)

7, [T, K[f(;ﬁln) [Bl]] = 2a1RD1</2

0

(i) This formula generalizes to the next GEFIE; , j = 2,3, ... ifthere are no resonances
(i.e. in the case whemx; — «y, is not an integer fork < j ):

J [ K(aj)B- 9w RD. QﬂA-B.da o ay—a;+1+min{n,m} 34
p|Ts n,m[ j] =2a;RD; o jDj + P (34)

Returning to the definitions (27) and (7), formula (34) résin:

2m
/ / KT(;X,J”) i1 0pT — TOPK n X [B ])p (R4 pcosp)pdedd
(35)

27 P2 .
= ( A;B; d9> <20ch d)? dgp) + 0O (pa1faj+1+m1n{n,m}> )
0 P1

This means that the/,, integral used with the QDFK [B ] allows the extraction of the
moment of A; againstB; if n and m are chosen Iarger tham; — o . Then the error
O(pal*o‘ﬁ”min{”’m}) converges to0 as p — 0. In practice, the use of larger values
for n and m allows to take larger values g for a same level of error. This permits to
combine this extraction method with not strongly refined hess



10

Remark 21n the axisymmetric case, all functions,;, are constant along the edge. Thus we
chooseB; as constant functions. This corresponds to the angular micoieler 0 . Hence

the associated QDFs satisfy %’ (B;] = K,(ffgl) (B,] forall m .

n,0
Remark 3In the general case, takingr = n optimizes the number of shadow functions
with respect torm and n so that (34) becomes

Jp [r KW B;]] = 2ajRDj(/(;2wAij dg) + O (pi i) (36)

In fact, whenm is even we havef(,({if) — k%) thusn=m+1is optimal.

m n,m-+1"

Remark 4The generalization of this method to the case of the equation= F with

a smooth functionF depends on the values df' along the edge. IfF’ is zero with its
derivatives, the method can be used without modificatiothéropposite case, one has first
to determine a particular solution of the equatiairP®' = FP° with BCs, where FP°!

the Taylor expansion off" along the edge. In a second step, the method will be used for

7 — 7P° and provide the GEFIF of .
Proof of Theorem 1First we investigate the surface-integrd|r, K,({f,{@)] when 7 is re-
placed by finite sums of primal functions with their shadoRecall definition (23)

KRB = Y 080 Y (L) vnsle). (37)
h=0,2,4,--- f=0
Likewise we define finite singular expansions
m n .
def . K
A A Y 9A0) ™Y (B) T durile). (38)

£=0,2,4, - i=0

Although in the expansion (15) the series associated wahetgenvalueq;, includes an
infinite number of terms, for the mathematical analysis wa& fionsider a finite sum. We

investigate the surface integrals, [rfl"";,z Ak, K,({X,%@) [Bj]] . Instead of (28), we have

n’,m n’,m

Tpo [PSTN AR KSR BT = Ton 7500 14, K33 1B,)]

n’,m’ n’,m’

_ / K3 B A7) (4] — 70 (4,] AR (B, d2. (39)

Since ersﬁ”";g,[Ak] satisfies mutatis mutandis (32), one obtains that

n+m—+n'4+m’+4
KW By A (4] =m0 (A ARG B = 07 Y pRu(p.6).
v=14min{n,m,n’,m’}
(40)
where the functionsF,, do not depend orp, but depend on all other data. Taking the
relation (9) betweenA and A into account and the fact that? = p(R+ pcos p)dpdepdd

we find a sequence of real coefficien®s, such that

N K 1B ArSH) [ 4] = rl5%) |4 AK3) By de2

o

— Z (pozk—aj-i-u

v=1+min{n,m,n’,m’}

Po

) Gy (41)

P1
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The series in the right hand side of (41) is convergent dgr small enough. We combine
(39) with (41) for pg = p and p; = ¢:

To [ (AR K By = e [0 A, K0 8]

- Y e Y e, @)
v=1+min{n,m,n’,m’} v=1+min{n,m,n’,m’}
We considerp as fixed and let: tend to 0 . We can write
[e.e]
LMK B =cr Y e, @)
v=1+min{n,m,n’,m’'}
where C is a constant independent ef.
Now, using (27) and expressions (37)-(38), we find coefftsigi? | ™™™ ™ [4,, Bj]
given by

k.j|n,mn'm’
Hy, [Ag, Bj] =

m n m' !

n 2 2
RV N M Z( /0 aﬁAkw)agBj(e)de) (g +aj+L0+i—h—f) / “’ase,k,i(sa)w;l,j,f(so)dw

h=0,2, f=0¢=0,2,1=0 ®1
het fA-L+i=v
1 m n m TL @2
RV Yy Z (/ 0 Ak (0) 06 B; (0) cw) (g +aj+L+i—h— f)/ G0.1,i(#) Ynj. 1 () cos p dip
h=0,2, f=0¢=0,2,i=0 ®1
htfAHl+i=v—1
(44)
such that for anyp small enough
o) n+m4n’'4+m’+1 kil .,
Jo [l A KRB = 30 et ey ) (45)
v=0
Using this for p = ¢ and combining with (43) we obtain
n+m4n’4+m’+1 ) ., o0
Eak_aj-‘rl/Hl]fJ | LT T T [Ak7 Bj] =C + Z Eak_aj—‘rl/Gy .
v=0 v=1+min{n,m,n’,m’'}
(46)

We note that by definition, the coefficiertz | ™™™ 4, B;] does not depend on
n,m,n’,m’ assoon ag < min{n, m,n’,m’'} . We denote it byH} [A,, Bj].
Thus, identifying the powers of in (46), we find that

Hf’j[Ak,Bl] =0, Vv <min{n,m,n’,m'} suchthatay —a; +v #0. 47)

In contrast, whenay, — o; + v = 0, the factor H.» [Ay, B;] does not need to be zero.
Typically o —a; +v =0 for k=3 and v = 0. In this case, (44) yields

. k,j k,k
|fk,‘:], HOJ[A]C,BJ'] EH07 [Ak,Bk]I

</027f A (6)Bi(6) d0> (QakR/:z 62(9) dgp). 48)
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From (45) and (47) we deduce for’ > m and n’ > n

) (pakfaj+1+min{n,m}>
o i ¢ {0.....min{n, m})
) | Q; — , ..., NN, m

Jp [ AN KSR ]| =

n’,m’

Hllf,j [Ak7 Bj] + pOO (pak—aj+1+rrlirl{7L,'rn})

if aj —ap:=ve{0,...,min{n,m}}
(49)
By linearity we deduce from (15) and (49) (considering thérersolution 7, so that we
cantaken’ > n and m’ > m)

o [riein] -

min{n,m} ) :
Zpak_aj{ S pHEIAL B+ 0 (P”"““{"’m})} (50)
k

v=0 p—0

In particular, if ; = 1 the only non-zero coefficientZ%*’ is for k = j = 1 and
v = 0. Combining (47)—(50), we have proved the theorem.

In the following sections, we specify the use of the ext@atformula (35) for axisym-
metric as well as non-axisymmetric solutions in domain$witcular edges. We also extend
the method to cases for which, — «; are integers (“resonant” case). Numerical tests will
demonstrate the efficiency of (35) for extracting GEFIFsrfnaumerical solutions.

4 Extracting Circular GEFIFs for Axisymmetric Solutions by the QDFM

In the axisymmetric casel,;, are 6 -independent, sa- may be expressed as

T(pp) = D> App™ Y (%)i G0,k,i()- (51)

k>0 i>0

Thus, for theK(aj)[Bj] , B; are 6 -independent (constants) and = 0 :

n,0
( ) n p f
K3 (0, 0)1B1) = Bip ™0 Y (£) o,.5(0). (52)
=0
The explicit equations for the dual eigenfunctions andrtbigadowsz)y ; r(v) are obtained
from (22) and [15]:
06?7#0,;;0 + 00 =0, (53)
(—ay +1)%90 41 + 90 j1 = — (—ajcosp o0 —sin ¥h o) (54)
(—oj + 1) o jp + 0045 = — [(—aj + F)(—a; + f — 1) cos o P j p—1 (55)
—sing g o1 +cosedy o], f=>2

for 1 < ¢ < 2, completed by homogeneous BCs

o ;. = 0 0N 1,92 homogeneous Dirichlet BCs (56)
Opt0.5,5 = 0 0N 1,2 homogeneous Neumann BCs (57)
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Since B; is constant, the QDR [B;] coincides with K’ [B;] . Taking into account
that fOQW A;B;df = 2w A;B; , we find that formula (34) becomes in the axisymmetric case:

Jp [r K\ 1B))] = dmay RD;A; By + 0 (p™ 70 ) (58)
Therefore, choosings; as:
1
B- =
J 47TOéjRDj (59)

equations (58) and (60) result in; alone with a remainder dependent pn

We illustrate this formula by several particular exampl#e.even find an improvement
for a circular crack with Neumann BC’d-or a certain finite set of integers and n we
show in the sequel that, witl; given by (59)

Jo [ KBy = 4y + 0 (p et (60)
Remark 5In the general situation of non-axisymmetric data, the dsmostant B; given
by (59) provides an approximation of the mean value of the IBES
1 2
o /) A;(6) db,
with the same rates (58) or (60).

4.1 A circular crack with homogenous Neumann BCs - Axisymiimeiase

For a circular crack with homogenous Neumann BGs= 27, (91 = —m,¢2 = ) the
eigenvalues aren, = 0,4,1,3,2,3,3,--- . We representr up to O(p'!) as follows
(explicit expressions forp . ; are provided in [12]):

10 , 10 . 9 .
7 2 2
7= Ag+ Ap'/? E (%) ¢0,1,i + A2p E (%) ®0,2,i + Azp’/? E (%) 90,3,
i=0 i=0 =0

9 .
1
+Asp° Z (%) b4+ + A2 p? 20010+ O(p™). (61)
=0

Remark 6 The explicit expansion (61) isot requiredto implement the QDFM. We provide
it for two reasons: First to investigate the cancelatioaslileg to the super convergence rate
(60), and second to implement boundary data in numericakiepso that the exact solution
is close to (61).

Remark 7The eigenfunctions and shadows associated with the inegenvalues are or-
thogonal to the dual eigenfunctions and dual shadows a&sdaivith half-integer eigenval-
ues under theJ, integral. This is the reason that the terms associated Wighds, Ay, - - -
are absent from formulas (66) and sequel.

In (61) the first termsgg ;.0 = ¢; and g ;0 = ¥; are given by

cosdf j=0,2,4,-
(o) = s - i € (—m,m). 62
95(¢) = ;%) im% s wetmm (62)

Thus according to (7)D; = = and we choose as in (59)
1 1 (63)

B, = = .
7 4n?aR - 2jm2R
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4.1.1 Extracting A,
To extract A; we use (63) and to simplify notations we write

def . 1
Kn1’62) = Kf:éQ)[Bﬂ with By = R (64)

For a crack the quasi-dual functiorfsfll’(/f) have a particular simple form (when compared
to other ones, see [12]). We find

1 - i (2041 i
PR Ly ) o Y 5, sin ZLH e (ﬁ) (65)

© 2n2R 4 2 R
=0

with the constants3; given in Table 1. One may determine from Table 1 an expligites-

Bo P B2 B3 Ba Bs Be B7 Bs Bo B1o
1 1 3 5 35 63 231 429 6435 12155 46189
1 32 128 2048 8192 65536 262144 8388608 33554432 268435456

Table 1 Coefficients in the expansion (65) of the Qm;ff,ég) .

sion for Kc(xlj’/(?) as shown in Appendix A.

We extract A; by (35) using K(()}({ 2, Ké’lo/ ?) . The expected convergence rates as
p — 0 are given in (49). Here, using the explicit expressions efghimal singular and

shadow functionsg 5, ; and their dual analoguesy ; ; provided in [12] we calculate
Joo [T, KT%Q)} for n=0,...,3, obtaining the following.

3 2
(1/2)] _ Po Po
JPO[TvKO,O ]_Al (1_64R3+”')+A3(E+"') (66)
4 6 2
Po Po _ Po
(gt Y o (o) oo (4)
5 6
(1/2)] _ 3P0 300
Jpo[r,Kw ] =4 (1_ A +) T As (1120R5 +) (67)

—+

30 2 99
A= [ — A Ao [ ——2F0 4 ...
5( 32RZ T AN tA\Tompr t

R2
(1/2) 750§ Po
Too| T K547 | = Ar (11— 5%+ ) + 4s (e + - (68)
50 pg 1505
A
+ ( 297RE + 12887 © tAo\ Tompr t
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9 10
(/2] _ 245p5 PO
J”U[T’ 3,0 ]_Al(l_m+”' s\ g T (69)
500 3500 3505

As [ =—2F0 4 .. A [ 22F0 L Ag [ —=2F0 4 L.

+ 5( 2933R5 A7\ 999R7 T tAo Tompr t
o8

+.“:A1+O(R_(‘)l>

One may observe from formulas (66)-(69) that for a circutack in an axisymmetric case,

the first GEFIF A; may be extracted by the QDFM, using’\'/” with an improved
remainder as in (60) when compared to (58):

I [ K47] = a0 (5 (58)") (70

The remainder corresponds to the contributiondsf, ;5 if it is non-zero. When compared
with the proved generic rates of convergence, cf (49), whartticularize as

At 0 (pM) ifk=1,
(k/2) (1/2)] _ p—0
Jo | Tn6 " [A], Kp ] = o (P02 e g s g, (71)
p—

we observe that a coincidence of the rates occurs when 2n + 3 and a practical im-
provement otherwise.

4.1.2 Extracting A3 - the problem of resonance and its remedy

By same methods presented, we aim at computipg, K,,(LO‘OFS/Q)] with
1

(3/2) def 1-(3/2) i —
K =K [B3] with B3 = 62R’

n,0 n,0 (72)

Since as > «y , according to the general principles, cf (58), one shoulaiQDF which

has at least one shadow, i.er’O/Q) or one with a largern . More precisely, the proved
generic convergence rates, cf (49), particularize as

0 (0" if k=1andn =0,
p—0
(k/2) 3/2) YAL+ O (p") if k=1andn > 1,
ol e fno”] = o (73)
P 2,0 k ,0 ] As+ O (p1+n) if k= 3,
p—0
OO (p(k_?’)/Q"rl-‘rn) if k> 5,
p—

where the constany is a shorthand for the coefficiemfll’3[A1 =1,Bs].

But since the remainders hade factobetter decay properties, we may UK%30/2) as
well. With
K(3/2) _ 1 —3/2 390 (74)

00" = GEgl Sy
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we find

3/2 5p 3p
Tpolr K] = Ax (3 5t resma T ) + 43 ( seopi + ) (75)

Po 1 Po
A =A1—+A ol=).
+ 5(4R+ ) 13R+ 3+ (R)
We encounter a “resonance” when trying to extragt associated witha; = ay, + v, SO

that j > k£ and v € N. This “resonance” can be easily removed if we consid@é}oﬂ) ,

which extracts exactlyA; , see (66). Instead oké‘go/ 2) only, we choose the extraction
function: (3/2) det (3/2) W)

~-(3/2) de 3/2 1/2

Koo' = Koo +cKj

1

with ¢ = — 5 S0 one obtains

Joolr K532 = A5+ 0 (”0) (76)

which leads to the lowest order extraction formula fés .
If we try to use the QDF:

e I T [ SR .
Ko™ = 5oR? {MHQ“’ 17 (R) (7

then computingJ, [r, Kldo/Q)] with (61) results:

3/2
Too [ K] = 3RA1+A3+O (R?) (78)
In view of (78) due to the resonance we construct again thefradd)DF:
©(3/2) def .(3/2 1 1/2
P - 9
B P A WL . WP (A R
~ 6m2R” {Sm 2 1 (R) S (R)SmQ *3 (R) S

This leads to the extraction formula fots :
2
J/’O [T7 K£ ()/2)] A + © (R_O) ’ (80)

In a similar manner we may construct:

> def
R R - ot o

L g3 Ly an® (2N (Lgn3e 3 gnTe
~ 6r°R” {an 4(R>5m2+<3) 19y Tyt
(P an® L (2, 3P 3 (), 2P
(R)Sln2+4<R) ST T 39 (R) sin 5
and obtain that: A
Jl)o [T, f(é?o/Q)] =A3+ 0O (p—%) (82)
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As one notices, the remedy to the “resonance” problem isltulzde Kff(/f) without
taking the resonance with; into account. Then the modified QDF is defined

. (3/2) def ,.(3/2 1 1/2
RO K0P - Lt

that extractsAs for any n .

Remark 8In the case ofA5 , two resonances occuing = a1 + 2 = ag + 1), then we
construct the modified QDF by addition of the two QDFs asgediavith a; and ag,
multiplied by two constants:

© (5/2) def ,.(5/2 2 3/2 2 1/2
RO RO - 2+ kg

Using this formula forj = 5, we can demonstrate by analytic computations the validity o
the following estimate forj =5 andn =0,1,2,3:

. A+ 0O % n<aj—o
JIJO |:T7 Ky(za(;)] = ’ <R ’ ) n+1 ’ ' (83)
’ Aj+ 0 (pHome L ()™H) >0y

Formulas (76), (80), (82) show the same estimatejfer 3 andn =0,1,2.

In the general case of resonance, foe 2¢ + 1, the modified QDF takes the form:

KD = kD 4 ek i),

n,0 n,0 n,0 n,0

4.2 Axisymmetric solution of &7 /2 V-notch with homogeneous Neumann BCs

We apply the QDFM for the extraction of the GEFIFs associat@l a circular 37/2 V-

Notch (w = 37/2, ¢1 = —7, po = 7/2) and homogenous Neumann BCs. In this case
the eigenvalues arey, = 0, %, %, %, % ---, and the solutionr can be expressed as follows

(see [12] for the expressions @f; , ; ):
8 i 8 i 7 i
7= A p*? Z (%) ¢0,1,i + Agp™/? Z (%) ®0,2,i + Asp? Z (%) ¢0,3: (84)
i=0 i=0 i=0

6 .
P K3 P
+ A4p8/5 Z (%) R e A14P28/5¢0,14,0 + O(Plo)
i=0

The first termsgg ;.0 = ¢; and ¢y ;0 = +; of the primal and dual singular functions
are:

. _ _7 .
(j)j(cp):q/)j(gp):sinQJT(p—(\/lg) cosQJTw, j=1,2,4,5,.... (85)

Thus the quantityD; in (7) is equal tor .
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4.2.1 Extracting A,

We first construct the QDR (/%) <! K(Q/B)

3,0 [B1] with By = &3 according to (59):
§20/3)_832Rp72/3 {Sin%oJr%cos 250 (86)
(e -1 a1 ) (3)
(et e e d) (7
# (TR e+ T e o e ¥
5

_ ol 5 g lle, B To B, Te) 0y
1283 287" 3 T Tasvs " 128 73 (R) '

Of course thatK((fO/g) , K§2()/3) and K(2/3) are obtained if one neglects the corresponding
dual shadows in (86).

We extractA; by (35) using k4> ..., K{° . Combining (86) with the expansion
(84), we check that in the V-notch case there is no improvemiethe general convergence
result (58). We obtain:

o K5 = 0 ()

, n=0,1,2,3 (87)
the main contribution to the remainder being thatAf .
4.2.2 Extracting A,
For extraction of 4, we constructKé‘fO/ ? as follows
Lg‘l({g) ﬁ —4/3 {sin 4?@ - % cos 4;0 (88)
(iR fege o) ()
(Bt B )y

4 3
+(£ g_ismg 17V3  Tp 51 . Tp

32 3 T g %3 T3t
5 By 5 By 7.5 T 5_%0 s
=33 T3 T3 T s (R)

The QDFs K(4/3) , K(4/3) and K(4/3) are obtained if one neglects the corresponding
dual shadows in (88).

We extract A, by the QDFM (35) usmgKO4/5 . KW‘” According to (88) and
(84) we find the same orders of convergence as in the genm(ﬁ&)

Too [T K(()4()/3)] =A+0 {p62/3 (R)nJrl .

(89)



19

Remark 9We checked by several computations that for a circudlay2 V-notch in an

axisymmetric case, the GEFIE$; may be extracted by the QDFM usir!g,(fg) according
to the theoretical estimate (35).

Remark 10For extractingA, associated withny = 8/3 = «; +2 the resonance situation
occurs and the modified QDF must be used instead of the “négoitee. In this case of
resonance we still obtain the theoretical estimate usiagrthdified QDF forn > a; —a :

2
A;+0O %) n<aj—al

oo (90)
A4 +0 (07 ()") nza -

Jpo [Tv Rr(fé)} =

4.3 ExtractingA; from p -FE solutions

We extractA; from p -FE solutions because in general the exact solutiois not known,
but only its approximationrrg . A Visual Basicprogram was created for extracting the
GEFIF’s from the FE solution.

For verification purposes axisymmetri¢-E model of a domain with a circular singular
edge is considered. Here instead of the exact solutigp, the approximated FE solution

Tre IS used, and the integral,, [TFE,K,(ij )] is computed numericallyrge is extracted
on a torus surface which surrounds the circular singulaeddge Figure 3) and(ffg) is
computed analytically. The integral,, [7¢g, Kff"g )] is evaluated by a Gauss quadrature:

Fig. 3 Domain with a circular singular edge and the integral serfac
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Jpo[TFE,K,(fg)} =
— 1 . o
= 2w 22 [ (KL (0. 0(€)) % Bpe(ion. £(6)) = (o0, £(6)) x BpKL3 (oo, 0(6))]

xpoR (142 cos(e(€))) de

nGp

= ez — 1) > Wi [K153 (po, 0 (€0)) X Dp7re (po, 0 (€0)) — Tre (00,0 (60)) X B K5 (0, 0 ()]
i=1

XpoR (1 + %) cos (¢ (52))) (91)

with

- +

and ¢&; and W; being abscissas and weights of the Gauss quadraturepgpdis the
number of the Gauss points used for the numerical integratio

4.3.1 Sources of error ild; when extracted by, [7¢g, Kf;fg)]

Extraction of A; by Jy, [7FE, Kffoj)] involves three sources of errors:

1. The error due to the truncation cf,‘ﬁ(;” :
Computing A; with n being a finite number, a truncation error is introduced atiogr
to (58) and (60).

2. The numerical error usinggg instead of gy :
Using FE solutions for approximatingex , a numerical error is included in our com-
putations. We may estimate the numerical error by estigatie FE error. We expect
that the error in the extracted GEFIFs is smaller than thar é@mrthe energy norm.

3. The numerical integration error:
The values ofrrg are discrete therefore we use a Gauss quadrature of argerfor
the evaluation of (91), introducing a numerical integratésror.

4.3.2 A specific example: a torus with a circular crack andsgmimetric Neumann BCs.

The accuracy of the numerical procedure basedbeRE methods is firstly demonstrated
on a simple problem of an inner cracked torus. Consider & taith an axis (which is a
circle) of a radiusk = 1, and a minor radius ofi/2, i.e. the torus is defined by? =
{(p,,0)|0< p<1/2, -7 < ¢ < m, 0 <6 < 2r}.The radial coordinate: is bounded
by 1/2 = r; < r < r2 < 3/2. A crack is inserted in the torus defined by< R =
1,z3 = 0 (see Figure 4, Left). On the crack surfaces homogeneous algutnoundary
conditions are prescribed, whereas on the outer surfadeedbtus,p = 1/2,0 < 0 < 27
the trace of the exact solution (61) up 10(p'%°) is prescribed as Dirichlet BCs, with
Ag = Ay = Ay = Ag = A7 = --- = 0,and A; = A3 = A5 = 1. Because an
axisymmetric case is considered, we perform an axisymmeEianalysis, using the mesh
shown in Figure 4-Right. The analytic formula for the bourydeonditions coincides with
the exact solution up to an order ¢p/R)'%-> due to the truncation of series with respect
to the index: .

The integral J,, is computed using a quadrature of ord&d(= ngp) and 7gg IS
extracted from a FE solution at = 8 having an error 0f0.02% in energy norm.
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Fig. 4 Atorus with a circular crack and the axisymmetric finite eéethmodel.

N

We extract the first three EFIFgl,, A3, A5 for different values ofpy and consider
an increasing number of dual shadow functions for the QEE’({) .For A3 and Aj the

modified QDst(,(j“g> are of course utilized.
The relative error as percentage of the “ex'[racldtaf}:iE "is defined as:

FE Exact
i A

eAj% = 100 x W
J

(93)

Figures 5-7 present the convergence of the extra@t?'fj. The convergence rates of the
ex'[ractedAJF-E match the convergence rates according to the estimate8)in (6

As expected, the error in the extracted EFIFs is smallertti@errors in the FE solution.
To quantify the integration error we monitor the relativeoeras percentage ofi;, As, As

0 Shadoy
——— y=1974%137

1 Shadov

¥=3.954% 0.9

2 Shadov

- y=5.845%051

3 Shadov
¥=8.662%-0.54
Numerical error 0.0 -
4 Shadow- less than numerical errc |

10g(% relative error in A)

0.1 02 03 04 05
log(po/R)

Fig.5 ea,% vs. log (52)

extracted byJ,, [TrE, Ké%l)] and Jy, [7rg, f(é%j)] when j = 3,5 for different quadrature
orders ngp . Table 2 presents a summary of these relative errors (pagen One may
observe that fomgp > 32 the error due to the Gauss quadrature is negligible.
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Fig. 7 ea,% vs. log (5%

Table 2 % Relative error in A; for different quadrature orders for a circular crack withrtageneous

log(% relative error in A)

104

0 Shadov
——— y=2.006%1.23
1 Shado
- y=2.067%0.98
2 Shadoy
- y=4.008%0.83
3 Shadoy
y=6.71x%0.8
——— Numerical error 0.02% [-
4 Shadow- less than numerical errc | -

02
log(po/R)

0.3 0.4 0.5

log(% relative error in As)

y=1.955%1.2¢
1 Shadov

y=7.74%-1.06
Numerical error 0.

R

Neumann BCs.

)

0.2
log(po/R)

0.3 0.4 05

po/R=1/2 po/R =1/4 po/R = 1/10
nep =10 | nep =32 | np =90 | ngp =10 | nep =32 | nep =90 | nep =10 | ngp =32 | ngp =90
ea, % || 4528400 | 9.24E-02 | 5.68E-02 | 1.84E-01 | 1.77€-02 | 2.78E-03 | 1.99E-02 | 2.67E-03 | 1.24E-03
eas% || 130E+01 | 473E-01 | 4.28E-01 | 174E+00 | 5.89E-02 | 2.38E-02 | 2.80E-01 | 1.38E-02 | 6.94E-04
eas% || 438E+01 | 1.15E+00 | 1.10E+00 | 1.88E+01 | 1.60E-01 | 2.34E-01 | 8.57E+00 | 7.89E-02 | 4.20E-02

4.3.3 A specific example: a penny shaped crack in a finitedstiwith axisymmetric
Dirichlet BCs on the outer surface.

Consider an axisymmetric FE model of a cylinder with a penmgped crack. Homoge-
neous Neumann BCs are prescribed on the surface of the @aaddylinder’s outer surface
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Dirichlet BCs are prescribed, shown in Figure 8, given by
Ti(r, w3 =1,0) = —155.4 + 3.055r + 181.8r% — 34.82r + 6.43r* — 1.271° 4 0.22r° (94)
To(r, w3 = —1,0) = 155.4 — 3.055r — 181.87% + 34.82r3 — 6.43r* + 1.27+° — 0.22r5 (95)

T3(r = 2,23,0) = 375.1z3 (96)

The domain and the boundary conditions @réndependent, thus axisymmetric FE models

T4(r=2,x5,0)

1
3

2H=2

Fig. 8 A cylinder with a penny-shaped crack and BCs.

were considered. To compute “benchmark values”Af a refined FE model shown in
Figure 9(a) is considered (the relative error in the enemyis 0.05% ). The “benchmark
A; " are extracted from the refined FE models by the pointwise¢ararintegral method [1]
implemented in StressChécltsing 20 terms and a path radius @f01 . In comparison, a
coarse FE mesh shown in Figure 9(b) (the relative error iretiergy norm is0.35% ) was
used to extract the EFIFs by the QDFWhis is to demonstrate that no special refinements
are required and a path away from the crack tip can be usedi®iQDFM.The benchmark
values of the first three EFIFs extracted by the SC algorithmp@a= 0.01 are A; =
30.15, A3 = 116.41, A5 = 91.02 .

The difference between the benchmark first three EFIFs agsktcomputed by the
QDFM at py = 1/2 using 32 integration point is summarized in Table 3; for j = 3,5
are extracted by/,, [r, K9] .

n,0
One may observe that extracting; using the coarse FE mesh by, _, /5[7rE, Kif’(‘;')]

results in very accurate values with relative errors smétlien the FE relative error in energy
norm.

1 StressCheck is a trademark of ESRD, St. Louis, USA
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(@) (b)

hR hR

Fig. 9 (a) A refined FE model, (b) A coarse FE model.

Table 3 Relative error (percentage) betweet; extracted by SC using the refined meshat = 0.01
and these extracted by the QDFM g = 1/2 using the coarse mesh, for different number of dual shadow
functions.

Number of dual shadow functions
n:0|n:1 n=2|n=3| n=4
% errorin Aj 23.723| 1.729 | 0.070 | 0.063 | 0.061
% errorin As 2.901 | 1.900 | 0.316 | 0.008 | 0.010
% error in As 1.122 1.452 | 0.964 | 0.178 | 0.055

——=—— %relative errorin A
——=—— % relative errorin A

———— % relative errorin A

—————— Numerical error= 0.35%

% relative error in extracted A

Number of dual shadow functic

Fig. 10 Relative error (percentage) betweeh; extracted by SC and by the QDFM versus the number of
dual shadow functions in the QDF.

5 Nonaxisymmetric solutions

For nonaxisymmetric cases, the solutiencan be expressed as follows [15]:

o)=Y 3 a0 Y (L) benio) (@7)

E>0£=0,2,4.- i>0
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and the QDFs will also depend ah because of the functions; () :

m n

a; def — s h+f

K (o) Y 0B Y (%) vnssle): (98)
h=0,2,4-- f=0

The explicit ODEs for the determination of the dual eigewtions and dual shadow func-
tions, ¢y, ; r() , are obtained from (22):

Forh=0: Equations (53)-(55) for the axisymmetric case hold.
Forh=2,4,6---, f>0:
(—aj + f+R)2pjp+ 0 p = (99)

—(h+f—aj=1)[2(h+ f —a;j) = 1] cosp Py j (s—1) +sin@ by ; ;1)
—2cos w;l'7f,(f_1) —(h—oj+f-2)(h—aj+f—-1) cos> © w}l7j,(f_2)
s sin @ Y5 (5) = 05" QUL (7-2) ~ V(h-2),5.f

with homogeneous BCs,

Ynj, (@) =0, 0Ny = 1,02, Homogeneous Dirichlet BCs (100)
Oy 5. £(0) = 0, ONp = 1,2, Homogeneous Neumann BCs  (101)
For a circularclosededge (6 € [0, 2x]) , by elliptic regularity along the edge [6, Theorem

(16.9)], the GEFIF’sA,(#) and all their derivatives are continuous along the edgeh&p t
can be expanded as a convergent Fourier series:

[e.e] (oo}
Ag(0) = ag, + Z Akop_1 cos(pf) + Z ALy, sin(p0). (102)
p=1 p=1
In this case the QDFM amounts to extract a finite number of dedficients a;,, with ¢ =
0,...,Q and to approximated,, by its truncated Fourier series

ak, + Z Ay, COS(PY) + Z Ay, SIN(PO). (103)
1<2p—1<Q 2<2p<@Q

AECQ] (0) %t

5.1 B;(6) for a nonaxisymmetric case

For extracting the coefficients;, , we chooseB;_(#) orthogonal to all functions in (103)
except the one that multiplies;_ , i.e., B;, () is chosen as

Bj,(0) = bj, cos(q0) forevenq or Bj (6) = bj, sin(¢f) forodd g . (104)
Substituting in (35) one obtains:

27 Y2 .
Tpo [ KR (B3, )] = (/O A;B;, db) (20@'3/ ¢ dw) +0 (preutimintnmy)

®1
= aj, +0 (palfajJrlerin{n,m}) (105)
where for a circular closed edge of radiis, b;, is given by:
1
bjo = ey R 0 (106)
R (107)

204j7r2R
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5.2 A circular crack with homogeneous Neumann BCs

Following section 4.1, we represemt up to a power ofp?!/? (the explicit expressions for
¢¢ 1,; are provided in [12]):

10

P05 (B) a0 (B (8) s 0w

=0 =0

+ 8§A1(9)P1/2 (%)4 i (%)Z Gatit -+ 8910A1(9)P1/2 (%) v $10,1,0

i=0
+ A2(9)P§: (%) $0,2,i + 03 Az (0 (%) ZS: (%)i@,z,i
i=0 =0

+ 93 A2(0)p (%) i(%>i¢4,2,i 4+ 90 A (0)p (%)10%0,2,0
=0

=

4o Aoy p? 1/2 $0,21,0

To extract any of the coefficients;, of the first GSIF A1 (6) , a special quasi-dual function
Kﬁf{f) [B1,] needs to be employed. Far=1 and m = 2 we have calculated

2 4 2

2 —2 | L e(p L ® 33 2y’
+05B1,(0)r { 2SID2(R> +( g9y TRy (R)

For example forB;, (0) = b1, , the QDF in (109) is:

K§712/2)[Blr1] = qu(a)p—l/Q |:sin£ _ 1 sin 3_(’0 (% :| (109)
2

2 — . 1 .3
K§12/ )[Blo] =b1,(0)p 1/2 {Slng - ZSID%O (%)} ,

which coincides WIthK(l/ ) given by (65).
For By, (6) = by, cos( ) the QDF in (109) is:

1/2 - .o 1 . 3p/p
K§2/ )[Bh] = by, cos(9)p 1/2 {smg - gsino (E)} (110)

_ 1. 2 1. 3 .3 3
—by, cos(8)p 1/2 {75 smg (%) + (71 smg +§Sln 790) (%) }

and so on forqg = 2,--- (in the sequel, for our FE computations, we go upgo= 8,
approximating nine coefficients).
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Substituting (108) and (109) in (35) we calculate:

Joo [ KV B1,]] = (111)

/277 R x 1- 300 +o ) AL(0) + 300 o) A500)
0 1024R5 ! 1120R5 3

3p0 P Py 5po "
+( sopz T ) At —ope T ips Tt t A1)

+ (% + 3sz84 +) A3(0) + (—42’;?4 +) A5 (0) +} x By, (0)
+ K% + % - 589]’;34 +) A1(0) + (—% + 352’)R84 +) A3(6)
+ (—61p}§4 +> As5(0) 4+ (1524 +) A71(6) + (—15]8%5 +) A5(0)
+ (85976256 +) AL(0) +} x Bg’q(e)}de).
The coefficienta, , for example, is obtained by using., (¢) = b1, = ﬁ in (111),
oo [ 42 1B1]] = ar, +0 (i (52)°) (112)

which is coherent with (67) in the axisymmetric case.
For a;, we needB, (6) = by, cos(f) = —3 cos(6) , 0 (111) becomes,

o [r 4218, ]] = an, +0 (45 (22)7). (113)

Similarly, we extracta;, by computing Jp, [T, Kﬁlafn) [B1,]] for different n and m

with different By, () and summarize the remainder df, [r, Kr(ﬁﬁl) [B1,]] in Appendix B
in Tables B.1-B.3.

Based on the results in Tables B.1-B.3 and similar calarative conclude that:

Joo [T, K,(f%) [qu]] =aj, +0O {pg(ar%)mﬂ (@)nﬂ n paraj (@)m+2

R 0 R
(114)
Observing that the second term in the right hand side is laogmpared to the first term,
then for the optimal remaindern = n — 1, and (114) gives back the estimate in (35).

In the case of resonance, a modified QDF should be used, aeddnsf (114) one has:

s aj +0O
Too [T KRBy )| = 1
aj, + O

2 o] —ag m—+2

RZ0+1>+p01 (%) ]7 n<aj—o
2(cn—aj)+n+1 (po

Po (

(115)

n+1 a1 —a m+2
)" ) 40 T ()] nzay -
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5.3 A 3w/2 V-notch with homogeneous Neumann BCs

For a V-Notch ¢ € [—m, w/2] with a general BCs, the solution can be presented as (see
[12] for the explicit functionsg; ; 1, ):

. 10 i 8 244 . 10
T = Al(e)ﬂ2/3 Z (ﬁ) ¢0,1,: + 8§A1 /3 Z (£> ¢2,1, + -+ 350141(9)#2/3 <£> ¢10,1,d116)
i=0 R i=0 R R
4/3 2 P 4/3 s p\ 2t 10 asz [P\
+ A2(0)p* ;( ) $0,2,i + 05 A2(0)p / ;(§> $2,2,i + -+ 0y A2(0)p / <§> $10,2,0
2 2 P! 2 AN 8 2 L p\ 5t
+ A3(0)p° Y <—> b0,3,i + 8 As(0)p’ <_> b2,3,6 + -+ Op Az (0)p” Y <—> $8.3,i
i=0 R i=0 R i=0 R
8/3 : P s 3 2+ 8 8/3 ! p\ 8t
+ A4(0)p® 3 ( ) bo.4,i + g A / Z ( > bo,a,i+ -+ 85 A4(0)p% > <§> $10,4,4
=0

i=0

The quasi-dual functlonKéQ/“) for n =0 and m = 2, for example is,

—o/3( . 2 1 2
K(()22/3) By, (0)p2/? (s]n ?“’ + 5 cos ?‘P) (117)
2 —2/3(P\2( 1 20 3 . 2p
+0yB1,(0)p (R) ( 4\/gcos 5 —gsing

Following the same procedure as in subsection 5.2, for etittiga a;, for example,
By, (0) is chosen to be

6
311(0) = mCOS& (118)
and (116), (117) and (118) are used

Too [r K64 L] = an, +0 (22) (119)

Likewise, we computeJ,, [r, K( /%) [B1,]] for different n and m using (116) and
(117) for different By, (#) . The remamder is presented in Tables C.1-C.3. The results i
Tables C.1-C.3 follow the estimate in (35):

Toolr, K 1B;. 1] = aj, +o{ 1=y [(%)"+1+(%)m+2ﬂ (120)

5.4 Extractinga;, (9) from p-FE nonaxisymmetric solutions

The use of the QDFM in conjunction with -FE nonaxisymmetric models for extracting
A;(6) is examined. Consider a 3-D FE model of a body with a circulagudar edge (for
example: a penny shaped crack). We compipgreg, K,(ffgl) [Bj,]] where r¢ is extracted

from the FE solution over a torus surface which surroundsiticellar singular edgeK,({f,%g)
is computed analytically. Because the valuesrgf are discrete we compute the integral

Jpo [TEE, Kﬁf‘f,? (Bj,]] by a Gauss quadrature as in (91).
(121)

— TGP G .
Ty lrve, K03 (B, )) = w222 23 wiwi [ S (P00 (60 By (00n)))) x Oy (0. (€0) .0 (ny)
v (o0, 2 (€0 (1)) KL (o0 60 By (01, )) ] % ot (14 22 cos (o (610

with (&) given by (92), andd(n;) = 25%y; 4+ 2280 — 7(n; +1).
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5.4.1 A 3-D torus with a circular crack.

Consider the simple case of an inner cracked torus discussetisection 4.3.2 and showed

in Figure 4. Here, a 3-D FE model is constructed as shown il Eig

N
7 L
: ae \
fé /’/ 1 \\\ \
f;f__ r {'/ \‘! \1 ll
T\L_ \ | J /xl I
\x\ \\\5__ i f
\\ -

A\
= |

Fig. 11 The 3-D FE model and the mesh.

First we check a simple axisymmetric case by applying theysminetric crack solution
(61) on the torus’s outer boundary with; (6) = 1, A3(¢) = A3(#) =---=0and R=1.

We extract the first nine terms of; (6) , expecting that it is independent éf. The integral

Jpo IS computed by a Gauss quadrature witgp = 90 and using the FE solution at = 8

having a relative error in energy norm af32% .

In Table 4 we summarize the results of the computatiop_o.5[7re, K,(Ll,,/f) [By,]] for

various n & m . As expected, the extracted; (#) is independent o and nicely con-

Table 4 Extracteda;,, for different m and n inthe case of a circular crack with homogeneous Neumann

BCs
Extractedas, by J,,—1/2[m, K{'/2 [B1,]]
ayy | a1, | a1y | 13 ay, | Q15 [ aig | ig | a1

m =n =20 || 0.99768 ] -1.78E-06 | -3.36E-11 | -1.08E-06 | 4.29E-12 | 1.20E-05 | 4.60E-11 | -1.78E-03 | -7.73E-1L
m=n= 1.00005 | -8.22E-07 | -3.83E-11 | 7.69E-07 | 6.77E-12 | -3.05E-06 | 1.08E-10 | 2.49E-03 | -2.65E-10
m =n =4 || 099988 | 5.02E-07 | -3.87E-11 | 1.71E-06 | 7.17E-12 | -1.43E-05 | 1.29E-10 | 1.02E-02 | -3.65E-10

verged to1.

Next, we consider a nonaxisymmetric case for which
A1(0) =14 2cosB + 3sinf + 4 cos 20 + 5sin 20 + 6 cos 30 + 7sin 30 + 8 cos 40 + 9 sin 40
(122)
and Ap = Ax(9) = A3(#) = --- = 0. Applying on the outer surface of the torus the

solution (108) with the single nonzerd, (¢) , the FE solution is obtained gt = 8 with
a relative error in the energy norm df.98% .

extracteda;, — a1, by Jp0:1/4[TFE,Ké,10/2) [B1,]] is already negligible forngp > 32.

We checked that the integration error in
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Convergence of extracted; for differentn and m :

We computeJm:lM[TFE,Kr(:,/f) [B1,]] with ngp = 32 for different n and m and
summarize the results in Table 5.

Table 5 % Relative error in extractedz;, for different n and m in the case of a circular crack with
homogeneous Neumann BCs

% Relative error in extracteds , by J,,_1/4[m, K72 [B1,]]

n,m

arg [ ay [ aiy [ ary [ ayy [ arg | ag [ a1y [
m =20 n=20 0.004 | 3.610 | 3.593 | 14.670 | 14.671 | 33.921 | 33.920 | 62.495 | 62.491
m =0 n = 0.023 | 3.659 | 3.642 | 14.787 | 14.789 | 34.161 | 34.160 | 62.920 | 62.917

m=0 n=4 0.023 | 3.659 | 3.642 | 14.787 | 14.789 | 34.161 | 34.160 | 62.921 | 62.917
m=2 n=20 0.004 | 0.939 | 0.922 | 4.528 4530 | 13.321 | 13.321 | 32.056 | 32.051

m = n = 0.023 | 0.166 | 0.148 | 1.382 1.385 6.345 6.345 | 20.090 | 20.084
m=2 n= 0.023 | 0.095 | 0.077 | 1.092 1.095 5.675 5.674 | 18.858 | 18.852
m=4 n=0 0.004 | 0.894 | 0.877 | 3.807 3.809 9.624 9.624 | 20.212 | 20.207
m = n = 0.023 | 0.102 | 0.084 | 0.345 0.348 1.004 1.004 2.868 2.862

m=4 n=4 0.023 | 0.028 | 0.011 | 0.016 0.019 0.127 0.126 0.946 0.940

The error in extracted:;, does not decrease if is not high enough in the extraction
function K,(L?‘;ﬁ) }

As an example, we also extracteth, which is the constant value associated with
As3(#) so to make sure that it is practically zero. Indeed the etethealue isaz, = 1072 .

Convergence as a function @f :

We fix n = m = 4 and compute.y, [rre, K{{* [B1,]] with ngp = 32 for differ-
ent pp s and summarize the results in Table 6. As expected, theiartoe extracteda,
decreases agy decreases.

Table 6 % Relative error in extractedr;,, for different path radii po in the case of a circular crack with
homogeneous Neumann BCs.

% Relative error in extracteg , by J, [T, Kff) [B1,]]
ayg [ ay [ ay [ ag [ ay | ay [ ag [ ap [ aig
po = 0.5 0.014 | 1.033 | 0.985 | 9.463 | 9.496 | 71.832 | 71.813 | 433.227 | 433.180
po =04 0.011 | 0.206 | 0.180 | 1.462 | 1.468 | 10.004 | 10.001 | 54.463 54.450
po = 0.3 0.018 | 0.039 | 0.035| 0.142 | 0.138 0.914 0.914 5.003 5.003
po =0.2 0.013 | 0.011 | 0.012 | 0.017 | 0.019 0.101 0.101 0.205 0.206
po =0.1 0.014 | 0.008 | 0.007 | 0.026 | 0.030 0.160 0.162 0.511 0.511

The numerical experiments confirm that the convergence mitéhe extracteda]-
match the convergence rates according to the estimateS)in (3

One may also notice that the relative error in the extraetgdby J,,—o.5[7FE, Kio(‘f) [Bj,]]
is smaller than the relative error in energy norm.

5.4.2 A general problem: a penny shaped crack in a cylinder.

Consider again the cylinder with a penny shaped crack shawkigure 8 with Dirichlet
boundary conditions on its outer surface and homogeneousiien BCs on crack surfaces.
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Specifically, the following BCs are applied:

ri(r@3 =1,0) = r6* (6 — 2m)? on the upper surface (123)
To(r, w3 = —1,0) = —r6% (0 — 27)? on the lower surface (124)
T3(r=2,23,0) =0 on the outer surface (125)

Because the BCs (123)-(125) afedepend a 3-D FE model is constructed as shown in
Fig. 12.

Fig. 12 A penny shaped crack in a cylinder: 3-D FE model and a slicevstgpthe crack.

Because an analytic solution to this problem is not avaglalse compute the first GEFIF
A7 (the most important one because it is associated with tlgaiksinflux) by the QDFM
and also use the CIM [1] implemented in the commercial FE toddtain pointwise values
of A; along the circular singular edge. For the CIM the extracpath radius is0.0035 ,
thus requiring a refined mesh in the vicinity of the crack edee FE relative error in
energy norm is1.33% .

Extracteda1, by Jp, [TFE,KE‘{Q) [B1,]] for p =0.35 and pg = 1/4 using a Gauss
quadrature of orde2 are given in Table 7. One may notice the fast convergenceeof th

Table 7 Extracted a1, for extracted atpo = 0.35,0.25 for a cylinder with a penny shaped crack with
homogeneous Neumann BCs.

Extracteda, by Jp [T, K£14 2 (B1,)]
alg [ ay | a1y [ a1 | a1y [ as ]| A1g | 17 | a1
[ o = 0.35 || 44.0984 | 27.6679 | 7.049E-09 | -0.9867 | 1.0735E-08 | -0.1028 | 8.8255E-09] -1.7016E-02] -6.2489E-09 |
[ po = 0.25 || 44.0975 | -27.6584 | 7.088E-09 | -0.9845 | -4.7541E-09| -0.1015 | 1.2545E-00| -1.5772E-02| -3.6742E-09 |

extracted coefficients;;, as ¢ increases. The extracted, are used in (103) to compute
A1(0) , shown in Fig 13 compared to the pointwise values extracjethé CIM at py =
0.0035 . The extractedA; () at pg = 0.25 and atpy = 0.35 match closely each other and
the pointwise values extracted by the CIM g3 = 0.0035 . The QDFM does not require
a refined mesh in the vicinity of a circular crack tip which isnajor advantage in 3-D
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Fig. 13 Extracted A1 (0) by Jpo=1/4lT, Kii{m [B1,]] at po = 1/4 and by the CIM atpp = 0.0035 .

domains, and at the same time produces a smooth and corgi@®BEIF along the crack
edge.

6 Summary and conclusions

We extended the QDFM for extracting generalized edge flensity functions in the vicin-
ity of a circular singular edge for axisymmetric as well asfaxisymmetric solutions. The
formulation and performance of the method is demonstrateti@simplified Laplace equa-
tion. Although the QDFM is a mildly-surface-dependent gntd, we demonstrated that by
using a proper quasi-dual functioK,(L%) and proper extraction functionB;(6) , one may
extract the functional representation of the GEFIEg(#) accurately and efficiently.

Because in general only a FE approximation or the soluticewalable, we demon-
strated that the QDFM in conjunction with-FE methods provide highly accurate GEFIFs.
These were obtained as a function along the circular edgkasn much more accurate
compared to the FE solution (superconvergence propertyth®r major advantage is the
possibility to use the FE solution on a torus away from thgliar edge, thus it is not nec-
essary to have a refined FE mesh in the vicinity of the singyl&vhich is a complicated
and tedious task in 3-D domains).

Following the successful formulation of the QDFM and its@éfncy it is extended to
the elasticity set of equations following the same methoglplpresented herein. A straight-
forward extension is possible with only technical challesigut no conceptual difficulties.
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A An explicit expression for KC(:D’/OQ) for a circular crack

If we evaluate the successive ratios of the’s in Table 1 we find a simple hypergeometric law.

B B2 B3  Ba  Bs Bs Bz Bs  Bo  Pio

Bo 681 B2 B3 Ba Bs Be Br Bs Bo
1 3 5 i 9 11 13 15 17 19
4 8 12 16 20 24 28 32 36 40

Table A.1 Successive ratios between coefficients in the expansigrofébe QDF Kfll(/)g) .

One can prove that the sequenﬁéﬁém [B1] is converging and compute its limit, as follows. Settitg=
pe'? , we have

i+1/2 g, (2P De J; De _ SZITV2 i=0,1,...

p
Hence .
n,0 2m2pR ~ ‘\R
and since 2L — _2i+1 _ (Taple A 1), we find the limit

Bi 2(2i+2)

—1/2
(/2 _ _ 1 1/2 4
k(Y = 2ﬂ2pRs (Z / <1+ ﬁ> > .
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B Tables with the results of Jp, [, K O‘J) m [Bj,]] fora circular crack with
homogeneous Neumann BCs in a non- aX|symmetr|c case

Table B.1 The remainder ofJ, [, Kfﬂf) [B1,]]

B, (0) = b1, = ﬁ
m =0 m =2 m =4
n=0 a30{p (F)} a3, O {po (5) } az, O {po (5) }
n=1 a501p] (%)2 as, O 4 Py (%)2 as, O P (%)2
n=2 a0 po(%)g a7, O 90(%)3 a7, O pg(%)g
n=3 ago(’) oo (%)4 agy O 4 pg (%)4 B )4

Table B.2 The remainder ofJ, [, K,(Llf,f) [B1,]]

By, () = b1, cos(9) =

m =0 m = m=4
=0 O{ (%)) +ar0lm () a0 ()7} +as,0(m (R)] o1, 0 [(#)°] 5,0 [0 ()]
n=1 a1, 0{(5)* a1, 0{ (%)} +a5,0{p3 (5)*} @, 0{ (%) }+a510{p3(%0>2}
n=2 a1, 0 (4)? an, 0 (58)* a, 0 (%)°
n=3 a1, © (%))2 a110|(p?0)4 a1, O (%)6
n=4 a1, O (%)2 a1, O (%))4 a1, O (%))6
Table B.3 The remainder ofJ, [, K A 2) [B1,]]
B14(0) = b1y cos(0) =
m =0 m =2 m =4
n=0 ai,0{(%)°} +as,0{p0 (%)} a1,0{ (%)} +as5,0 {00 (%)} a13o{<%°> }+as, 0 {o0 (5}
n=1 a3 O (%}) a13(’){(%’)4}+a530{p0(%})} "’130{ %) }+a53(9{p0(%3)2}
n=2 a1;0 (%))2 a1;0 (%))4 a130 (/’0)
n=3 a1;0 4 (#)* a130|(%“)4 a0 ¢ ()"
n=4 ai; O (%)2 a1;0 (%))4 a1;0 (%))6

C Tables with the results of Jp, [T, K(O‘J) [Bj,]] foracircular 3w/2 V-notch with
homogeneous Neumann BCs in a non-axisymmetric case
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Table C.1 The remainder ofJ,, [, Kff,/,?) [B1,]]

B1y(0) = by, = o
m =0 m = m =4
n=0 alOO(pﬁO) aloo(%)) a1, O %’)
n=1 aloo(%o)z aloo(%o)Q aloo(%o)2
n=2 aloo(%o)g aloo(%o)3 aloo(%o)3
n=3 a,0(R)" a1,0 () a0 (%)
n=4 a1,0(R)° a1,0(R)° a1, 0 ()’
; (2/3)
Table C.2 The remainder ofJ, [T, Ky [B1,]]
By, (0) = b1, 5+ cos
m =0 m =2 m=4
n=20 a1,0 (%) a1,0 ('R) a1,0 ()
n=1 a1,0(58)? a,0(%)* a100 (%)’
n=2 aloo(p?o)2 aloo(pfo)3 aloo(pfo)3
n=3 aloo(%’)? aloo(pﬁo)4 aloo(pﬁo)f
n=4 alOO(%’)? aloo(%’)4 a1,0 (B)°
; (2/3)
Table C.3 The remainder ofJ, [, Ky m [Bis]]
Bi;(0) =biy = W%R cos 260




