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Abstract Explicit asymptotic series describing solutions to the Laplace equation in the
vicinity of a circular edge in a three-dimensional domain was recently provided in Yosibash
et al, Int. Jour. Fracture, 168 (2011), pp. 31-52. Utilizing it, we extend thequasidual func-
tion method(QDFM) for extracting the generalized edge flux intensity functions (GEFIFs)
along circular singular edges in the cases of axisymmetric and non-axisymmetric data.

This accurate and efficient method provides a functional approximation of the GEFIFs
along the circular edge whoseaccuracy may be adaptively improved so toapproximate the
exact GEFIFs. It is implemented as a post-solution operation in conjunction with thep -
version of the finite element method. The mathematical analysis of the QDFM is provided,
followed by numerical investigations, demonstrating the efficiency, robustness and high ac-
curacy of the proposed quasi-dual function method. The mathematical machinery developed
in the framework of the Laplace operator is important to realize its possible extension for
the elasticity system.

Keywords Quasi-dual function method· edge flux intensity functions· penny-shaped
crack · 3-D singularities

1 Introduction

Methods for computing stress intensity factors (SIFs) for crack tips and generalized SIFs
(GSIFs) for V-notch tips in two-dimensional (2-D) domains were addressed in many papers
in the past five decades, starting with [8,9]. In realistic three-dimensional domains however,
edge singularities (crack fronts and V-notch tip curves) attracted much scarcer attention due
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to the complexity of the solution in the vicinity of edges (except a pioneering work as early
as 1946, by Sneddon [13], for the penny-shaped crack in an infinite domain). The SIFs
and GSIFs are variable along such edges, defining univariatefunctions called edge stress
intensity functions (ESIFs) and generalized edge stress intensity functions (GESIFs).

In the vicinity of straight and circular edges an explicit asymptotic series of the singular
solutions was provided [5,11,14,15]. Each term of this series is characterized by:

– an exponentαk which belongs to a discrete set{αk , k ∈ N} of eigenvalues de-
pending only on the geometry and the operator, and which determines the level of non-
smoothness of the singularity. Anyeigenvalueαk is computed by solving a 1-D prob-
lem.

– a generalizedeigenfunctionexpansionφk,j,ℓ(ϕ) ( ϕ is an angular coordinate transverse
to the edge) which depends on the geometry of the domain and the operator. The terms
of this expansion are computed by solving a set of 1-D problems.

– a functionalong the edge, denoted byAk(θ) ( θ is a coordinate along the edge) and
called “generalized edge flux/stress intensity function” (GEFIF/GESIF) which deter-
mines the “amount of energy” residing in each singularity.

Based on the explicit representation of the solution to the Laplace and elasticity system
in the vicinity of a circular edge in [15], here we extend the quasidual function method
(QDFM) presented in the framework of 3-D straight edges in [5,11] to circular edges. This
extension is demonstrated on the basis of the the Laplace equation. This is because it is a
simpler elliptic operator that allows more transparent analytic computations and invokes all
necessary characteristics of the elasticity system. Thus,the characteristics of the QDFM for
circular edges can be more easily addressed so to be extendedthereafter to the elasticity
system for the computation of ESIFs for cracks occurring usually in pipes and pressure
vessels.

We construct the quasidual functions (QDF)K(αj)
n,m adapted to circular edges. They

are the essential ingredient used to define a new functional,τ 7→ Jρ0 [τ,K
(αj)
n,m ] , which is

a surface integral on a torus of minor radiusρ0 having the singular edge as its axis. The
result of this functional determines an explicit representation of the GEFIF of the solution
τ in a certain basis of functions, as opposed to other methods providing pointwise values
along the edge. Since the GEFIF on a circular edge is a periodic function, it will be natural
to construct the QDFs in such a way that the functional determines the Fourier coefficients
of the GEFIF. Furthermore, the new method allows to extract the GEFIFs away from the
singular edge, thus enables the use of coarse meshes and alleviates the necessity of complex
refined mesh generation in the vicinity of 3-D singular edges. The obtained results are both
accurate, efficient and robust.

Notation and preliminaries are introduced in section 2 and the dual-function method in
2-D domains, known also as the contour-integral method [2,1], is recalled. It serves as the
basis to the QDFM. In section 3 we extend the QDFM to circular domains by providing a
mathematical analysis on its theoretical performance. It is then used in section 4 to extract
the GEFIFs from axisymmetric solutions along circular cracks and circular V-notch edges.
Our method can be compared with the method of the singular complement of [3]. Numerical
examples using thep -version of the finite element method are also provided to demonstrate
the efficiency of the QDFM in practical applications. Circular edges in nonaxisymmetric
cases are addressed in section 5, and we summarize our results in section 6.
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2 A Path-Independent Integral Around a Corner in 2-D

The Laplace equation in a 2-D domain expressed in polar coordinates (ρ, ϕ) located in the
singular pointP (see Figure 1) is given by

∆τ =
1

ρ2

[
(ρ∂ρ)2 + ∂ϕϕ

]
τ = 0 in Ω, (1)

with either Dirichlet or Neumann homogeneous boundary conditions (BCs) on the facesΓ1

and Γ2 ( ϕ = ϕ1, ϕ2 ) intersecting atP,

τ = 0 on Γ1 ∪ Γ2 Dirichlet BCs (2)
∂τ

∂n̂
= ∇τ · n̂ = 0 on Γ1 ∪ Γ2 Neumann BCs (3)

where n̂ is the outward normal vector. Any Dirichlet or Neumann boundary conditions
may be prescribed away from the singular point. Solutions to(1) with (2) or (3) expand in
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Fig. 1 2-D domain and notations.

the vicinity of P as asymptotic series composed of primal eigenfunctions andgeneralized
flux intensity factors (GFIFs,Ak )

τ =
∑

k≥0

Akρ
αkφk(ϕ) (4)

where both the eigenvaluesαk and eigenfunctionsφk(ϕ) may be, for the Laplace equa-
tion, explicitly computed [7]. They can be expressed as follows

αk =
kπ

ω

and

φk(ϕ) =

{
sin kπ

ω (ϕ+ ϕ1) (Dirichlet)

cos kπ
ω (ϕ+ ϕ1) (Neumann).
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Each primal eigenpair is associated with a dual eigenpair (−αk, ψk(ϕ) ), that satisfies the
PDE and BCs but does not belong to the energy space (equivalent to the H1(Ω) Sobolev
space). For the Laplace equationψk(ϕ) ≡ φk(ϕ) . These dual eigenpairs are used to con-
structdual singular functions

K(αj) def
= Bjρ

−αjψj(ϕ), (5)

where:

Bj =
1

2αjDj
(6)

with the constantDj defined as the scalar product of the angular functions:

Dj =

∫ ϕ2

ϕ1

φj(ϕ)ψj(ϕ) dϕ =

∫ ϕ2

ϕ1

φ2
j (ϕ) dϕ . (7)

The dual-function method, known also as the contour-integral method, is very effi-
cient for the extraction of the generalized flux intensity factors (GFIFs) utilizing a path-
independent integral [2,1] along a path starting onΓ1 and terminating onΓ2 :

JΓ∗

[
τ,K(αj)

]
def
=

∫

Γ∗

x

(
K(αj)∂ρτ − τ ∂ρK

(αj)
)
dΓ = Aj . (8)

Here dΓ = ρ dϕ . Furthermore,JΓ∗

[
τ,K(αj)

]
is path-independent.

3 The Surface-Integral Jρ[τ, K
(αj)
n,m ] Around a Circular Edge in 3-D and Its Use for

Extracting GEFIFs

3.1 Local coordinates around a circular edge

Consider a circular singular edge in a 3-D domain, generatedby rotating the singular point
P around thex3 axis as shown in Figure 2. Cylindrical coordinates are(r, θ, x3) with
the distancer to the axis and the rotation angleθ . In general, neither the domain, nor the
boundary conditions have to be axisymmetric, but for ease ofpresentation we consider the
3-D domain generated by the cross-sectionΩ . Locating a polar coordinate system(ρ, ϕ)

at P , we have the relations

r = R+ ρ cosϕ and x3 = ρ sinϕ .

and the Laplace operator can be written in(ρ, ϕ, θ) coordinates as (see [15]):





∆ =
1

ρ2
1

(1 + ρ
R cosϕ)2

∆̃(ϕ; ∂ϕ, ρ∂ρ, ∂θ) with

∆̃
def
=
(
1 +

ρ

R
cosϕ

)2 [
(ρ∂ρ) 2 + ∂ϕϕ

]

+
(
1 +

ρ

R
cosϕ

)
×
( ρ
R

)
[cosϕρ∂ρ − sinϕ∂ϕ] +

( ρ
R

)2
∂θθ

(9)

In the vicinity of the circular edge let the functionτ satisfy

∆τ = 0, i.e. ∆̃(ϕ; ∂ϕ, ρ∂ρ, ∂θ)τ (ϕ, ρ, θ) = 0, (10)
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with homogeneous Dirichlet or Neumann BCs on the re-entrantfaces

τ = 0 on ϕ = ϕ1, ϕ = ϕ2, Dirichlet BCs (11)

∇τ · n̂ = 0 on ϕ = ϕ1, ϕ = ϕ2, Neumann BCs (12)

The interior equation (10) with (11) or (12) is completed by (non-zero) regular boundary
conditions on the rest of the boundary ofΩ .

r
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ϕ2

P

ρ1

ρο
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Fig. 2 3-D domain of interestΩ and the (ρ, ϕ, θ) coordinate system.

3.2 Primal singular functions and their shadows

According to [10], solutionsτ to the 3-D problem (10) with BCs (11) or (12) expand as
asymptotic series in powers ofρ and log ρ as ρ → 0 . The structure of this asymptotic
series is driven by the principal part∆prcp of the operator∆ , frozen along the edge. Using

(9), we find ∆prcp = ρ−2
[
(ρ∂ρ)2 + ∂ϕϕ

]
. Note that “freezing the operator”∆ along the

edge, means in particular thatθ is kept constant so that∂θθ disappears.As a consequence,
the 3-D asymptotic series is generated by the 2-D eigenpairsαk and φk presented in
Section 2. Due to the regularity of data, the 3-D asymptotic series takes the general form of
a sum in k ≥ 1 of singular packets

τ (ϕ, ρ, θ) ≃
ρ→0

∑

k≥0

Ak(θ)ραkφ0,k,0(ϕ) + Zk[Ak](ϕ, ρ, θ). (13)

The functionsφ0,k,0
def
= φk are calledprimal functionsand ραkφ0,k,0(ϕ) are theprimal

singular functions. Each of the higher order termsZk has a composite structure involving
so-called shadow functions. Since the operator∆̃ has constant coefficients with respect
to the variableθ and involves no first-order derivative with respect toθ , the general form
appearing in [10] simplifies. In the non-resonant case (i.e.when αk−αj is never an integer)
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Zk involves even-order derivatives ofAk and a two-parameter family of shadow functions:
φℓ,k,i for ℓ = 0, 2, 4, . . . and i = 0, 1, 2, . . .

∀k ≥ 1, Zk[Ak](ϕ, ρ, θ) ≃
ρ→0

∑

ℓ=0,2,4,···

∑

i≥0
︸ ︷︷ ︸

ℓ+i>0

∂ℓ
θAk(θ) ραk

( ρ
R

)i+ℓ
φℓ,k,i(ϕ). (14)

Fortunately, the important case of cracks, which is a prioriresonant, enters also in this frame-
work by virtue of the absence of logarithmic terms, [4]. Thuswe write

τ =
∑

k≥0

∑

ℓ=0,2,4,···

∂ℓ
θAk(θ) ραk

∑

i≥0

( ρ
R

)i+ℓ
φℓ,k,i(ϕ) (15)

whereAk(θ) are the generalized edge flux intensity functions (GEFIFs).

Remark 1The explicit ODEs for the determination ofφℓ,k,i provided in [15] are written in
a more abstract form here for the purpose of mathematical proofs (where we also introduce
many notations and indices local to this section).

The generalized relations satisfied by allφℓ,k,i may be described with the help of the
expansion of the Laplace operator̃∆ defined in (9) with respect to powers ofρR :

∆̃ =
2∑

ℓ=0

2∑

i=0

( ρ
R

)i+ℓ
∂ℓ

θ Mℓ,i(ϕ; ∂ϕ, ρ∂ρ) (16)

where theMℓ,i are partial differential operators of order≤ 2 , with coefficients indepen-
dent of ρ . Explicitly we have (note thatM0,0 = ρ2∆prcp )






M0,0 = (ρ∂ρ) 2 + ∂ϕϕ,

M0,1 = 2 cosϕ
[
(ρ∂ρ) 2 + 1

2 (ρ∂ρ) + ∂ϕϕ

]
− sinϕ∂ϕ,

M0,2 = cos2ϕ
[
(ρ∂ρ) 2 + (ρ∂ρ) + ∂ϕϕ

]
− 1

2 sin 2ϕ∂ϕ,

M1,i = 0, i = 0, 1, 2, M2,0 = 1, M2,1 = 0, M2,2 = 0.

(17)

For eachk , the equations thatφℓ,k,i satisfy are found relying on the fact that each singular
packet in (13)

Ak(θ)ραkφ0,k,0(ϕ) + Zk[Ak](ϕ, ρ, θ)

is a formal solution of (10), for any coefficientAk . Thus we find for eachk ≥ 1

2∑

ℓ=0

2∑

i=0

( ρ
R

)i+ℓ
∂ℓ

θ Mℓ,i(ϕ; ∂ϕ, ρ∂ρ)
∑

ℓ′≥0

∑

i′≥0

∂ℓ′

θAk(θ)ραk

( ρ
R

)i′+ℓ′

φℓ′,k,i′(ϕ) = 0.

(18)
Using the relation

Mℓ,i(ϕ; ∂ϕ, ρ∂ρ)ραk

( ρ
R

)i′+ℓ′

= ραk

( ρ
R

)i′+ℓ′

Mℓ,i(αk + ℓ′ + i′)

whereMℓ,i(β) is a shorthand forMℓ,i(ϕ; ∂ϕ, β) , equation (18) becomes

ραk

2∑

ℓ=0

2∑

i=0

∑

ℓ′≥0

∑

i′≥0

( ρ
R

)i+ℓ+i′+ℓ′

∂ℓ+ℓ′

θ Ak(θ) Mℓ,i(αk + ℓ′ + i′)φℓ′,k,i′(ϕ) = 0. (19)
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Setting λ = ℓ+ ℓ′ and µ = i+ i′ , we find the equivalent relation

∑

λ≥0

∑

µ≥0

2∑

ℓ=0

2∑

i=0

( ρ
R

)λ+µ
∂λ

θAk(θ) Mℓ,i(αk + λ− ℓ+ µ− i)φλ−ℓ,k,µ−i(ϕ) = 0. (20)

This relation holds for any functionAk(θ) and for all ρ > 0 if and only if

2∑

ℓ=0

2∑

i=0

Mℓ,i(αk + λ− ℓ+ µ− i)φλ−ℓ,k,µ−i(ϕ) = 0, ∀λ,µ ≥ 0 (21)

Equation (21) is the key for the recursive construction of the shadow terms (the explicit re-
cursive equations are given in [15]). In [12] we provide formulas for the functionsφℓ,k,i(ϕ)

in the case of a penny-shaped crack and a90◦ V-notch with Neumann BCs.

3.3 Dual singular functions, their shadows, and the surface-integral

To extract the generalized edge flux intensity functionsAk(θ) , we extend the path independent-
integral presented in the previous section.

Similar to the primal functions and their shadows, for anyj ≥ 1 , we introduce the dual

function ψ0,j,0
def
= ψj and its shadowsψh,j,f so that same relations as (21) are satisfied

2∑

ℓ=0

2∑

i=0

Mℓ,i(−αj + λ− ℓ+ µ− i)ψλ−ℓ,j,µ−i(ϕ) = 0, ∀λ, µ ≥ 0 (22)

Explicit instances of equation (22) are provided in sections 4 and 5. Formulas for the func-
tions ψℓ,k,i(ϕ) are given in [12] in case of homogeneous Neumann BCs.

Quasidual functions(QDF) are defined as the sum of a dual eigenfunction and afi-
nite number of its dual shadows. To each QDF is associated an exponent αj , two non-
negative cut-off integersn andm and a (test) functionBj = Bj(θ) , defining the function

K
(αj)
n,m [Bj ] as:

K
(αj)
n,m [Bj ]

def
=

m∑

h=0,2,4,···

∂h
θBj(θ)ρ

−αj

n∑

f=0

( ρ
R

)h+f
ψh,j,f (ϕ) (23)

The angular functionsBj are not specified at this stage and will be later chosen as trigono-
metric functions. When no confusion is possible, the mention of Bj will be omitted in the
notation of the QDF.

Multiplying ∆τ = 0 by K
(αj)
n,m , then integrating over the subdomainΩ∗ (see Figure

2) and applying Green’s theorem one obtains,

0 =

∫

∂Ω∗

(K
(αj)
n,m ∇τ − τ∇K(αj)

n,m ) · n̂ dΓ +

∫

Ω∗

τ∆K
(αj)
n,m dΩ. (24)

The Laplace operator applied onK(αj)
n,m , i.e. ∆K(αj)

n,m is zero only whenn,m → ∞ . For

a finite n and m ∆K
(αj)
n,m 6= 0 , thus the last term in (24) does not vanish in general.
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On the two flat surfacesΓ1 and Γ2 homogeneous boundary conditions are prescribed

thus eitherτ = 0 and K(αj)
n,m = 0 , or ∂n̂τ = 0 and ∂n̂K

(αj)
n,m = 0 , for a circular closed

edge thus (24) reduces to:

0 =

∫ 2π

0

∫ ϕ2

ϕ1

(K
(αj)
n,m ∇τ − τ∇K(αj)

n,m ) · n̂
∣∣
ρ0

(R+ ρ0 cosϕ)ρ0dϕdθ (25)

+

∫ 2π

0

∫ ϕ1

ϕ2

(K
(αj)
n,m ∇τ − τ∇K(αj)

n,m ) · n̂
∣∣
ρ1

(R+ ρ1 cosϕ)ρ1dϕdθ +

∫

Ω∗

τ∆K
(αj)
n,m dΩ .

Since ∇ · n̂
∣∣
ρ0

= ∂ρ and ∇ · n̂
∣∣
ρ1

= −∂ρ , we obtain:

∫ 2π

0

∫ ϕ2

ϕ1

(
K

(αj)
n,m ∂ρτ − τ∂ρK

(αj)
n,m

)

ρ0

(R+ ρ0 cosϕ)ρ0dϕdθ (26)

=

∫ 2π

0

∫ ϕ2

ϕ1

(
K

(αj)
n,m ∂ρτ − τ∂ρK

(αj)
n,m

)

ρ1

(R+ ρ1 cosϕ)ρ1dϕdθ −
∫

Ω∗

τ∆K
(αj)
n,m dΩ.

Definition 1 For ρ > 0 small enough, we define the surface-integralJρ[τ,K
(αj)
n,m ] over

the torus of minor radiusρ and major radiusR that surrounds the circular edge by:

Jρ

[
τ,K

(αj)
n,m

]
def
=

∫ 2π

0

∫ ϕ2

ϕ1

(
K

(αj)
n,m ∂ρτ − τ∂ρK

(αj)
n,m

)

ρ
(R+ ρ cosϕ)ρ dϕdθ. (27)

With the new notation, (26) becomes

Jρ0

[
τ,K

(αj)
n,m

]
− Jρ1

[
τ,K

(αj)
n,m

]
= −

∫

Ω∗

τ∆K
(αj)
n,m dΩ. (28)

In contrast with the homogeneous 2-D case as shown in section2, cf (7), the integral

Jρ
[
τ,K

(αj)
n,m

]
is surface-dependent, i.e., it depends onρ .

Lemma 1 For any chosenτ satisfying ∆τ = 0 and zero BC’s in a neighborhood of
the circular edge, for any chosen positive integersj , n and m , for any smooth chosen
function Bj , there holds forρ0 ≥ ρ1 > 0 small enough

Jρ0

[
τ,K

(αj)
n,m

]
− Jρ1

[
τ,K

(αj)
n,m

]
= O

ρ0→0

(
ρα1−αj+min{m,n}+1

∣∣∣
ρ0

ρ1

)
(29)

Proof We have to evaluate∆K(αj)
n,m . For this we consider∆̃K(αj)

n,m . Applying (16), and in
similarity with (19) we find

∆̃K
(αj)
n,m = ρ−αj

2∑

ℓ=0

2∑

i=0

m∑

h=0

n∑

f=0

( ρ
R

)i+ℓ+f+h
∂ℓ+h

θ Bj Mℓ,i(−αj + h+ f)ψh,j,f (30)

= ρ−αj

m+2∑

λ=0

n+2∑

µ=0

min{2,m+2−λ}∑

ℓ=0

min{2,n+2−µ}∑

i=0

( ρ
R

)λ+µ
∂λ

θBj (31)

Mℓ,i(−αj + λ− ℓ+ µ− i) ψλ−ℓ,j,µ−i .
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Using (22) we observe that the terms involving values ofλ and µ such thatmin{2, m +

2 − λ} = 2 and min{2, n+ 2 − µ} = 2 cancel in the sum (31), so it becomes

∆̃K
(αj)
n,m = ρ−αj

m+2∑

λ=m+1

m+2−λ∑

ℓ=0

n+2∑

µ=0

min{2,n+2−µ}∑

i=0

( ρ
R

)λ+µ
∂λ

θBj (32)

Mℓ,i(−αj + λ− ℓ+ µ− i) ψλ−ℓ,j,µ−i

+ ρ−αj

m∑

λ=0

2∑

ℓ=0

n+2∑

µ=n+1

n+2−µ∑

i=0

( ρ
R

)λ+µ
∂λ

θBj

Mℓ,i(−αj + λ− ℓ+ µ− i) ψλ−ℓ,j,µ−i .

Then formula (29) is a straightforward consequence of the expansion (15) ofτ , and of the
identities (9), (32) and (28).

3.4 Extracting circular GEFIFs using the quasidual-function method

We now prove the following theorem that shows how theJρ integral evaluated with the
quasi-dual functions (23) allow an accurate evaluation of moments of the coefficientsAk

in the expansion (15).

Theorem 1 Let the functionτ satisfy interior equation(10)with boundary conditions(11)
or (12). With K

(αj)
n,m [Bj ] defined by(23) and Dj in (7), there hold the following formulas

for theextraction of the GEFIFAj of τ , cf (15):
(i) Concerning the first GEFIFA1 , we have:

Jρ

[
τ,K

(α1)
n,m [B1]

]
= 2α1RD1

( ∫ 2π

0
A1B1 dθ

)
+ O

(
ρ1+min{n,m}

)
(33)

(ii) This formula generalizes to the next GEFIFAj , j = 2, 3, . . . if there are no resonances
(i.e. in the case whenαj − αk is not an integer fork < j ):

Jρ

[
τ,K

(αj)
n,m [Bj ]

]
= 2αjRDj

( ∫ 2π

0
AjBj dθ

)
+ O

(
ρα1−αj+1+min{n,m}

)
(34)

Returning to the definitions (27) and (7), formula (34) results in:

∫ 2π

0

∫ ϕ2

ϕ1

(
K

(αj)
n,m [Bj ] ∂ρτ − τ ∂ρK

(αj)
n,m [Bj ]

)

ρ
(R+ ρ cosϕ)ρ dϕdθ

=
( ∫ 2π

0
AjBj dθ

)(
2αjR

∫ ϕ2

ϕ1

φ2
j dϕ

)
+ O

(
ρα1−αj+1+min{n,m}

)
.

(35)

This means that theJρ integral used with the QDFK(αj)
n,m [Bj ] allows the extraction of the

moment ofAj againstBj if n and m are chosen larger thanαj − α1 . Then the error
O
(
ρα1−αj+1+min{n,m}) converges to0 as ρ → 0 . In practice, the use of larger values

for n and m allows to take larger values ofρ for a same level of error. This permits to
combine this extraction method with not strongly refined meshes.
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Remark 2In the axisymmetric case, all functionsAk are constant along the edge. Thus we
chooseBj as constant functions. This corresponds to the angular modeof order 0 . Hence

the associated QDFs satisfyK(αj)
n,0 [Bj ] = K

(αj)
n,m [Bj ] for all m .

Remark 3In the general case, takingm = n optimizes the number of shadow functions
with respect tom and n so that (34) becomes

Jρ

[
τ,K

(αj)
n,m [Bj ]

]
= 2αjRDj

( ∫ 2π

0
AjBj dθ

)
+ O

(
ρα1−αj+1+n

)
(36)

In fact, whenm is even we haveK(αj)
n,m = K

(αj)
n,m+1 , thus n = m+ 1 is optimal.

Remark 4The generalization of this method to the case of the equation∆τ = F with
a smooth functionF depends on the values ofF along the edge. IfF is zero with its
derivatives, the method can be used without modification. Inthe opposite case, one has first
to determine a particular solution of the equation∆τpol = F pol with BCs, whereF pol

the Taylor expansion ofF along the edge. In a second step, the method will be used for
τ − τpol and provide the GEFIF ofτ .

Proof of Theorem 1.First we investigate the surface-integralJρ[τ,K
(αj)
n,m ] when τ is re-

placed by finite sums of primal functions with their shadows.Recall definition (23)

K
(αj)
n,m [Bj ] =

m∑

h=0,2,4,···

∂h
θBj(θ) ρ

−αj

n∑

f=0

( ρ
R

)h+f
ψh,j,f (ϕ) . (37)

Likewise we define finite singular expansions

τ
(αk)
n,m [Ak]

def
=

m∑

ℓ=0,2,4,···

∂ℓ
θAk(θ) ραk

n∑

i=0

( ρ
R

)ℓ+i
φℓ,k,i(ϕ) . (38)

Although in the expansion (15) the series associated with the eigenvalueαk includes an
infinite number of terms, for the mathematical analysis we first consider a finite sum. We

investigate the surface integralsJρ

[
τ
(αk)
n′,m′ [Ak],K

(αj)
n,m [Bj ]

]
. Instead of (28), we have

Jρ0

[
τ
(αk)
n′,m′ [Ak],K

(αj)
n,m [Bj ]

]
− Jρ1

[
τ
(αk)
n′,m′ [Ak], K

(αj)
n,m [Bj ]

]

=

∫

Ω∗

K
(αj)
n,m [Bj ]∆τ

(αk)
n′,m′ [Ak] − τ

(αk)
n′,m′ [Ak]∆K

(αj)
n,m [Bj ] dΩ. (39)

Since ∆̃τ (αk)
n′,m′ [Ak] satisfies mutatis mutandis (32), one obtains that

K
(αj)
n,m [Bj ] ∆̃τ

(αk)
n′,m′ [Ak] − τ

(αk)
n′,m′ [Ak] ∆̃K

(αj)
n,m [Bj ] = ραk−αj

n+m+n′+m′+4∑

ν=1+min{n,m,n′,m′}

ρνFν(ϕ, θ).

(40)
where the functionsFν do not depend onρ , but depend on all other data. Taking the
relation (9) between∆ and ∆̃ into account and the fact thatdΩ = ρ(R+ ρ cosϕ)dρdϕdθ

we find a sequence of real coefficientsGν such that
∫

Ω∗

K
(αj)
n,m [Bj ]∆τ

(αk)
n′,m′ [Ak] − τ

(αk)
n′,m′ [Ak]∆K

(αj)
n,m [Bj ] dΩ

=

∞∑

ν=1+min{n,m,n′,m′}

(
ραk−αj+ν

∣∣∣
ρ0

ρ1

)
Gν (41)
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The series in the right hand side of (41) is convergent forρ0 small enough. We combine
(39) with (41) for ρ0 = ρ and ρ1 = ε :

Jρ

[
τ
(αk)
n′,m′ [Ak], K

(αj)
n,m [Bj ]

]
− Jε

[
τ
(αk)
n′,m′ [Ak], K

(αj)
n,m [Bj ]

]

=

∞∑

ν=1+min{n,m,n′,m′}

ραk−αj+νGν −
∞∑

ν=1+min{n,m,n′,m′}

εαk−αj+νGν . (42)

We considerρ as fixed and letε tend to 0 . We can write

Jε

[
τ
(αk)
n′,m′ [Ak],K

(αj)
n,m [Bj ]

]
= C +

∞∑

ν=1+min{n,m,n′,m′}

εαk−αj+νGν . (43)

where C is a constant independent ofε .

Now, using (27) and expressions (37)-(38), we find coefficients Hk,j |n,m,n′,m′

ν [Ak, Bj ]

given by

H
k,j |n,m,n′,m′

ν [Ak, Bj ] =

R1−ν
m∑

h=0,2,

n∑

f=0

m′∑

ℓ=0,2,

n′∑

i=0
︸ ︷︷ ︸

h+f+ℓ+i=ν

(∫ 2π

0
∂ℓ

θAk(θ)∂h
θBj(θ) dθ

)
(αk + αj + ℓ+ i− h− f)

∫ ϕ2

ϕ1

φℓ,k,i(ϕ)ψh,j,f (ϕ) dϕ

+R1−ν
m∑

h=0,2,

n∑

f=0

m′∑

ℓ=0,2,

n′∑

i=0
︸ ︷︷ ︸

h+f+ℓ+i=ν−1

(∫ 2π

0
∂ℓ

θAk(θ) ∂h
θBj(θ) dθ

)
(αk + αj + ℓ+ i− h− f)

∫ ϕ2

ϕ1

φℓ,k,i(ϕ)ψh,j,f (ϕ) cosϕdϕ

(44)
such that for anyρ small enough

Jρ

[
τ
(αk)
n′,m′ [Ak], K

(αj)
n,m [Bj ]

]
=

n+m+n′+m′+1∑

ν=0

ραk−αj+νH
k,j |n,m,n′,m′

ν [Ak, Bj ]. (45)

Using this for ρ = ε and combining with (43) we obtain

n+m+n′+m′+1∑

ν=0

εαk−αj+νH
k,j |n,m,n′,m′

ν [Ak, Bj ] = C +

∞∑

ν=1+min{n,m,n′,m′}

εαk−αj+νGν .

(46)
We note that by definition, the coefficientHk,j | n,m,n′,m′

ν [Ak, Bj ] does not depend on
n,m, n′,m′ as soon asν ≤ min{n,m, n′,m′} . We denote it byHk,j

ν [Ak, Bj ] .
Thus, identifying the powers ofε in (46), we find that

Hk,j
ν [Ak, Bj ] = 0, ∀ν ≤ min{n,m, n′,m′} such thatαk − αj + ν 6= 0. (47)

In contrast, whenαk − αj + ν = 0 , the factorHk,j
ν [Ak, Bj ] does not need to be zero.

Typically αk − αj + ν = 0 for k = j and ν = 0 . In this case, (44) yields

If k = j, Hk,j
0 [Ak, Bj ] ≡ Hk,k

0 [Ak, Bk] =
(∫ 2π

0
Ak(θ)Bk(θ) dθ

)(
2αkR

∫ ϕ2

ϕ1

φ2
k(ϕ) dϕ

)
. (48)
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From (45) and (47) we deduce form′ ≥ m and n′ ≥ n

Jρ

[
τ
(αk)
n′,m′ [Ak], K

(αj)
n,m [Bj ]

]
=





O
ρ→0

(
ραk−αj+1+min{n,m}

)

if αj − αk 6∈ {0, . . . ,min{n,m}}

Hk,j
ν [Ak, Bj ] + O

ρ→0

(
ραk−αj+1+min{n,m}

)

if αj − αk := ν ∈ {0, . . . ,min{n,m}}
(49)

By linearity we deduce from (15) and (49) (considering the entire solution τ , so that we
can taken′ ≥ n and m′ ≥ m )

Jρ

[
τ,K

(αj)
n,m [Bj ]

]
=

∑

k

ραk−αj





min{n,m}∑

ν=0

ρνHk,j
ν [Ak, Bj ] + O

ρ→0

(
ρ1+min{n,m}

)


 (50)

In particular, if j = 1 the only non-zero coefficientHk,j
ν is for k = j = 1 and

ν = 0 . Combining (47)–(50), we have proved the theorem.

In the following sections, we specify the use of the extraction formula (35) for axisym-
metric as well as non-axisymmetric solutions in domains with circular edges. We also extend
the method to cases for whichαk −αj are integers (“resonant” case). Numerical tests will
demonstrate the efficiency of (35) for extracting GEFIFs from numerical solutions.

4 Extracting Circular GEFIFs for Axisymmetric Solutions by the QDFM

In the axisymmetric caseAk are θ -independent, soτ may be expressed as

τ (ρ,ϕ) =
∑

k≥0

Akρ
αk
∑

i≥0

( ρ
R

)i
φ0,k,i(ϕ). (51)

Thus, for theK(αj)
n,0 [Bj ] , Bj are θ -independent (constants) andm = 0 :

K
(αj)
n,0 (ρ, ϕ)[Bj ] = Bjρ

−αj

n∑

f=0

( ρ
R

)f
ψ0,j,f (ϕ). (52)

The explicit equations for the dual eigenfunctions and their shadowsψ0,j,f (ϕ) are obtained
from (22) and [15]:

α2
jψ0,j,0 + ψ′′

0,j,0 = 0, (53)

(−αj + 1)2ψ0,j,1 + ψ′′
0,j,1 = −

(
−αj cosϕ ψ0,j,0 − sinϕ ψ′

0,j,0

)
, (54)

(−αj + i)2ψ0,j,f + ψ′′
0,j,f = −

[
(−αj + f)(−αj + f − 1) cosϕ ψ0,j,f−1 (55)

− sinϕ ψ′
0,j,f−1 + cosϕ ψ′′

0,j,f−1

]
, f ≥ 2,

for ϕ1 < ϕ < ϕ2 , completed by homogeneous BCs

ψ0,j,f = 0 on ϕ1, ϕ2 homogeneous Dirichlet BCs (56)

∂ϕψ0,j,f = 0 on ϕ1, ϕ2 homogeneous Neumann BCs. (57)
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SinceBj is constant, the QDFK(αj)
n,0 [Bj ] coincides withK(αj)

n,n [Bj ] . Taking into account

that
∫ 2π
0 AjBjdθ = 2πAjBj , we find that formula (34) becomes in the axisymmetric case:

Jρ

[
τ,K

(αj)
n,0 [Bj ]

]
= 4παjRDjAjBj + O

(
ρα1−αj+n+1

)
, (58)

Therefore, choosingBj as:

Bj =
1

4παjRDj
(59)

equations (58) and (60) result inAj alone with a remainder dependent onρ .
We illustrate this formula by several particular examples.We even find an improvement

for a circular crack with Neumann BC’s:For a certain finite set of integersj and n we
show in the sequel that, withBj given by (59)

Jρ

[
τ,K

(αj)
n,0 [Bj ]

]
= Aj + O

(
ρ2(α1−αj+n+1)

)
. (60)

Remark 5In the general situation of non-axisymmetric data, the use of constantBj given
by (59) provides an approximation of the mean value of the GESIF

1

2π

∫ 2π

0
Aj(θ) dθ,

with the same rates (58) or (60).

4.1 A circular crack with homogenous Neumann BCs - Axisymmetric case

For a circular crack with homogenous Neumann BCs,ω = 2π, (ϕ1 = −π, ϕ2 = π) the
eigenvalues areαk = 0, 1

2 , 1,
3
2 , 2,

5
2 , 3, · · · . We representτ up to O(ρ11) as follows

(explicit expressions forφ0,k,i are provided in [12]):

τ = A0 + A1ρ
1/2

10∑

i=0

( ρ
R

)i
φ0,1,i +A2ρ

10∑

i=0

( ρ
R

)i
φ0,2,i + A3ρ

3/2
9∑

i=0

( ρ
R

)i
φ0,3,i

+A4ρ
2

9∑

i=0

( ρ
R

)i
φ0,4,i + · · · + A21ρ

21/2φ0,21,0 + O(ρ11). (61)

Remark 6The explicit expansion (61) isnot requiredto implement the QDFM. We provide
it for two reasons: First to investigate the cancelations leading to the super convergence rate
(60), and second to implement boundary data in numerical models, so that the exact solution
is close to (61).

Remark 7The eigenfunctions and shadows associated with the integereigenvalues are or-
thogonal to the dual eigenfunctions and dual shadows associated with half-integer eigenval-
ues under theJρ integral. This is the reason that the terms associated withA0, A2, A4, · · ·
are absent from formulas (66) and sequel.

In (61) the first termsφ0,j,0 = φj and ψ0,j,0 = ψj are given by

φj(ϕ) = ψj(ϕ) =

{
cos jϕ

2 j = 0, 2, 4, · · ·
sin jϕ

2 j = 1, 3, 5, · · ·
ϕ ∈ (−π, π). (62)

Thus according to (7)Dj = π and we choose as in (59)

Bj =
1

4π2αjR
=

1

2jπ2R
. (63)
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4.1.1 ExtractingA1

To extractA1 we use (63) and to simplify notations we write

K
(1/2)
n,0

def
= K

(1/2)
n,0 [B1] with B1 =

1

2π2R
. (64)

For a crack the quasi-dual functionsK(1/2)
n,0 have a particular simple form (when compared

to other ones, see [12]). We find

K
(1/2)
n,0 =

1

2π2R
ρ−1/2

[
n∑

i=0

(−1)iβi sin
(2i+ 1)ϕ

2

( ρ
R

)i
]

(65)

with the constantsβi given in Table 1. One may determine from Table 1 an explicit expres-

β0 β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

1 1
4

3
32

5
128

35
2048

63
8192

231
65536

429
262144

6435
8388608

12155
33554432

46189
268435456

Table 1 Coefficients in the expansion (65) of the QDFK(1/2)
n,0 .

sion for K(1/2)
∞,0 as shown in Appendix A.

We extractA1 by (35) usingK(1/2)
0,0 , . . . ,K

(1/2)
3,0 . The expected convergence rates as

ρ → 0 are given in (49). Here, using the explicit expressions of the primal singular and
shadow functionsφ0,k,i and their dual analoguesψ0,j,f provided in [12] we calculate

Jρ0

[
τ,K

(1/2)
n,0

]
for n = 0, . . . , 3 , obtaining the following.

Jρ0

[
τ,K

(1/2)
0,0

]
= A1

(
1 − ρ30

64R3
+ · · ·

)
+ A3

(
ρ20
4R

+ · · ·
)

(66)

+ A5

(
− ρ40

32R2 + · · ·
)

+ A7

(
ρ60

128R3 + · · ·
)

+ · · · = A1 + O
(
ρ20
R

)

Jρ0

[
τ,K

(1/2)
1,0

]
= A1

(
1 − 3ρ50

210R5
+ · · ·

)
+A3

(
3ρ60

1120R5
+ · · ·

)
(67)

+ A5

(
− 3ρ40

32R2
+ · · ·

)
+ A7

(
ρ60

64R3
+ · · ·

)
+A9

(
− 9ρ80

211R4
+ · · ·

)

+ · · · = A1 + O
(
ρ40
R2

)

Jρ0

[
τ,K

(1/2)
2,0

]
= A1

(
1 − 75ρ70

217R7 + · · ·
)

+ A3

(
ρ80

287R7 + · · ·
)

(68)

+ A5

(
− 5ρ80

297R6
+ · · ·

)
+A7

(
5ρ60

128R3
+ · · ·

)
+ A9

(
− 15ρ80

211R4
+ · · ·

)

+ · · · = A1 + O
(
ρ60
R3

)
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Jρ0

[
τ,K

(1/2)
3,0

]
= A1

(
1 − 245ρ90

221R9
+ · · ·

)
+ A3

(
ρ100

2833R9
+ · · ·

)
(69)

+ A5

(
− 5ρ100

2933R8 + · · ·
)

+ A7

(
35ρ100

2999R7 + · · ·
)

+ A9

(
− 35ρ80

211R4 + · · ·
)

+ · · · = A1 + O
(
ρ80
R4

)

One may observe from formulas (66)-(69) that for a circular crack in an axisymmetric case,
the first GEFIF A1 may be extracted by the QDFM, usingK(1/2)

n,0 with an improved
remainder as in (60) when compared to (58):

Jρ0

[
τ,K

(1/2)
n,0

]
= A1 + O

(
ρn+1
0

(ρ0
R

)n+1
)

(70)

The remainder corresponds to the contribution ofA2n+3 if it is non-zero. When compared
with the proved generic rates of convergence, cf (49), whichparticularize as

Jρ

[
τ
(k/2)
n,0 [Ak],K

(1/2)
n,0

]
=






A1 + O
ρ→0

(
ρ1+n) if k = 1,

O
ρ→0

(
ρ(k−1)/2+1+n) if k ≥ 3,

(71)

we observe that a coincidence of the rates occurs whenk = 2n + 3 and a practical im-
provement otherwise.

4.1.2 ExtractingA3 - the problem of resonance and its remedy

By same methods presented, we aim at computingJρ0 [τ,K
(α3=3/2)
n,0 ] with

K
(3/2)
n,0

def
= K

(3/2)
n,0 [B3] with B3 =

1

6π2R
, (72)

Since α3 > α1 , according to the general principles, cf (58), one should use a QDF which
has at least one shadow, i.e.,K(3/2)

1,0 or one with a largern . More precisely, the proved
generic convergence rates, cf (49), particularize as

Jρ

[
τ
(k/2)
n,0 [Ak], K

(3/2)
n,0

]
=






O
ρ→0

(
ρ0
)

if k = 1 andn = 0,

γA1 + O
ρ→0

(
ρn) if k = 1 andn ≥ 1,

A3 + O
ρ→0

(
ρ1+n) if k = 3,

O
ρ→0

(
ρ(k−3)/2+1+n) if k ≥ 5,

(73)

where the constantγ is a shorthand for the coefficientH1,3
1 [A1 = 1, B3] .

But since the remainders havede factobetter decay properties, we may useK(3/2)
0,0 as

well. With

K
(3/2)
0,0 =

1

6π2R
ρ−3/2 sin

3ϕ

2
, (74)
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we find

Jρ0 [τ,K
(3/2)
0,0 ] = A1

(
1

3R
+

5ρ30
768R4

+ · · ·
)

+A3

(
1 − 3ρ40

560R4
+ · · ·

)
(75)

+ A5

(
ρ20
4R

+ · · ·
)

= A1
1

3R
+ A3 + O

(
ρ20
R

)
.

We encounter a “resonance” when trying to extractAj associated withαj = αk + ν , so

that j > k and ν ∈ N . This “resonance” can be easily removed if we considerK
(1/2)
0,0 ,

which extracts exactlyA1 , see (66). Instead ofK(3/2)
0,0 only, we choose the extraction

function:
K̆

(3/2)
0,0

def
= K

(3/2)
0,0 + cK

(1/2)
0,0

with c = − 1
3R so one obtains

Jρ0 [τ, K̆
(3/2)
0,0 ] = A3 + O

(
ρ20
R

)
, (76)

which leads to the lowest order extraction formula forA3 .
If we try to use the QDF:

K
(3/2)
1,0 =

1

6π2R
ρ−3/2

[
sin

3

2
ϕ− 1

4
sin

5ϕ

2

( ρ
R

)]
(77)

then computingJρ0 [τ,K
(3/2)
1,0 ] with (61) results:

Jρ0

[
τ,K

(3/2)
1,0

]
=

1

3R
A1 +A3 + O

(
ρ20
R2

)
(78)

In view of (78) due to the resonance we construct again the modified QDF:

K̆
(3/2)
1,0

def
= K

(3/2)
1,0 − 1

3R
K

(1/2)
1,0 (79)

=
1

6π2R
ρ−3/2

[
sin

3ϕ

2
− 1

4

( ρ
R

)
sin

5ϕ

2
−
( ρ
R

)
sin

ϕ

2
+

1

4

( ρ
R

)2
sin

3ϕ

2

]

This leads to the extraction formula forA3 :

Jρ0 [τ, K̆
(3/2)
1,0 ] = A3 + O

(
ρ20
R2

)
, (80)

In a similar manner we may construct:

K̆
(3/2)
2,0

def
= K

(3/2)
2,0 − 1

3R
K

(1/2)
2,0 (81)

=
1

6π2R
ρ−3/2

[
sin

3ϕ

2
− 1

4

( ρ
R

)
sin

5ϕ

2
+
( ρ
R

)2
(

1

4
sin

3ϕ

2
+

3

32
sin

7ϕ

2

)

−
( ρ
R

)
sin

ϕ

2
+

1

4

( ρ
R

)2
sin

3ϕ

2
− 3

32

( ρ
R

)3
sin

5ϕ

2

]

and obtain that:

Jρ0

[
τ, K̆

(3/2)
2,0

]
= A3 + O

(
ρ40
R3

)
(82)
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As one notices, the remedy to the “resonance” problem is to calculate K(3/2)
n,0 without

taking the resonance withα1 into account. Then the modified QDF is defined

K̆
(3/2)
n,0

def
= K

(3/2)
n,0 − 1

3R
K

(1/2)
n,0

that extractsA3 for any n .

Remark 8In the case ofA5 , two resonances occur (α5 = α1 + 2 = α3 + 1 ), then we
construct the modified QDF by addition of the two QDFs associated with α1 and α3 ,
multiplied by two constants:

K̆
(5/2)
n,0

def
= K

(5/2)
n,0 − 2

5R
K

(3/2)
n,0 +

2

15R2
K

(1/2)
n,0

Using this formula forj = 5 , we can demonstrate by analytic computations the validity of
the following estimate forj = 5 and n = 0, 1, 2, 3 :

Jρ0

[
τ, K̆

(αj)
n,0

]
=





Aj + O

(
ρ2

Rn+1

)
n < αj − α1

Aj + O
(
ρ2(α1−αj)+n+1 ( ρ

R

)n+1
)

n ≥ αj − α1

(83)

Formulas (76), (80), (82) show the same estimate forj = 3 and n = 0, 1, 2 .

In the general case of resonance, forj = 2ℓ+ 1 , the modified QDF takes the form:

K̆
(αj)
n,0 = K

(αj)
n,0 + c1K

(αj−1)
n,0 + · · · + cℓK

(α1)
n,0 .

4.2 Axisymmetric solution of a3π/2 V-notch with homogeneous Neumann BCs

We apply the QDFM for the extraction of the GEFIFs associatedwith a circular 3π/2 V-
Notch (ω = 3π/2, ϕ1 = −π, ϕ2 = π/2) and homogenous Neumann BCs. In this case
the eigenvalues areαk = 0, 2

3 ,
4
3 ,

6
3 ,

8
3 · · · , and the solutionτ can be expressed as follows

(see [12] for the expressions ofφℓ,k,i ):

τ = A1ρ
2/3

8∑

i=0

( ρ
R

)i
φ0,1,i + A2ρ

4/3
8∑

i=0

( ρ
R

)i
φ0,2,i + A3ρ

2
7∑

i=0

( ρ
R

)i
φ0,3,i (84)

+ A4ρ
8/3

6∑

i=0

( ρ
R

)i
φ0,4,i + · · · + A14ρ

28/3φ0,14,0 + O(ρ10)

The first termsφ0,j,0 = φj and ψ0,j,0 = ψj of the primal and dual singular functions
are:

φj(ϕ) = ψj(ϕ) = sin
2jϕ

3
− (−1)j√

3
cos

2jϕ

3
, j = 1, 2, 4, 5, . . . . (85)

Thus the quantityDj in (7) is equal toπ .
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4.2.1 ExtractingA1

We first construct the QDFK(2/3)
3,0

def
= K

(2/3)
3,0 [B1] with B1 = 3

8π2R according to (59):

K
(2/3)
3,0 =

3

8π2R
ρ−2/3

[
sin

2ϕ

3
+

1√
3

cos
2ϕ

3
(86)

+

(
5

4
√

3
cos

ϕ

3
− 5

4
sin

ϕ

3
− 1

4
√

3
cos

5ϕ

3
− 1

4
sin

5ϕ

3

)( ρ
R

)

+

(
−
√

3

8
cos

2ϕ

3
− 3

8
sin

2ϕ

3
+

√
3

32
cos

8ϕ

3
+

3

32
sin

8ϕ

3

)( ρ
R

)2

+

(
5
√

3

128
cos

ϕ

3
− 15

128
sin

ϕ

3
+

7
√

3

128
cos

5ϕ

3
+

21

128
sin

5ϕ

3

− 5

128
√

3
cos

11ϕ

3
− 5

128
sin

11ϕ

3
+

25

128
√

3
cos

7ϕ

3
− 25

128
sin

7ϕ

3

)( ρ
R

)3
]
.

Of course thatK(2/3)
0,0 , K(2/3)

1,0 andK(2/3)
2,0 are obtained if one neglects the corresponding

dual shadows in (86).
We extractA1 by (35) usingK(2/3)

0,0 ,. . . , K(2/3)
3,0 . Combining (86) with the expansion

(84), we check that in the V-notch case there is no improvement of the general convergence
result (58). We obtain:

Jρ0

[
τ,K

(2/3)
n,0

]
= A1 + O

(ρ0
R

)n+1
, n = 0, 1, 2, 3 (87)

the main contribution to the remainder being that ofA1 .

4.2.2 ExtractingA2

For extraction ofA2 we constructK(4/3)
3,0 as follows

K
(4/3)
3,0 =

3

16π2R
ρ−4/3

[
sin

4ϕ

3
− 1√

3
cos

4ϕ

3
(88)

+

(
1

4
√

3
cos

7ϕ

3
− 1

4
sin

7ϕ

3
− 7

4
sin

ϕ

3
+

7

4
√

3
cos

ϕ

3

)( ρ
R

)

+

(
−
√

3

4
cos

4ϕ

3
+

3

4
sin

4ϕ

3
−

√
3

32
cos

10ϕ

3
+

3

32
sin

10ϕ

3

)( ρ
R

)2

+

(√
3

32
cos

ϕ

3
− 3

32
sin

ϕ

3
+

17
√

3

128
cos

7ϕ

3
− 51

128
sin

7ϕ

3
+

+
5

128
√

3
cos

13ϕ

3
− 5

128
sin

13ϕ

3
+

7

16
sin

5ϕ

3
+

7

16
√

3
cos

5ϕ

3

) ( ρ
R

)3
]

The QDFsK(4/3)
0,0 , K(4/3)

1,0 and K
(4/3)
2,0 are obtained if one neglects the corresponding

dual shadows in (88).
We extractA2 by the QDFM (35) usingK(4/3)

0,0 , . . . ,K
(4/3)
3,0 . According to (88) and

(84) we find the same orders of convergence as in the general case (58):

Jρ0

[
τ,K

(4/3)
0,0

]
= A2 + O

[
ρ
−2/3
0

(ρ0
R

)n+1
]
. (89)
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Remark 9We checked by several computations that for a circular3π/2 V-notch in an

axisymmetric case, the GEFIFsAj may be extracted by the QDFM usingK(αj)
n,0 according

to the theoretical estimate (35).

Remark 10For extractingA4 associated withα4 = 8/3 = α1 +2 the resonance situation
occurs and the modified QDF must be used instead of the “regular” one. In this case of
resonance we still obtain the theoretical estimate using the modified QDF forn ≥ αj −α1 :

Jρ0

[
τ, K̆

(αj)
n,0

]
=




Aj + O

(
ρ2
0

Rn+1

)
n < αj − α1

Aj + O
(
ρ

α1−αj

0

( ρ0

R

)n+1
)

n ≥ αj − α1

(90)

4.3 ExtractingAj from p -FE solutions

We extractAj from p -FE solutions because in general the exact solutionτ is not known,
but only its approximationτFE . A Visual Basicprogram was created for extracting the
GEFIF’s from the FE solution.

For verification purposes anaxisymmetricFE model of a domain with a circular singular
edge is considered. Here instead of the exact solutionτEX , the approximated FE solution

τFE is used, and the integralJρ0 [τFE,K
(αj)
n,0 ] is computed numerically.τFE is extracted

on a torus surface which surrounds the circular singular edge (see Figure 3) andK(αj)
n,0 is

computed analytically. The integralJρ0 [τFE,K
(αj)
n,0 ] is evaluated by a Gauss quadrature:

Fig. 3 Domain with a circular singular edge and the integral surface.
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Jρ0 [τFE, K
(αj)

n,0 ] =

= 2π
ϕ2 − ϕ1

2

∫ 1

−1

[
K

(αj)

n,0 (ρ0, ϕ(ξ)) × ∂ρτFE(ρ0, ϕ(ξ)) − τFE(ρ0, ϕ(ξ)) × ∂ρK
(αj)

n,0 (ρ0, ϕ(ξ))
]

×ρ0R
(
1 +

ρ0

R
cos(ϕ(ξ))

)
dξ

= π(ϕ2 − ϕ1)

nGP∑

i=1

Wi

[
K

(αj)

n,0 (ρ0, ϕ (ξi)) × ∂ρτFE (ρ0, ϕ (ξi)) − τFE (ρ0, ϕ (ξi)) × ∂ρK
(αj)

n,0 (ρ0, ϕ (ξi))
]

×ρ0R
(
1 +

ρ0

R
cos (ϕ (ξi))

)
(91)

with

ϕ(ξi) =
ϕ2 − ϕ1

2
ξi +

ϕ2 + ϕ1

2
, (92)

and ξi and Wi being abscissas and weights of the Gauss quadrature, andnGP is the
number of the Gauss points used for the numerical integration.

4.3.1 Sources of error inAj when extracted byJρ0 [τFE, K
(αj)
n,0 ]

Extraction of Aj by Jρ0 [τFE,K
(αj)
n,0 ] involves three sources of errors:

1. The error due to the truncation ofK(αj)
n,0 :

ComputingAj with n being a finite number, a truncation error is introduced according
to (58) and (60).

2. The numerical error usingτFE instead ofτEX :
Using FE solutions for approximatingτEX , a numerical error is included in our com-
putations. We may estimate the numerical error by estimating the FE error. We expect
that the error in the extracted GEFIFs is smaller than the error in the energy norm.

3. The numerical integration error:
The values ofτFE are discrete therefore we use a Gauss quadrature of ordernGP for
the evaluation of (91), introducing a numerical integration error.

4.3.2 A specific example: a torus with a circular crack and axisymmetric Neumann BCs.

The accuracy of the numerical procedure based onp -FE methods is firstly demonstrated
on a simple problem of an inner cracked torus. Consider a torus with an axis (which is a
circle) of a radiusR = 1 , and a minor radius of1/2 , i.e. the torus is defined byΩ =

{(ρ, ϕ, θ) | 0 < ρ < 1/2, −π < ϕ < π, 0 ≤ θ < 2π } . The radial coordinater is bounded
by 1/2 = r1 < r < r2 < 3/2 . A crack is inserted in the torus defined byr < R =

1, x3 = 0 (see Figure 4, Left). On the crack surfaces homogeneous Neumann boundary
conditions are prescribed, whereas on the outer surface of the torus,ρ = 1/2, 0 ≤ θ < 2π

the trace of the exact solution (61) up toO(ρ10.5) is prescribed as Dirichlet BCs, with
A0 = A2 = A4 = A6 = A7 = · · · = 0 , and A1 = A3 = A5 = 1 . Because an
axisymmetric case is considered, we perform an axisymmetric FE analysis, using the mesh
shown in Figure 4-Right. The analytic formula for the boundary conditions coincides with
the exact solution up to an order of(ρ/R)10.5 due to the truncation of series with respect
to the index i .

The integral Jρ0 is computed using a quadrature of order90(= nGP) and τFE is
extracted from a FE solution atp = 8 having an error of0.02% in energy norm.
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Fig. 4 A torus with a circular crack and the axisymmetric finite element model.

We extract the first three EFIFsA1, A3, A5 for different values ofρ0 and consider
an increasing number of dual shadow functions for the QDFK

(αj)
n,0 . For A3 and A5 the

modified QDFsK̆(αj)
n,0 are of course utilized.

The relative error as percentage of the “extractedAFE
j ” is defined as:

eAj
% = 100 ×

∣∣∣∣∣
AFE

j − AExact
j

AExact
j

∣∣∣∣∣ (93)

Figures 5-7 present the convergence of the extractedAFE
j . The convergence rates of the

extractedAFE
j match the convergence rates according to the estimates in (60).

As expected, the error in the extracted EFIFs is smaller thanthe errors in the FE solution.
To quantify the integration error we monitor the relative error as percentage ofA1, A3, A5
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extracted byJρ0 [τFE,K
(α1)
2,0 ] and Jρ0 [τFE, K̆

(αj)
2,0 ] when j = 3, 5 for different quadrature

orders nGP . Table 2 presents a summary of these relative errors (percentage). One may
observe that fornGP ≥ 32 the error due to the Gauss quadrature is negligible.
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Table 2 % Relative error in Aj for different quadrature orders for a circular crack with homogeneous
Neumann BCs.

ρ0/R = 1/2 ρ0/R = 1/4 ρ0/R = 1/10

nGP = 10 nGP = 32 nGP = 90 nGP = 10 nGP = 32 nGP = 90 nGP = 10 nGP = 32 nGP = 90

eA1% 4.52E+00 9.24E-02 5.68E-02 1.84E-01 1.77E-02 2.78E-03 1.99E-02 2.67E-03 1.24E-03

eA3% 1.30E+01 4.73E-01 4.28E-01 1.74E+00 5.89E-02 2.38E-02 2.80E-01 1.38E-02 6.94E-04

eA5% 4.38E+01 1.15E+00 1.10E+00 1.88E+01 1.60E-01 2.34E-01 8.57E+00 7.89E-02 4.20E-02

4.3.3 A specific example: a penny shaped crack in a finite cylinder with axisymmetric
Dirichlet BCs on the outer surface.

Consider an axisymmetric FE model of a cylinder with a penny shaped crack. Homoge-
neous Neumann BCs are prescribed on the surface of the crack.On cylinder’s outer surface
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Dirichlet BCs are prescribed, shown in Figure 8, given by

τ1(r, x3 = 1, θ) = −155.4 + 3.055r + 181.8r2 − 34.82r3 + 6.43r4 − 1.27r5 + 0.22r6 (94)

τ2(r, x3 = −1, θ) = 155.4 − 3.055r − 181.8r2 + 34.82r3 − 6.43r4 + 1.27r5 − 0.22r6 (95)

τ3(r = 2, x3, θ) = 375.1x3 (96)

The domain and the boundary conditions areθ independent, thus axisymmetric FE models

R=1

r

x
3

q

r

j

2
H
=
2

T1(r,x3=1,q)

T3(r=2,x3,q)

T2(r,x3=-1,q)

f=4

Fig. 8 A cylinder with a penny-shaped crack and BCs.

were considered. To compute “benchmark values” ofAj a refined FE model shown in
Figure 9(a) is considered (the relative error in the energy norm is 0.05% ). The “benchmark
Aj ” are extracted from the refined FE models by the pointwise contour integral method [1]
implemented in StressCheck1 using 20 terms and a path radius of0.01 . In comparison, a
coarse FE mesh shown in Figure 9(b) (the relative error in theenergy norm is0.35% ) was
used to extract the EFIFs by the QDFM.This is to demonstrate that no special refinements
are required and a path away from the crack tip can be used for the QDFM.The benchmark
values of the first three EFIFs extracted by the SC algorithm at ρ0 = 0.01 are A1 =

30.15, A3 = 116.41, A5 = 91.02 .

The difference between the benchmark first three EFIFs and these computed by the
QDFM at ρ0 = 1/2 using 32 integration point is summarized in Table 3.Aj for j = 3, 5

are extracted byJρ0 [τ, K̆
(αj)
n,0 ] .

One may observe that extractingAj using the coarse FE mesh byJρ0=1/2[τFE,K
(αj)
4,0 ]

results in very accurate values with relative errors smaller than the FE relative error in energy
norm.

1 StressCheck is a trademark of ESRD, St. Louis, USA
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(a) (b)

Fig. 9 (a) A refined FE model, (b) A coarse FE model.

Table 3 Relative error (percentage) betweenAj extracted by SC using the refined mesh atρ0 = 0.01
and these extracted by the QDFM atρ0 = 1/2 using the coarse mesh, for different number of dual shadow
functions.

Number of dual shadow functions
n = 0 n = 1 n = 2 n = 3 n = 4

% error in A1 23.723 1.729 0.070 0.063 0.061

% error in A3 2.901 1.900 0.316 0.008 0.010

% error in A5 1.122 1.452 0.964 0.178 0.055

æ

æ

æ æ æ

à

à

à
à à

ì
ì

ì

ì ì

0 1 2 3 4

0

5

10

15

20

Number of dual shadow functions

%
re

la
tiv

e
e

rr
o

r
in

e
xt

ra
ct

e
d

A j

Numerical error= 0.35%

ì % relative error in A5

à % relative error in A3

æ % relative error in A1

Fig. 10 Relative error (percentage) betweenAj extracted by SC and by the QDFM versus the number of
dual shadow functions in the QDF.

5 Nonaxisymmetric solutions

For nonaxisymmetric cases, the solutionτ can be expressed as follows [15]:

τ (ρ,ϕ, θ) =
∑

k≥0

∑

ℓ=0,2,4···

∂ℓ
θAk(θ)ραk

∑

i≥0

( ρ
R

)ℓ+i
φℓ,k,i(ϕ), (97)
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and the QDFs will also depend onθ because of the functionsBj(θ) :

K
(αj)
n,m (ρ, ϕ, θ)

def
=

m∑

h=0,2,4···

∂h
θBj(θ)ρ

−αj

n∑

f=0

( ρ
R

)h+f
ψh,j,f (ϕ). (98)

The explicit ODEs for the determination of the dual eigenfunctions and dual shadow func-
tions, ψh,j,f (ϕ) , are obtained from (22):

Forh = 0 : Equations (53)-(55) for the axisymmetric case hold.

Forh = 2, 4, 6 · · · , f ≥ 0 :

(−αj + f + h)2ψh,j,f + ψ′′
h,j,f = (99)

−(h+ f − αj − 1)
[
2(h+ f − αj) − 1

]
cosϕ ψh,j,(f−1) + sinϕ ψ′

h,j,(f−1)

−2 cosϕ ψ′′
h,f,(f−1) − (h− αj + f − 2)(h− αj + f − 1) cos2 ϕ ψh,j,(f−2)

+ cosϕ sinϕ ψ′
h,j,(f−2) − cos2 ϕ ψ′′

h,j,(f−2) − ψ(h−2),j,f

with homogeneous BCs,

ψh,j,f (ϕ) = 0, onϕ = ϕ1, ϕ2, Homogeneous Dirichlet BCs, (100)

∂ϕψh,j,f (ϕ) = 0, onϕ = ϕ1, ϕ2, Homogeneous Neumann BCs. (101)

For a circularclosededge (θ ∈ [0, 2π]) , by elliptic regularity along the edge [6, Theorem
(16.9)], the GEFIF’sAk(θ) and all their derivatives are continuous along the edge. So they
can be expanded as a convergent Fourier series:

Ak(θ) = ak0
+

∞∑

p=1

ak2p−1
cos(pθ) +

∞∑

p=1

ak2p
sin(pθ). (102)

In this case the QDFM amounts to extract a finite number of the coefficients akq
with q =

0, . . . , Q and to approximateAk by its truncated Fourier series

A
[Q]
k (θ)

def
= ak0

+
∑

1≤2p−1≤Q

ak2p−1
cos(pθ) +

∑

2≤2p≤Q

ak2p
sin(pθ). (103)

5.1 Bj(θ) for a nonaxisymmetric case

For extracting the coefficientsajq
, we chooseBjq

(θ) orthogonal to all functions in (103)
except the one that multipliesajq

, i.e., Bjq
(θ) is chosen as

Bjq
(θ) = bjq

cos(qθ) for even q or Bjq
(θ) = bjq

sin(qθ) for odd q . (104)

Substituting in (35) one obtains:

Jρ0 [τ,K
(αj)
n,m [Bjq

]] =
( ∫ 2π

0
AjBjq

dθ
)(

2αjR

∫ ϕ2

ϕ1

φ2
j dϕ

)
+ O

(
ρα1−αj+1+min{n,m}

)

= ajq
+ O

(
ρα1−αj+1+min{n,m}

)
(105)

where for a circular closed edge of radiusR , bjq
is given by:

bj0 =
1

4αjπ2R
, q = 0 (106)

bjq
=

1

2αjπ2R
, q 6= 0 (107)
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5.2 A circular crack with homogeneous Neumann BCs

Following section 4.1, we representτ up to a power ofρ21/2 (the explicit expressions for
φℓ,k,i are provided in [12]):

τ = A1(θ)ρ
1/2

10∑

i=0

( ρ
R

)i
φ0,1,i + ∂2

θA1(θ)ρ
1/2
( ρ
R

)2 8∑

i=0

( ρ
R

)i
φ2,1,i (108)

+ ∂4
θA1(θ)ρ

1/2
( ρ
R

)4 6∑

i=0

( ρ
R

)i
φ4,1,i + · · · + ∂10

θ A1(θ)ρ
1/2
( ρ
R

)10
φ10,1,0

+ A2(θ)ρ

10∑

i=0

( ρ
R

)i
φ0,2,i + ∂2

θA2(θ)ρ
( ρ
R

)2 8∑

i=0

( ρ
R

)i
φ2,2,i

+ ∂4
θA2(θ)ρ

( ρ
R

)4 6∑

i=0

( ρ
R

)i
φ4,2,i + · · · + ∂10

θ A2(θ)ρ
( ρ
R

)10
φ10,2,0

+ · · · + A21ρ
21/2φ0,21,0

To extract any of the coefficientsa1q of the first GSIFA1(θ) , a special quasi-dual function

K
(1/2)
n,m [B1q ] needs to be employed. Forn = 1 and m = 2 we have calculated

K
(1/2)
1,2 [B1q ] = B1q (θ)ρ−1/2

[
sin

ϕ

2
− 1

4
sin

3ϕ

2

( ρ
R

)]
(109)

+∂2
θB1q (θ)ρ−1/2

[
−1

2
sin

ϕ

2

( ρ
R

)2
+

(
−1

4
sin

ϕ

2
+

3

8
sin

3ϕ

2

)( ρ
R

)3
]

For example forB10(θ) = b10 , the QDF in (109) is:

K
(1/2)
1,2 [B10 ] = b10(θ)ρ

−1/2
[
sin

ϕ

2
− 1

4
sin

3ϕ

2

( ρ
R

)]
,

which coincides withK(1/2)
1,2 given by (65).

For B11(θ) = b11 cos(θ) the QDF in (109) is:

K
(1/2)
1,2 [B11 ] = b11 cos(θ)ρ−1/2

[
sin

ϕ

2
− 1

4
sin

3ϕ

2

( ρ
R

)]
(110)

−b11 cos(θ)ρ−1/2
[
−1

2
sin

ϕ

2

( ρ
R

)2
+

(
−1

4
sin

ϕ

2
+

3

8
sin

3ϕ

2

)( ρ
R

)3
]

and so on forq = 2, · · · (in the sequel, for our FE computations, we go up toq = 8 ,
approximating nine coefficients).
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Substituting (108) and (109) in (35) we calculate:

Jρ0

[
τ,K

(1/2)
1,2 [B1q ]

]
= (111)

∫ 2π

0
πR×

{[(
1 − 3ρ50

1024R5
+ · · ·

)
A1(θ) +

(
3ρ60

1120R5
+ · · ·

)
A3(θ)

+

(
− 3ρ40

32R2 + · · ·
)
A5(θ) + · · · +

(
− ρ20

2R2 − ρ30
4R3 − 5ρ40

24R4 + · · ·
)
A′′

1(θ)

+

(
ρ40

4R3
+

3ρ50
32R4

+ · · ·
)
A′′

3(θ) +

(
− 47ρ60

448R4
+ · · ·

)
A′′

5(θ) + · · ·
]
×B1q (θ)

+

[(
ρ20

2R2
+

ρ30
4R3

− 29ρ40
48R4

+ · · ·
)
A1(θ) +

(
− ρ40

4R3
+

5ρ50
32R4

+ · · ·
)
A3(θ)

+

(
− 7ρ60

64R4 + · · ·
)
A5(θ) + · · · +

(
ρ40

12R4 + · · ·
)
A′′

1(θ) +

(
− ρ60

10R5 + · · ·
)
A′′

3(θ)

+

(
57ρ80

896R6
+ · · ·

)
A′′

5(θ) + · · ·
]
×B′′

1q
(θ)

}
dθ.

The coefficienta10 , for example, is obtained by usingB10(θ) = b10 = 1
2π2R

in (111),

Jρ0

[
τ,K

(1/2)
1,2 [B10 ]

]
= a10 + O

(
ρ20

(ρ0
R

)2
)
, (112)

which is coherent with (67) in the axisymmetric case.
For a11 we needB11(θ) = b11 cos(θ) = 1

π2R
cos(θ) , so (111) becomes,

Jρ0

[
τ,K

(1/2)
1,2 [B11 ]

]
= a11 + O

(
ρ20

(ρ0
R

)2
)
. (113)

Similarly, we extracta1q by computing Jρ0 [τ,K
(αj)
n,m [B1q ]] for different n and m

with different B1q (θ) and summarize the remainder ofJρ0 [τ,K
(α1)
n,m [B1q ]] in Appendix B

in Tables B.1-B.3.
Based on the results in Tables B.1-B.3 and similar calculations we conclude that:

Jρ0

[
τ,K

(αj)
n,m [Bjq

]
]

= ajq
+ O

{
ρ
2(α1−αj)+n+1
0

(ρ0
R

)n+1
+ ρ

α1−αj

0

(ρ0
R

)m+2
}
.

(114)
Observing that the second term in the right hand side is larger compared to the first term,
then for the optimal remainder,m = n− 1 , and (114) gives back the estimate in (35).

In the case of resonance, a modified QDF should be used, and instead of (114) one has:

Jρ0

[
τ, K̆

(αj)
n,m [Bjq

]
]

=




ajq

+ O
[(

ρ2
0

Rn+1

)
+ ρ

α1−αj

0

( ρ0

R

)m+2
]
, n < αj − α1

ajq
+ O

[(
ρ
2(α1−αj)+n+1
0

( ρ0

R

)n+1
)

+ ρ
α1−αj

0

( ρ0

R

)m+2
]
, n ≥ αj − α1

(115)
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5.3 A 3π/2 V-notch with homogeneous Neumann BCs

For a V-Notchϕ ∈ [−π, π/2] with a general BCs, the solutionτ can be presented as (see
[12] for the explicit functionsφi,j,k ):

τ = A1(θ)ρ2/3
10∑

i=0

(
ρ

R

) i

φ0,1,i + ∂2
θ A1(θ)ρ2/3

8∑

i=0

(
ρ

R

)2+i

φ2,1,i + · · · + ∂10
θ A1(θ)ρ2/3

(
ρ

R

)10

φ10,1,0(116)

+ A2(θ)ρ4/3
10∑

i=0

(
ρ

R

) i

φ0,2,i + ∂2
θ A2(θ)ρ4/3

8∑

i=0

(
ρ

R

)2+i

φ2,2,i + · · · + ∂10
θ A2(θ)ρ4/3

(
ρ

R

)10

φ10,2,0

+ A3(θ)ρ2
9∑

i=0

(
ρ

R

) i

φ0,3,i + ∂2
θ A3(θ)ρ2

7∑

i=0

(
ρ

R

)2+i

φ2,3,i + · · · + ∂8
θA3(θ)ρ2

1∑

i=0

(
ρ

R

)8+i

φ8,3,i

+ A4(θ)ρ8/3
8∑

i=0

(
ρ

R

) i

φ0,4,i + ∂2
θ A4(θ)ρ8/3

6∑

i=0

(
ρ

R

)2+i

φ2,4,i + · · · + ∂8
θA4(θ)ρ8/3

1∑

i=0

(
ρ

R

)8+i

φ10,4,i

The quasi-dual functionK(2/3)
0,2 , for n = 0 and m = 2 , for example is,

K
(2/3)
0,2 = B1q (θ)ρ−2/3

(
sin

2ϕ

3
+

1√
3

cos
2ϕ

3

)
(117)

+∂2
θB1q (θ)ρ−2/3

( ρ
R

)2
(
−1

4

√
3 cos

2ϕ

3
− 3

4
sin

2ϕ

3

)

Following the same procedure as in subsection 5.2, for extracting a11 for example,
B11(θ) is chosen to be

B11(θ) =
6

8π2R
cos θ (118)

and (116), (117) and (118) are used

Jρ0

[
τ,K

(2/3)
0,2 [B11 ]

]
= a11 + O

(ρ0
R

)
(119)

Likewise, we computeJρ0 [τ,K
(2/3)
n,m [B1q ]] for different n and m using (116) and

(117) for different B1q (θ) . The remainder is presented in Tables C.1-C.3. The results in
Tables C.1-C.3 follow the estimate in (35):

Jρ0 [τ,K
(αj)
n,m [Bjq

]] = ajq
+ O

{
ρ

α1−αj

0

[(ρ0
R

)n+1
+
(ρ0
R

)m+2
]}

(120)

5.4 Extractingajq
(θ) from p -FE nonaxisymmetric solutions

The use of the QDFM in conjunction withp -FE nonaxisymmetric models for extracting
Aj(θ) is examined. Consider a 3-D FE model of a body with a circular singular edge (for

example: a penny shaped crack). We computeJρ0 [τFE,K
(αj)
n,m [Bjq

]] where τFE is extracted

from the FE solution over a torus surface which surrounds thecircular singular edge.K(αj)
n,m

is computed analytically. Because the values ofτFE are discrete we compute the integral

Jρ0 [τFE,K
(αj)
n,m [Bjq

]] by a Gauss quadrature as in (91).

(121)

Jρ0 [τFE, K
(αj)
n,m [Bjq ]] = π

ϕ2 − ϕ1

2

nGP∑

j=1

nGP∑

i=1

WjWi

[
K

(αj)
n,m

(
ρ0, ϕ (ξi) , Bjq (θ(ηj))

)
× ∂ρτFE (ρ0, ϕ (ξi) , θ (ηj))

−τFE (ρ0, ϕ (ξi) , θ (ηj)) × ∂ρK
(αj )
n,m

(
ρ0, ϕ (ξi) , Bjq (θ(ηj))

)]
× ρ0R

(
1 +

ρ0

R
cos (ϕ (ξi))

)

with ϕ(ξi) given by (92), andθ(ηj) = θ2−θ1
2 ηj + θ2+θ1

2 = π(ηj + 1) .
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5.4.1 A 3-D torus with a circular crack.

Consider the simple case of an inner cracked torus discussedin subsection 4.3.2 and showed
in Figure 4. Here, a 3-D FE model is constructed as shown in Fig11.

Fig. 11 The 3-D FE model and the mesh.

First we check a simple axisymmetric case by applying the axisymmetric crack solution
(61) on the torus’s outer boundary withA1(θ) = 1, A2(θ) = A3(θ) = · · · = 0 and R = 1 .
We extract the first nine terms of̃A1(θ) , expecting that it is independent ofθ . The integral
Jρ0 is computed by a Gauss quadrature withnGP = 90 and using the FE solution atp = 8

having a relative error in energy norm of1.32% .

In Table 4 we summarize the results of the computationJρ0=0.5[τFE,K
(1/2)
n,m [B1q ]] for

various n & m . As expected, the extracted̃A1(θ) is independent ofθ and nicely con-

Table 4 Extracteda1q for different m and n in the case of a circular crack with homogeneous Neumann
BCs

Extracteda1q by Jρ0=1/2[τ, K(1/2)
n,m [B1q ]]

a10 a11 a12 a13 a14 a15 a16 a17 a18

m = n = 0 0.99768 -1.78E-06 -3.36E-11 -1.08E-06 4.29E-12 1.20E-05 4.60E-11 -1.78E-03 -7.73E-11
m = n = 2 1.00005 -8.22E-07 -3.83E-11 7.69E-07 6.77E-12 -3.05E-06 1.08E-10 2.49E-03 -2.65E-10
m = n = 4 0.99988 -5.02E-07 -3.87E-11 1.71E-06 7.17E-12 -1.43E-05 1.29E-10 1.02E-02 -3.65E-10

verged to1 .

Next, we consider a nonaxisymmetric case for which

A1(θ) = 1 + 2 cos θ+ 3 sin θ+ 4 cos 2θ+ 5 sin 2θ+ 6 cos 3θ+ 7 sin 3θ+ 8 cos 4θ+ 9 sin 4θ

(122)
and A0 = A2(θ) = A3(θ) = · · · = 0 . Applying on the outer surface of the torus the
solution (108) with the single nonzeroA1(θ) , the FE solution is obtained atp = 8 with
a relative error in the energy norm of0.98% . We checked that the integration error in
extracteda11 − a18 by Jρ0=1/4[τFE,K

(1/2)
0,0 [B1q ]] is already negligible fornGP ≥ 32 .
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Convergence of extractedajq
for different n and m :

We computeJρ0=1/4[τFE,K
(1/2)
n,m [B1q ]] with nGP = 32 for different n and m and

summarize the results in Table 5.

Table 5 % Relative error in extracteda1q for different n and m in the case of a circular crack with
homogeneous Neumann BCs

% Relative error in extracteda1q by Jρ0=1/4[τ, K(1/2)
n,m [B1q ]]

a10 a11 a12 a13 a14 a15 a16 a17 a18

m = 0 n = 0 0.004 3.610 3.593 14.670 14.671 33.921 33.920 62.495 62.491
m = 0 n = 2 0.023 3.659 3.642 14.787 14.789 34.161 34.160 62.920 62.917
m = 0 n = 4 0.023 3.659 3.642 14.787 14.789 34.161 34.160 62.921 62.917
m = 2 n = 0 0.004 0.939 0.922 4.528 4.530 13.321 13.321 32.056 32.051
m = 2 n = 2 0.023 0.166 0.148 1.382 1.385 6.345 6.345 20.090 20.084
m = 2 n = 4 0.023 0.095 0.077 1.092 1.095 5.675 5.674 18.858 18.852
m = 4 n = 0 0.004 0.894 0.877 3.807 3.809 9.624 9.624 20.212 20.207
m = 4 n = 2 0.023 0.102 0.084 0.345 0.348 1.004 1.004 2.868 2.862
m = 4 n = 4 0.023 0.028 0.011 0.016 0.019 0.127 0.126 0.946 0.940

The error in extracteda1q does not decrease ifm is not high enough in the extraction

function K
(αj)
n,m .

As an example, we also extracteda30 which is the constant value associated with
A3(θ) so to make sure that it is practically zero. Indeed the extracted value isa30 = 10−4 .

Convergence as a function ofρ0 :
We fix n = m = 4 and computeJρ0 [τFE,K

(1/2)
4,4 [B1q ]] with nGP = 32 for differ-

ent ρ0 s and summarize the results in Table 6. As expected, the errorin the extracteda1q

decreases asρ0 decreases.

Table 6 % Relative error in extracteda1q for different path radiiρ0 in the case of a circular crack with
homogeneous Neumann BCs.

% Relative error in extracteda1q by Jρ0 [τ, K
(1/2)
4,4 [B1q ]]

a10 a11 a12 a13 a14 a15 a16 a17 a18

ρ0 = 0.5 0.014 1.033 0.985 9.463 9.496 71.832 71.813 433.227 433.180
ρ0 = 0.4 0.011 0.206 0.180 1.462 1.468 10.004 10.001 54.463 54.450
ρ0 = 0.3 0.018 0.039 0.035 0.142 0.138 0.914 0.914 5.003 5.003
ρ0 = 0.2 0.013 0.011 0.012 0.017 0.019 0.101 0.101 0.205 0.206
ρ0 = 0.1 0.014 0.008 0.007 0.026 0.030 0.160 0.162 0.511 0.511

The numerical experiments confirm that the convergence rates of the extractedaFE
1q

match the convergence rates according to the estimates in (35).

One may also notice that the relative error in the extractedajq
by Jρ0=0.5[τFE,K

(αj)
4,0 [Bjq

]]

is smaller than the relative error in energy norm.

5.4.2 A general problem: a penny shaped crack in a cylinder.

Consider again the cylinder with a penny shaped crack shown in Figure 8 with Dirichlet
boundary conditions on its outer surface and homogeneous Neumann BCs on crack surfaces.
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Specifically, the following BCs are applied:

τ1(r, x3 = 1, θ) = rθ2 (θ − 2π)2 on the upper surface (123)

τ2(r, x3 = −1, θ) = −rθ2 (θ − 2π)2 on the lower surface (124)

τ3(r = 2, x3, θ) = 0 on the outer surface (125)

Because the BCs (123)-(125) areθ -depend a 3-D FE model is constructed as shown in
Fig. 12.

H
=
2

r=2

R=1

6.75Ε−3

1.0125Ε−3

Τ1

Τ2

Τ3

Fig. 12 A penny shaped crack in a cylinder: 3-D FE model and a slice showing the crack.

Because an analytic solution to this problem is not available, we compute the first GEFIF
A1 (the most important one because it is associated with the singular flux) by the QDFM
and also use the CIM [1] implemented in the commercial FE codeto obtain pointwise values
of A1 along the circular singular edge. For the CIM the extractionpath radius is0.0035 ,
thus requiring a refined mesh in the vicinity of the crack edge. The FE relative error in
energy norm is1.33% .

Extracteda1q by Jρ0 [τFE, K
(1/2)
4,4 [B1q ]] for ρ = 0.35 and ρ0 = 1/4 using a Gauss

quadrature of order32 are given in Table 7. One may notice the fast convergence of the

Table 7 Extracted a1q for extracted atρ0 = 0.35, 0.25 for a cylinder with a penny shaped crack with
homogeneous Neumann BCs.

Extracteda1q by Jρ0 [τ, K
(1/2)
4,4 (B1q )]

a10 a11 a12 a13 a14 a15 a16 a17 a18

ρ0 = 0.35 44.0984 -27.6679 7.249E-09 -0.9867 1.0735E-08 -0.1028 8.8255E-09 -1.7016E-02 -6.2489E-09
ρ0 = 0.25 44.0975 -27.6584 7.038E-09 -0.9845 -4.7541E-09 -0.1015 1.2545E-09 -1.5772E-02 -3.6742E-09

extracted coefficientsa1q as q increases. The extracteda1q are used in (103) to compute
Ã1(θ) , shown in Fig 13 compared to the pointwise values extracted by the CIM at ρ0 =

0.0035 . The extractedÃ1(θ) at ρ0 = 0.25 and atρ0 = 0.35 match closely each other and
the pointwise values extracted by the CIM atρ0 = 0.0035 . The QDFM does not require
a refined mesh in the vicinity of a circular crack tip which is amajor advantage in 3-D
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Fig. 13 Extracted Ã1(θ) by Jρ0=1/4[τ, K
(1/2)
4,4 [B1q ]] at ρ0 = 1/4 and by the CIM atρ0 = 0.0035 .

domains, and at the same time produces a smooth and continuous GEFIF along the crack
edge.

6 Summary and conclusions

We extended the QDFM for extracting generalized edge flux intensity functions in the vicin-
ity of a circular singular edge for axisymmetric as well as non-axisymmetric solutions. The
formulation and performance of the method is demonstrated on the simplified Laplace equa-
tion. Although the QDFM is a mildly-surface-dependent integral, we demonstrated that by

using a proper quasi-dual functionK(αj)
n,m and proper extraction functionsBj(θ) , one may

extract the functional representation of the GEFIFsAk(θ) accurately and efficiently.

Because in general only a FE approximation or the solution isavailable, we demon-
strated that the QDFM in conjunction withp -FE methods provide highly accurate GEFIFs.
These were obtained as a function along the circular edge, and are much more accurate
compared to the FE solution (superconvergence property). Another major advantage is the
possibility to use the FE solution on a torus away from the singular edge, thus it is not nec-
essary to have a refined FE mesh in the vicinity of the singularity (which is a complicated
and tedious task in 3-D domains).

Following the successful formulation of the QDFM and its efficiency it is extended to
the elasticity set of equations following the same methodology presented herein. A straight-
forward extension is possible with only technical challenges but no conceptual difficulties.
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A An explicit expression for K
(1/2)
∞,0 for a circular crack

If we evaluate the successive ratios of theβi ’s in Table 1 we find a simple hypergeometric law.

β1
β0

β2
β1

β3
β2

β4
β3

β5
β4

β6
β5

β7
β6

β8
β7

β9
β8

β10
β9

1
4

3
8

5
12

7
16

9
20

11
24

13
28

15
32

17
36

19
40

Table A.1 Successive ratios between coefficients in the expansion (65) of the QDF K
(1/2)
n,0 .

One can prove that the sequenceK
(1/2)
n,0 [B1] is converging and compute its limit, as follows. SettingZ =

ρeıϕ , we have

ρi+1/2 sin
(2i + 1)ϕ

2
= ℑZi+1/2, i = 0, 1, . . .

Hence

K
(1/2)
n,0 =

1

2π2ρR
ℑ

(
Z1/2

[
n∑

i=0

(−1)iβi

(
Z

R

)i
])

and since
βi+1

βi
= 2i+1

2(2i+2)
(Table A.1), we find the limit

K
(1/2)
∞,0 =

1

2π2ρR
ℑ

(
Z1/2

(
1 +

Z

2R

)
−1/2

)
.
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B Tables with the results of Jρ0
[τ, K

(αj)
n,m [Bjq

]] for a circular crack with
homogeneous Neumann BCs in a non-axisymmetric case

Table B.1 The remainder ofJρ0 [τ, K
(1/2)
n,m [B10 ]]

B10 (θ) = b10 = 1
2π2R

m = 0 m = 2 m = 4
n = 0 a30O

{
ρ0
( ρ0

R

)}
a30O

{
ρ0
( ρ0

R

)}
a30O

{
ρ0
( ρ0

R

)}

n = 1 a50O

{
ρ2
0

( ρ0
R

)2}
a50O

{
ρ2
0

( ρ0
R

)2}
a50O

{
ρ2
0

( ρ0
R

)2}

n = 2 a70O

{
ρ3
0

( ρ0
R

)3}
a70O

{
ρ3
0

( ρ0
R

)3}
a70O

{
ρ3
0

( ρ0
R

)3}

n = 3 a90O

{
ρ4
0

( ρ0
R

)4}
a90O

{
ρ4
0

( ρ0
R

)4}
a90O

{
ρ4
0

( ρ0
R

)4}

n = 4 a110O

{
ρ5
0

( ρ0
R

)5}
a110O

{
ρ5
0

( ρ0
R

)5}
a110O

{
ρ5
0

( ρ0
R

)5}

Table B.2 The remainder ofJρ0 [τ, K
(1/2)
n,m [B11 ]]

B11 (θ) = b11 cos(θ) = 1
π2R

cos(θ)

m = 0 m = 2 m = 4

n = 0 a11O
{( ρ0

R

)2} + a31O
{

ρ0

( ρ0
R

)}
a11O

{( ρ0
R

)2} + a31O
{

ρ0

( ρ0
R

)}
a11O

{( ρ0
R

)2} + a31O
{

ρ0

( ρ0
R

)}

n = 1 a11O
{( ρ0

R

)2} a11O
{( ρ0

R

)4} + a51O
{

ρ2
0

( ρ0
R

)2} a11O
{( ρ0

R

)4} + a51O
{

ρ2
0

( ρ0
R

)2}

n = 2 a11O
{( ρ0

R

)2} a11O
{( ρ0

R

)4} a11O
{( ρ0

R

)5}

n = 3 a11O
{( ρ0

R

)2} a11O
{( ρ0

R

)4} a11O
{( ρ0

R

)6}

n = 4 a11O
{( ρ0

R

)2} a11O
{( ρ0

R

)4} a11O
{( ρ0

R

)6}

Table B.3 The remainder ofJρ0 [τ, K
(1/2)
n,m [B13 ]]

B13(θ) = b13 cos(θ) = 1
π2R

cos(2θ)

m = 0 m = 2 m = 4

n = 0 a13O
{( ρ0

R

)2} + a33O
{

ρ0

( ρ0
R

)}
a13O

{( ρ0
R

)2} + a33O
{

ρ0

( ρ0
R

)}
a13O

{( ρ0
R

)2} + a33O
{

ρ0

( ρ0
R

)}

n = 1 a13O
{( ρ0

R

)2} a13O
{( ρ0

R

)4} + a53O
{

ρ2
0

( ρ0
R

)2} a13O
{( ρ0

R

)4} + a53O
{

ρ2
0

( ρ0
R

)2}

n = 2 a13O
{( ρ0

R

)2} a13O
{( ρ0

R

)4} a13O
{( ρ0

R

)5}

n = 3 a13O
{( ρ0

R

)2} a13O
{( ρ0

R

)4} a13O
{( ρ0

R

)6}

n = 4 a13O
{( ρ0

R

)2} a13O
{( ρ0

R

)4} a13O
{( ρ0

R

)6}

C Tables with the results of Jρ0
[τ, K

(αj)
n,m [Bjq

]] for a circular 3π/2 V-notch with
homogeneous Neumann BCs in a non-axisymmetric case
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Table C.1 The remainder ofJρ0 [τ, K
(2/3)
n,m [B10 ]]

B10 (θ) = b10 = 3
8π2R

m = 0 m = 2 m = 4

n = 0 a10O(
ρ0
R ) a10O

( ρ0
R

)
a10O

( ρ0
R

)

n = 1 a10O
( ρ0

R

)2 a10O
( ρ0

R

)2 a10O
( ρ0

R

)2

n = 2 a10O
( ρ0

R

)3 a10O
( ρ0

R

)3 a10O
( ρ0

R

)3

n = 3 a10O
( ρ0

R

)4 a10O
( ρ0

R

)4 a10O
( ρ0

R

)4

n = 4 a10O
( ρ0

R

)5 a10O
( ρ0

R

)5 a10O
( ρ0

R

)5

Table C.2 The remainder ofJρ0 [τ, K
(2/3)
n,m [B11 ]]

B11 (θ) = b11 = 6
8π2R

cos θ

m = 0 m = 2 m = 4
n = 0 a10O

( ρ0
R

)
a10O

( ρ0
R

)
a10O

( ρ0
R

)

n = 1 a10O
( ρ0

R

)2 a10O
( ρ0

R

)2 a1−0O
( ρ0

R

)2

n = 2 a10O
( ρ0

R

)2 a10O
( ρ0

R

)3 a10O
( ρ0

R

)3

n = 3 a10O
( ρ0

R

)2 a10O
( ρ0

R

)4 a10O
( ρ0

R

)4

n = 4 a10O
( ρ0

R

)2 a10O
( ρ0

R

)4 a10O
( ρ0

R

)5

Table C.3 The remainder ofJρ0 [τ, K
(2/3)
n,m [B13 ]]

B13 (θ) = b13 = 6
8π2R

cos 2θ

m = 0 m = 2 m = 4

n = 0 a10O
( ρ0

R

)
a10O

( ρ0
R

)
a10O

( ρ0
R

)

n = 1 a10O
( ρ0

R

)2 a10O
( ρ0

R

)2 a10O
( ρ0

R

)2

n = 2 a10O
( ρ0

R

)2 a10O
( ρ0

R

)3 a10O
( ρ0

R

)3

n = 3 a10O
( ρ0

R

)2 a10O
( ρ0

R

)4 a10O
( ρ0

R

)4

n = 4 a10O
( ρ0

R

)2 a10O
( ρ0

R

)4 a10O
( ρ0

R

)5


