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Abstract A criterion to predict crack onset at a sharp V-notch tip in homogeneous brittle
materials under a mixed-mode loading was presented and validated by experimental obser-
vations in a previous paper by the authors. This criterion slightly underestimates the exper-
imental loads causing failure which is attributed to a small notch tip radius that blunts the
sharp corner. This discrepancy is rigorously analyzed mathematically in this paper by means
of matched asymptotics involving 2 small parameters: a micro-crack increment length and
the notch tip radius. A correction is brought to the initial prediction and a better agreement
is obtained with experiments on PMMA notched specimens.

Keywords Failure initiation - Mixed-mode fracture - Generalized stress intensity factors -
V-notch - U-notch

Nomenclature

A, Ao Generalized stress intensity factors (GSIFs), mode I and mode I,
associated with the sharp V-notch

Aje, APt Critical mode I GSIF for sharp/blunt V-notch

le

ar, o Sharp V-notch singularity exponents

A G The two Lamé constants

E,v Young modulus and Poisson ratio

G, 00, K7 Fracture toughness, stress at brittle failure and plane-strain critical SIF
£, 2o Crack length and critical crack length at the V-notch tip
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r,p The radius measured from the V-notch tip in the outer and inner domains

0 Angle measured from the horizontal axis in the inner and outer domains

0* 0—m/2

811 Change in potential energy due to the presence of a crack at the
V-notch tip

a, V-notch tip radius and normalized crack length u = ¢/a

w Solid opening angle of the V-notch

Q% Qf Inner domain without/with a crack

u,o Radial and tangential displacement vector and stress tensor

u(0), u(u)
v, V2

PYOYe)

Displacements vector for the blunt V-notch without/with the presence
of a crack

Mode I and II expansion terms of the displacements vector in the inner
domain

Mode I and II expansion terms of the displacements vector in the inner
domain with finite strain energy

u(0, 0) V-notch tip displacement vector

L The 2-D plane strain elasticity Navier operator

T The traction operator

g(p) Cutoff function

v Path integral defined in (29)

o The circular boundary of the inner domain at p — oo

H;j(u,0), H;j(0) Functions used to compute potential energy in cracked/uncracked
domain with rounded V-notch tip

AH;; H;j(u, 0) — H;;(0)

m Mode mixity: m = %a“z_"”

op Normal stress

° Quantities associated with the sharp V-notch

pmixed  pymixed Correction factors for the computation of Aj,

1 Introduction

The Leguillon criterion for the prediction of the failure load and crack initiation angle at
the tip of a sharp V-notch in an elastic brittle isotropic material under mixed-mode (tension
and shear) loading was developed and validated by experimental observations in Yosibash
et al. (2006). Due to the assumption of the sharp V-notch tip, the predicted failure load was
underestimated, and a correction to the failure criterion, taking into consideration the rounded
V-notch tip is required. Herein, we extend the failure criterion in Yosibash et al. (2006) for
blunt notches (having a small radius at the V-notch tip) under mixed mode loading (see nota-
tions in Fig. 1). The asymptotic analysis in Leguillon and Yosibash (2003) is revisited and a
rigorous mathematical analysis is provided. Experimental observations on PMMA (polymer)
blunt V-notched specimens are utilized to demonstrate the validity of the revised Leguillon
criterion for predicting failure loads in domains containing rounded V-notch tips under a
mixed mode loading.

Reliable prediction of the failure initiation instance (crack formation) in the vicinity of
V-notch tips is a topic of active research and interest. At sharp V-notch tips the stress tensor
is infinity under the assumption of linear elasticity (a particular case is a crack tip when
the V-notch angle is 2;7). Several failure criteria have been proposed for sharp V-notches in
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Failure initiation at a blunt V-notch tip 145

Fig. 1 Outer and inner expansion domains

brittle materials as the Leguillon failure criterion (Leguillon 2002; Leguillon et al. 2003),
validated in Yosibash et al. (2004) for mode I loading and extended for mixed mode loading
and validated by experimental observations in Yosibash et al. (2006). Leguillon’s failure
criterion has been extended for blunt notch tips under mode I loading in Leguillon and
Yosibash (2003).

Prediction of the load that initiates failures in the vicinity of blunt notch tips attracted
extensive research efforts in the past couple of years. In Leguillon and Yosibash (2003)
rounded V-notches under mode I loading were considered whereas the cohesive zone model
was applied in Gomez and Elices (2004) as a failure criterion for rounded V-notched or
U-notched specimens under mode I loading, showing good correlation with many experi-
mental observations. In Lazzarin and Berto (2005) the SED failure criterion was revised to
incorporate the influence of a V-notch radius under Mode I loading and good correlation to
some experimental observation is reported, where in Gomez et al. (2007) the SED criterion is
extended to predict the static strength of U-notched specimens under mixed mode conditions
due to combined bending and shear loads.

In Sect. 2 we derive an asymptotic analysis of the displacements in the vicinity of a blunt
V-notch tip having a radius @ with and without a crack of length ¢. Based on this expan-
sion, we derive an expression for the difference in potential energy (domain without a crack
and with a crack in the vicinity of the rounded notch) without having to actually solve the
cracked domain. This expression is used in Sect. 3 to reformulate Leguillon’s failure criterion
for mixed mode loading that takes into consideration a blunt V-notch tip. The various quan-
tities required for the failure criterion and their verification are provided in Sect. 5. Finally,
we validate the failure criterion by some experimental observations on PMMA specimens
containing blunt V-notches under mixed mode loading in Sect. 6, and summarize our paper
by Conclusions in Sect. 7.
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2 Inner and outer expansions of the elastic solution

The corner-stone of the failure criterion (Leguillon 2002; Yosibash et al. 20006) is the postulate
that a finite crack of length £ has to be instantaneously created so to satisfy both the strength
and toughness requirements. These two requirements which have to hold simultaneously at
the instance of failure, state that the normal stress along a hypothetical crack length £ is
larger than o, and at the same time the energy release rate for same crack length £ is equal
the fracture toughness:

—48T1
0,() = 0., and 7 = Ge.

The crack is assumed to be orthogonal to the free surface, i.e. orthogonal to the principal
stress, because the other two stress components vanish on the surface.

The difference in potential energy (—311) between the state of a non-existing crack at the
V-notch tip and the state of the presence of a crack of length ¢ has to be computed:

— o _(r1(ee) — m(e = 0)) M

By an asymptotic analysis we proved (Yosibash et al. 2006) that for a sharp V-notch tip:

—8T1 = —(T1(¢o) — T1(0)) = A2 Hy1(£o, 00)€5"" + A1 Az Hiz (L, 6p) €5+
+ A3 Ha (Lo, 00)€5% + - - - )

where —§T1 is expressed in terms of A; (the generalized stress intensity factors—see (3)—(5)),
£o and newly defined “Geometrical factors” named H;; which are addressed in the sequel.
Herein, we wish to find correction factors to §I1 so to account for the rounded V-notch
tip.

We denote by £ the Navier-Lamé operator (equilibrium equation in terms of displace-
ments), and by 7 the traction operator.

2.1 Outer expansions of the elastic solution: sharp V-notch

For a small crack of length £ at the rounded V-notch tip, having a small radius a, one may
consider the domain 2 of interest (shown in the left of Fig. 1) as if it has a sharp V-notch
with no crack. The displacements and stresses in the vicinity of a traction free V-notch tip
can be expressed by an asymptotic series which is provided in this section. In the literature
(see Szabo and Babuska 1988 for example) the asymptotic series is usually expressed in a
cylindrical coordinate system which is rotated by 7 /2 radians in respect to the coordinate
system shown in Fig. 1. To distinguish between the two coordinate systems the one used in
this section is marked with an asterisk, i.e. 6* = 6 — /2, see Fig. 2. In the following we use
either 6 or 6* as convenient.

The displacements in the vicinity of the sharp V-notch tip are expressed as a series, see
e.g. Williams (1952), in which the first three terms are given by:
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X

Fig. 2 The coordinate system at the V-notched tip for the outer expansion

u(r, ) [“] = u(0,0) + A ¥

ug

3G— G)] si 1 2
[cos(l +a)f* 4 PO sulo CHa/H cog(1 — al)Q*] / (2Gaial, (6% = 0))

H r3G A+G)] si 1 2] o
[— sin(1 + a)6* — PEETHMOAD sheCHa A sin(1 — a1)9*:| / (2Gaol,(6* = 0))
3

+ Ayr®

. 36— i 1 2] o
[snc1-+ 0" + RO B in(l - )0°]/ (G0 f 0" = 0)

i 1 2
[cos(] + ap)p* + RGO Sro e cos(1 - az)@*:l / (2Gaza ] (6% = 0))

+o- L u0.0)+ > Ariu® %) @)
i

where u (0, 0) is the rigid body displacement of the V-notch tip and the corresponding first
two terms of the stress tensor in polar coordinates are:

0 = §0pp
Orp

—ay) sinfw(l 2
[cos(l +op)0* + 8733 z:g%gg:gi;;ﬁ cos(l — al)H*] ol (0% =0)

— Si 1 2
= Apra! [— cos(l + arp)0* 4 ({Feiy SuleCHa/A cog(1 — al)Q*] [0y (6% = 0)

[ sin(1+ oo™ + e sin(l — o] /oy (07 = 0)
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. _ i 21 .
[sin(1 + )6 + G522 letEEea A sin(t — a6 /ol 6 = 0)

A 1 [ =sin(l 000" + e sin(l — a0)6* | fof 6% = 0)

[cos(1 + e — (723 Spetteasl cos(1 — an)e® | /o] (6" = 0)
(%)

In (3-5) we have used the following notations:

def (1 +ay) sinfo(l +a1)/2]

(I —ay) sinfo(l —a1)/2]

ol 6% = 0) def | (1 —a2) S?H[w(l + a2)/2] @
(14 ap) sin[w(1 — a2)/2]

in order to normalize the “eigen-stresses” so that for mode /

oly@* =0)=1

0l (6% = 0) (6)

and for mode II:
oll*=0)=1

then opg (r, 0* = 0) = Ar*'~! and 0,6 (r, 6* = 0) = A>r®2~!. The two “eigen-values” o
and o, are the smallest roots of the characteristic equations;

sin(jw) + o sin(w) =0 (8)

sin(aaw) — o sin(w) = 0 (©)]

For a crack (w = 2m) the Eqs. 8 and 9 are identical and the first two roots are real and
simple &1 = ap = 1/2. In this case the “classical” mode I and II stresses and displacements
for a crack, well known in fracture mechanics (Kanninen and Popelar 1985), are obtained
and the coefficients A1 and A, are related to the stress intensity factor: A; = K/ V27,
As = Ky1/+/2m. When o # 2, then not all roots are real and multiple roots may exist.
From the engineering viewpoint, V-notch solid angles up to %” (240°) are of greatest impor-
tance and in this cases the smallest roots are real—see a summary in Table 1.

For a V-notch solid angle smaller than 1.430287 (257.45°), then a» > 1 and the mode 7/
stress components are bounded, whereas mode I stress components are bounded for w < 7.

2.2 Asymptotic inner expansion for a rounded V-notch without a crack

To obtain the asymptotic expansion of the solution in the vicinity of a rounded V-notch
tip having a radius a, we “zoom in” at the tip by performing a coordinate transformation:
p = r/a obtaining an unbounded “inner domain” denoted by Q2 —see right top Fig. 1. In
the crack free inner domain the solution is donated by #“(0) and may be represented as:

u®(0) = Fo(a)vo(p, 0,0) + Fi(a)vi(p,0,0) + F2(a)v2(p,0,0) + - - - (10)

Table 1 First two eigen-values for selected angles w

Solidanglew 27 (crack) 17 (330°)  Gr@315°)  F(300°)  F@70°) (2409

o 172 0.5014530 0.5050097 0.5122214 0.5444837 0.6157311
a 172 0.5981918 0.6597016 0.7309007 0.9085292 1.148913
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Failure initiation at a blunt V-notch tip 149

Fiyi(a)
Fi(a)

tip the solution must match the V-notch solution u = u(0, 0) + A;r% u? (9). We may match
each term in (10) as p — oo with the known outer solution obtaining:

with limg,_ ¢ = 0 and where 0 denotes the uncracked solution. Away from the notch

u(0) = u(0,0) + A1a*'vi(p, 0, 0) + A2a*v2(p,60,0) + - - an

with v;(p, 8, 0) ~ p%u® as p — oo, where ~ means “behaves like”.

There is a conceptual difficulty to solve for v; (p, €, 0) by finite element methods for exam-
ple, because the strain energy of v;(p, 8, 0) is unbounded in an infinite domain. Therefore,
we may represent:

vi(p,6,0) = g(p) x p%u® + 9P (0) (12)

where g(p) is a cutoff function which equals to 1 for p > p and equals 0 for p < pj, and
7@ (0) is a correction to the displacement field accounting for the notch blunting. In this case
one may solve for p® (0) and thereafter obtain v; (p, 6, 0). Note that »® 0) - 0asp — oo.
The cutoff function g(p) is mandatory because the eigen-solution p% u'?) is not valid outside
of the sector (r — w)/2 < 6 < (7 + w)/2 in the vicinity of the rounding and the stresses
associated with ) (0) should be finite as p approaches zero. In our analysis we chose:

0 o =p1
_ 2 _ 3
gp) = 1—3(517’;22) +2(£)1f;22) p1L<p <p2 (13)
1 o =P

f)(i)(O) is obtained by solving the elastic problem in the inner unbounded domain 22, (see
for definition of the different boundaries Fig. 3(left)):

L@ (0) = L(g(p)p*u? ) + L3P (0) =0
= L@P0) =0 in Q% —[p1 <p < pal
= L) = —puDO) x L(g(p)) inlpr<p<p] (14
T (0) = T(g(p)p*u®®) +T %" (0)) =0
= T7%P0) =0 onTy, T, Ts (15)
= T0V0) = —p“u? ()T (g(p)) onT3,Ty (16)

On 'y, i.e. for p — 00, according to (12) one has to enforce f)(i)(O) — 0. Le. taking
in practice a domain with a very large outer boundary, homogeneous Dirichlet boundary
conditions are prescribed on I's.

Remark 1 For an isotropic material, the elasticity operator £ when operating on an eigen-
solution p% u® (0) is identically zero (formally) in the entire domain: L(p%u @) =0
(also in the sub-domain bounded by the circular boundary of radius 1 and the sharp V-notch).
Also, since the eigen-solution satisfies the boundary conditions on the two straight lines that

intersect at the V-notch tip, then 7 (p% u®(9)) | 0= (—w) /2. ()2 = 0.

Remark 2 For the uncracked case, the stress field can be alternatively computed using the
analytical approximation proposed by Lazzarin and Tovo (1996). Nevertheless, it does not
extend to the cracked case (Sect. 2.3) and moreover, the displacement field is required in
addition to the stress field in both cases (Sect. 2.4). Thus, for simplicity, the same numerical
procedure presented herein is carried out in the two cases.
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Fig. 3 Inner expansion domain 23, (left) and ng (right)

2.3 Asymptotic inner expansion for a rounded V-notch with a crack

We conduct a second expansion to obtain the solution for the cracked blunt notch. We again
expand with respect to a and now denote by . = g the new dimensionless crack length at
the blunt tip. Using the same matching procedure one obtains:

u’ () =u(0,0) + Ara™ (vo(y1, y2. 1)) + A2a™ (v1(p, 60, ) + - - - (17)

where v; (p, 6, u) is represented as:

vi (0.0, 1) = g(p) x p*u? + 5 () (18)

To obtain 9" )(,u) one has to solve the following elastic problem in the inner unbounded
domain shown in Fig. 3(right).

L@ (w) = L&Pp“u® @) + L&D () =0

= LOV(W) =0 in Q% —[o1 < p < p2]

= LY (W) = —p"u(©0) x L(g(p)) inlpr<p<pl (19
T (w) = T u©) +76G" () =0

= 70D () =0 onTy, T, Ts, I, Iy

= TGP wW)) = —p*u©)T(g(p)) onT3, Ty (20)

On I'; we prescribe f)(i)(u) — 0 according to (12).
2.4 Change in potential energy due to the onset of a new crack

Consider the two elastic problems in the previous two subsections, #“(0) and u“(u)—the
first being solved over ng and the second over Q% . On the boundary at p — o0, i.e. on 'y,
traction boundary conditions corresponding to the outer expansion as » — 0 are considered:

def
T (1) p—soo = Ti () pso0 = Tilpsoo 2

Because both u“(0) and u“(u) satisfy the equilibrium equations with no body forces (note
that only @ are solutions to a problem with body forces but not ) then the potential energy
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of each of the two problems is:

1

M) = 5 [ oou, Gode [ Tt Godr 22)
Qb a0k,

n(ua(o)):% / 01 (O (0)d / 7 (0)ul (0)dT 23)
Q0 990,

On the boundary dQ7 traction free BCs are prescribed except on I',, and because the crack
faces are also traction free then the boundary 3930 is also traction free except on I'w,. Thus,
(22)—(23) are:

1

o) = 5 [ oot G0d2— [ Tyt Goar 4
Qh Feo

M) = 5 [ 0Ot 02~ [ Tyt a1 (5)
a0, Foo

Because Q4 is identical to ng (they differ by a line crack only) we may subtract (23) from
(22) to obtain:

1
1 o) = 1 O) = 5 [ (o0, ) 0 O, ©) a2

QO

(o]

- / (7;|p—>oo”:l (n) — 7;|p—>oou? (0)) dr (26)

Fe
The area integral involving stresses times displacement derivatives is equal to the surface
integral on its boundaries of tractions times displacements (see e.g. the weak form in Szab6

and Babuska 1991), and since traction free boundary conditions are applied on the entire
boundary except of I', then:

1 a a 1 a a
5 / (Uij(llv)u,'vj (n) — O'ij(o)u,'_j (0)) dQ = - / (7?|p—>oou,' (n) — 7?|p—>oou,' (0)) dr

2 2
Qo o
27
Substituting (27) into (26) one obtains:
STT = T(w) — M(0) & M@ (u)) — M@ (0))
1 a a
=3 (T p—oott (1) — Til p—oott? (0)) dT (28)
Too

In view of (21) we replace the first 7;|,— oo by 7;(0) and the second by 7;(u) to finally
obtain:

e 1
8T1 = (1) = T10) = W (), u (0)) = 5 / (T Gul (0) — 7Ol (1v) dT (29)

Foo
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3 Formulation of the mixed mode expression for §IT

The displacements for the inner expansions in the vicinity of the cracked and uncracked
rounded notch tip are:

u (1) = uo(u) + A1a® (g(p)p™ uV (0) + vV (w))

+A2a% (g(0)p®2u® ©) + 3? (1) + h.o.t. (30)
u®(0) = uo(0) + A1a® (g(p)p* uV(©) + 5 (0))
+A2a%(g(p)p®2u® ©®) + 3P (0)) + h.o.t. 31)

Inserting these expressions in (29) and using the linearity property of the functional W, we
may compute the change in potential energy between the cracked and un-cracked states:

W@ (), u’(0)) = W(uo(w), uo(0)) (32)
+W(uo(n), Aa® g(p)p™ u'V(6)) (33)
+ W (uo(p), Aja® 5 (0)) (34)
+ W (uo(n), A2a®g(p)p™2u'? (9)) (35)
+ oW (o (1), A2a*9@ (0)) (36)
+W(A1a® (g(p)p™ u'V (©), uo(0)) 37
+W(A1a® (g(p)p™ uV (©), A1a® g(p)p*uP ()  (38)
+W (A (g(p)p™u ©), Aja® P (0)) 39)
+W(A1a® (g(p)p™ uV (0), Ara®g(p)p™u?(0))  (40)
+W (A (g(p)p® u (6), A2a"DP (0)) 1)
+ W (A5 (1)), uo(0)) (42)
+ W (A5 (), Aja® g(p)p* u'V (9)) 43)
+ W (A (), A1a® 9 (0)) (44)
+ W (A DV (W), Ara®g(0)p*2u® (6)) 45)
+ W (A DV (1), A2a*9 (0)) (46)
+ W (A2a*g(p)p*2u' (0), uo(0)) (47)
+ W (A2a*g(p)p”u® (©9), A1a® g(p)p™u (@)  (48)
+ W (A2 g(p)pu®(6), A1a* 5" (0)) (49)
+W(A2a*2g(p)p2u® (0), Ara®g(p)p™u?(©))  (50)
+ W (A2 g(p)p?u (), A2a*9? (0)) 51
+ W (A2 (1), uo(0)) (52)
+ W (A2a9P (), A1a® g (p)p u'V (6)) (53)
+ W (AP (), A1a® 5 (0)) (54)
+ W (A0 (1), Ara®g(p)p*2u® (9)) (55)
+ W (A2a29P (1), A2a®29? (0)) (56)

The lengthy expression above may be simplified as follows. Because W(f, f) = 0, the
integrals (38) and (50) vanish. Expression (33) which contains only the rigid body dis-
placements is also zero. Because the boundary conditions on the inner domain dictate that
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TP () = =T (g(p)p® u (0)) we obtain that the following paired terms (33) (34), (35)
(36), (37) (42), (47) (52) cancel each other. Terms (38), (45), (46) added together result in:

AZ 201
_ ( / (T(g(0)o* u®9))5D O)dT — / T6D(0)g(0)p u (@))dT

+ / (T @ () (0)ar — / TP (09" (10))drT

+ / TGP (w)g(p)p® u?@)dr — / T(g(p)p"lu“>(9>>ﬁ“)(u)>dr)

The above expression corresponds to mode I loading. Terms (51), (55), (56) added together
result in:

A2 202

= ( / (T(g(p)p2u® )P 0)dr — / T2 0))g(0)p*u® ©))dr

+ / (TG ()9 (O)dr / TG 05 (w)dr

/ (TP () g(p)p*u® ©)dT — / T (g(p)p*u® (6))d m(m)dF)

This expression corresponds to mode II loading. The remaining terms are mixed mode terms
which yield:

AlAzaal—sz

=— ( / (T(g(p)p* uV ©)D® (0)dT
- / TP (0)g(p)p* u) (©))dT
+ / (T (w)g(p)p*>u® @)dr — / T(g(p)p*2u®(©))9" ()T
+ / (TG (10)? (0)dr — / TP 0)9 " ()dT
+ / (T(g(p)p™u® ©)d" (0)dr — / 7" (0))g(0)p*>u® (©))dT

+ / (TGP (w)g(p)p™ u) @)dT / T(e(p)p™ u ()8 ()T

+ / (TGP () (0)ar — / 7(ﬁ‘“(0>>ﬁ<2)(m)dr)

Taking into consideration the following properties:

(1) 3P(u) = 99 (0) = 0 on the outer boundary I's.

(2) The rounding and crack edges as well as the notch edges except '3, I'4 are traction free
therefore 7(3 (1)) = 7(3”(0)) = 0 on I'y, T2, T's, T'g, 7.

(3) OnT6, I T (1) = =T (g(p)p* u® (6)),
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the integral on ' is the only one that does not vanish:

2 2a
ST — A 1 /(T(v(l)(’u))pa]u(l)(e)dl—w /T(v(l)(o))palu(l)(e))dr

A1A2aa1+0t2

5 / TP () p™2u? (O)dr + / T3P () p*uV (©))dr

o] FOO

- / (T3 (0)p™u O)dr — / T®? )" u® ©))dr

Feo Foo

20
—2 / (TP )™ u® @)dr ~ / T (0)p* u® (©@)dr

Defining the functions:

Hij(w, 0) = —w P (1)), p%u(9))
def

= —% / (TG0 u? @) = T(o"uD )8 () dr

Feo

and because 9) = 0 on I'w, the above expression reduces to:

; i e 1 ~ (i aj(j
Hij (. 0) = =000, o 0) & 2 / T ())p%u @),
Foo

and specifically:

Hip(p, 0) = —% / (TG () p* u(@)dr (57)
o

Hi1(0) = —% / 7@V (0)p%uV (9))dT

Hix (1, 0) = —% / TG () p%2u® (O)dr

Ieo

Hai (1, 0) = —% / (TGP (w)p* uV(@)dr
o

Hip(0) = —% / TG (0)p%2u® 6)dT
I
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Failure initiation at a blunt V-notch tip 155

Ha1(0) = —% / (T2 0))p%uV ()dr

I

Hy(u,0) = —% / (TGP (w)p*2u? @)dr
I

Hy(0) = —% / 72 (0))p%2u®(0))dT
I

Remark 3 Notice that H;; are also functions of the opening angle w.

The change in potential energy may be more compactly represented as:

—8T1 = A2a (Hy1 (i, 0) — H11(0))
+ A1 A2a® T2 ((Hia(u, 0) + Hay (i, 0)) — (H12(0) + Ha1(0)))
+ A3a*2 (Hx (i, 0) — H2(0)) (58)
With the additional definition:

AHy(u,0) = Hyp(u, 0) — Hy1(0)
AH21 (i, 0) = (Hi2(w, 0) + Ha1 (1, 0)) — (H12(0) + Hz1(0))
AHy (i, 0) = Hy(u, 0) — Hp(0)
Equation 58 takes the form:
— 8T1 = A7a® (AHy1 (i, 0) + mAHix (14, 0) + m* AHp (. 0)) (59)

where m = %a“r"” is the mixity ratio.

Remark 4 Given AH;; for E and v, one may easily obtain AH;; for any E,e, and vyeq
by the following connection:

AHY (w, 0p) = AH;i (o, QO)L% (60)
i / 1—v2 Epew

Remark 5 For mode I loading we defined /(1) (Leguillon and Yosibash 2003) as follows:

Hy () — Hy1(0)

h(p) = -
() 2

(61)

were h(u) is a function which is independent of the elastic properties of the material and
tends toward 1 as u — oo and Hj is the value of Hy1 () whena — 0i.e. the sharp V-notch
case.

4 The failure criterion
Using (59) the energy criterion reads:
=48I

— Z Ge, = G < ATa®™ (AH11 (11, 0) + mAH21 (i, 0) +m> AHx (1, 0)) (62)
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Multiply and divide (62) by Hy1(0) + i (Hi2(0) + Hai (0)) + m? Hx(0) where H;;(9) and

m = ﬁ—ffaz_"” are associated with the sharp V-notch case (Yosibash et al. 2006). Since

a= ﬁ we may write:

Ge < AT~ (H11(0) + m(H2(9) + Hai (0)) + m* Hyp(0)) x W™ () (63)
where h™¥¢d (1) is defined:
pmized gy % AHy (1, 0) + mAHy1 (1, 0) + m* AHy (1, 0) (64)
(H11(0) + m(H12(0) + Ha1(8)) + m?Hx(6)) - n?

The stress criterion requires that along a distance ¢ measured from the rounded tip at an
angle 6 the normal stress has to exceed the material critical stress o.

0, @0, £,0) = Aja® Lo, (g(p)p* u 6) + 9V (0))
+ A2 0, (g(0)p2u® (©0) + 9 (0) > o, (65)

Because it is assumed that £ is small and in the vicinity of the rounding g(p) = 0 one obtains:
o, @*(0,1,0) = A1a® " 0,0V (0) + ma, 3P (0) = o.. (66)

0,0, ¢,0)) is a decreasing function of £ and §IT is an increasing function of £. For a
specific £¢ the two criteria coincide with their material critical values o, and G..

For that ¢( both (64) and (66) inequalities become equal, so dividing (64) by the square
of (66) one obtains:

g (AN ©®) + i (H1(0) + Hn 0)) + 2 A O) Gimirea 10, 00) - 15" _ Ge - o)
(0,31 (0) + ma, (32 (0))2 Z
where po = €o/a. Defining Hmixed ()
Hmixed( 9) dif hmixed(uy 6) . /’Lzal_l (68)
(0,(3V(0)) + ma, (32 (0))?
Equation 67 becomes:
G,
a (1 0) + m(H120) + Ha1 (9)) + m? H () H™ (1o, 0) = — (69)
c

The function H™*¢? (1, 0) is independent of the elastic properties of the material.

As an example, H mixed (| 9*) is computed for different m’s for ¢ = 0.03mm and
o = 315° and plotted in Fig. 4.

For an assumed sharp V-notch, the mode mixity ratio m can be computed as well as the
H; ; values (Yosibash et al. 2006). Then for a rounded V-notch, with a given notch radius a,
the value of m is determined and (69) provides H mixed (1, 9*) for any u and 0*. From plots
such as 4 for a given ; one can obtain i, therefore £(. Once ¢ is obtained it can be inserted
back into (62) and a critical mode I GSIF is obtained:

Ablunt _ GCzO 70
le = 2a) * * 2 * (70)
a=*1 (AH11(no, 0*) + mAHi21 (o, 0*) +m=AHy (o, 0%))

The crack initiation angle is the angle at which the minimum value of All’i,“”’ is obtained.
Numerical investigations show that the crack initiation angle 6; for a sharp V-notch is similar
to the blunt V-notch therefore being used for the blunt V-notch.
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Fig. 4 Hmixed(u, 6*) for m = 00424, 00907, 01256, 01936, 03581 for a = 0.03 mm and w = 315°

4.1 Retrieving the sharp V-notch criterion asa — 0

The blunt notch criterion must tend to the sharp notch criterion as a — 0 (i.e. © — 00). The
function 2™*¢4 (11, 6*) (independent of the elastic properties of the material) is an increasing
function of  and for a given 6; tends toward 1 as u — oo. As an example hmixed (1 6*) for
a PMMA specimen with E = 3100 MPa, v = 0.36, K;. = 1.12MPay/m and ﬁ—f =0.216
is plotted in Fig. 5. The predicted crack initiation angle using the sharp criterion presented
in Yosibash et al. (2006) is 6 ~ —18°. Figure 5 demonstrates that pmixed (1 0F = —18°)
tends toward 1 asa — 0 (u — ©0).

Consider next H™*¢d(y 6*) in (68). As a — 0 then by definition m — 0
and the expression (o, @ 0)+ma, 3 0)) — 7,3 (0)). Also notice that a , (" (0))
for @ — o0 decreases to zero according the to first eigen-function thus o, (6(1)(0)) —
u®~! Notice that as u — oo, hMxed(y, 6¥) — 1 then, according to (68)
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15 2 25 3 3.5 4

Fig. 5 h™ixed ;. 0;) for PMMA having a V-notch angle w = 315° (E = 3100MPa, v = 0.36, Kj. =
1.12 MPa./m)

Hmlx«lm‘e':‘

i xc_»:jt 1§ 3. J=p

Fig. 6 H™ixed(y, 6) tending toward 11 as a — 0

H™xed (1, 6;) — u—this can be also noticed in Fig. 6. For H™** (1, 0;) — p (69)
reduces to the known sharp notch failure criterion presented in Yosibash et al. (2006).

5 Numerical results

This section summarizes the various entities required for the application of the failure crite-
rion after being computed by finite element methods.

5.1 Mode I loading alone: computing 3D (0), f)(l)(u), AHyy, and h(p)

To compute the D function we generated a p-FE model representing the unbounded domain.
Since we need to compute both f)l(O) and f)l(u) we have two unbounded domains. One
domain represents the un-cracked blunt notch and the second represents the cracked blunt
notch (see Fig. 7).

In practice we used an outer domain of radius p», = 250 and checked that the results are
virtually unchanged when ps, was increased to pso = 500.

We also investigated the influence of the cutoff function boundaries by performing com-
putations for p; = 80, pp = 110 as well as with p; = 150, p» = 200.
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Fig. 7 FE models generated for m _
computing the ) functions [~

No crack is present the
nodes are joined along
the crack path

Once the value of T (f)(l)(,u)) and 73" (0)) are obtained by the FE analysis we may
compute 5I1.

—oI1

m = Hy(n) — Hi1(0)

- % / (TG (w)p u®@)dr % / (TG00 u@))dr
I

I
1 . R
=3 / oDV ()R uM ©0) + 0y @V ()Rl (6)}Rd6
Iy

2
I

—1/{G}P(f;“)(O))Raluﬁ“(@) +o'y GV O)RM Uy @)RdE  (T1)

The integrals are computed numerically using a Gauss quadrature of N = 92 points:

Ra1+l w N | (1)
Hy(n) = ) zWi(Ur’ﬁ(Qi)uﬁ )(0) + oy By (0))r=r
i=1
atly & 0 1 0 1
H(0) = ——2 > Wilo), 00w 0) + o7 0y 0))=r (72)

i=1

To check that the computation of the Hyj(u) and Hy;(0) are correct, we also computed the
potential energy for the entire domain with and without a crack, together with the generalized
stress intensity factor A using the FE models shown in Fig. 8.
The values of Hy1 (1), H11(0) for E = 1, v = 0.3 and their accuracy are given for different
crack lengths u, and for 4 different V-notch opening angles for a = 0.03 mm in Table 2.
One may notice the excellent accuracy obtained for §I1 using the computed Hij(u) —
H11(0). In Fig. 9 we plot i (u) showing that indeed it tends to 1 as u increases.

@ Springer



160 E. Priel et al.

Fig. 8 FE models for computing

SI1
1] )\ ' ~
Fig. 9 h(w) for different 1 : : .
V-notch opening angles . R ap S Sy ]
(E=1,v=0.3,a = 0.03mm) o 0 gmm
08} S |
o &l
oel f i
- h
= i
< 1)
0.4 1
y/
——=315°
02} -+ -0=300°1
-a- 9=270°
o =240°
O 1 1 1
0 1 2 3 4
w

5.2 Mixed mode loading: computing (0, D (), AH;j, pmixed (1 6%)
and Hmtxed(u’ 9*)

Again we compute the @ functions by p-FE models representing the unbounded domain
(see Fig. 10) with the outer radius ps, = 250 and p; = 80, p» = 110.

To verify the accuracy of our computations, we also computed the potential energy for the
entire domain with and without a crack, together with the generalized stress intensity factors
A1, A; using the FE models shown in Fig. 11.

The values of H;; (1), H;;(0) for E = 1, v = 0.3 and their accuracy are given for different
crack lengths u, for the V-notch opening angle w = 315° at various crack inclination angles
for a = 0.03 mm in Tables 3 and 4.

InFig. 12 we plot (), h™*¢? (1, 6* = 0) showing that indeed it tends to 1 as i increases.

The values of AH;; for * = —60 — 60 and u = 0 — 4 are summarized in Table 5 and
shown graphically in Fig. 13 for « = 315°. Same data for @ = 270° is provided in Table 6
and Fig. 14.

It should be noted that A H1 and A Hypp are symmetric with respect to 6* whereas A Hy21
is antisymmetric. One can also notice that the trend of the various A H;; for the blunt notch
case is similar to the trend observed for the sharp notch case (see Fig. 15).
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Fig. 10 FE models generated for

computing the @ functions for o > \\ &,

the mixed mode loading

AT
«1

Fig. 11 FE models for l

computing T under mixed mode P
loading f \ ; %7 r

To verify that (59) provides good estimates, we computed §IT using it and by direct FE
analysis. Consider a 3PB specimen made of PMMA with £ = 3100 MPa, v = 0.36 con-
taining a blunt notch @ = 0.03 mm as shown in Fig. 11. We constructed a FE model of the
specimen with and without a finite crack £ = 0.036 mm, 6* = —10° at the blunt notch tip.
We loaded the FE models with an arbitrary load of P = 1 N obtained 61 = 2.6685E — 5.

Using (59) with AHj; = 1.656E — 3, AHy» = 5.121E — 4, AHi21 = 8.299FE — 4
(from the Tables above and adjusted for the relevant E, v according to (60)) and A; =
0.73 MPa mm®4%4° 1 = 0.09 (A1 and A, were computed from the sharp V-notch case) we
obtained §T1 = 2.6777E — 5 resulting in a 0.0034% difference. Increasing the crack length
to £ = 0.066 mm the resulting difference between the two methods is still less then 0.5%.

6 Comparison with experimental results

To the best of our knowledge, mixed mode loading on V-notch specimens with different
notch radii are reported only in Yosibash et al. (2006), Priel et al. (2007). There three point
bending (3PB) experiments conducted on PMMA blunt V-notched specimens are detailed.
The specimens considered are sets b1 and b2 having a V-notch opening angle of v = 315°
and notch tip radii of @ = 0.03 and @ = 0.25 mm respectively with K;. = 1.12 MPa/m
(averaged value), £ = 3100 MPa, v = 0.36 and o, = 111.8 MPa. In Yosibash et al. (2006),
Priel et al. (2007) the failure load and failure initiation angle were predicted by the assumption
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Table 3 Mixed mode loading: H;; (i) for o = 315°, E = 1,v = 0.3, @1 = 0.5050097, ap = 0.6597016,

a=0.03, p; =80, py = 110, pso = 250

po Hu(w) Hp(w)  Hi(w) AHy  AHp  AHp 8T STIFE (error %) mmived ()
0* =0°
0.0 —7.8195 —2.1122 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 (NA) 0.0000
0.4 —6.5470 —2.1869 0.0000 1.2724 0.0746 —0.0001 0.0198 0.0196 (1.01%) 0.5753
0.6 —5.5572 —2.3532 —0.0001 2.2622 0.2410 —0.0002 0.0353 0.0351 (0.59%) 0.6789
0.8 —4.5035 —2.6278 —0.0001 3.3159 0.5156 —0.0002 0.0517 0.0516 (0.24%) 0.7439
1.0 —3.4177 —3.0050 —0.0001 4.4018 0.8928 —0.0002 0.0686 0.0686 (—0.06%) 0.7881
1.2 —2.3139 —3.4750 —0.0001 5.5055 1.3627 —0.0002 0.0858 0.0861 (—0.33%) 0.8197
20 21759 —6.1002 0.0000 9.9953 3.9879 —0.0001 0.1557 0.1578 (—1.36%) 0.8876
2.5 5.0047 —8.2093 0.0000 12.8242 6.0971 —0.0001 0.1997 0.2036 (—1.95%) 0.9086
3.0 7.8357 —10.5944 0.0000 15.6552 8.4822 —0.0001 0.2437 0.2500 (—2.54%) 0.9223
3.5 10.6664 —13.2105 0.0000 18.4858 11.0983 —0.0001 0.2877 0.2969 (—3.10%)  0.93178
4.0 13.4933 —16.0253 0.0000 21.3127 13.9131 —0.0001 0.3317 0.3443 (=3.67%)  0.9385
9* =5°
0.0 —7.8195 —2.1122 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 (NA)
0.4 —6.5564 —2.2078 0.3548 1.2630 0.0956 0.3547 0.0200 0.0198 (0.93%)
0.6 —5.5730 —2.3889 0.6072 2.2465 0.2766 0.6072 0.0356 0.0354 (0.52%)
0.8 —4.5251 —2.6809 0.8632 3.2944 0.5686 0.8632 0.0521 0.0520 (0.21%)
1.0 —3.4450 —3.0702 1.1174 4.3744 0.9580 1.1173 0.0692 0.0692(—0.09%)
1.2 —2.3471 —3.5512 1.3689 5.4723 1.4389 1.3689 0.0865 0.0868 (—0.38%)
0* = 10°
0.0 —7.8195 —2.1122 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 (NA)
0.4 —6.5835 —2.2808 0.6946 1.2360 0.1686 0.6945 0.0199 0.0197 (0.86%)
0.6 —5.6186 —2.5076 1.1904 2.2008 0.3954 1.1903 0.0354 0.0352 (0.46%)
0.8 —4.5893 —2.8356 1.6934 3.2302 0.7233 1.6933 0.0518 0.0518 (0.14%)
1.0 —3.5265 —3.2607 2.1941 4.2930 1.1485 2.1940 0.0688 0.0689 (—0.15%)
1.2 —2.4448 —3.7744 2.6906 5.3747 1.6621 2.6905 0.0861 0.0865 (—0.42%)
0* = 15°
0.0 —7.8195 —2.1122 0.0001  0.0000 0.0000 0.0000 0.0000 0.0000 (NA)
0.4 —6.6273 —2.3948 1.0053 1.1922 0.2825 1.0053 0.0195 0.0193 (0.75%)
0.6 —5.6933 —2.6857 1.7261 2.1262 0.5734 1.7260 0.0347 0.0345 (0.36%)
0.8 —4.6933 —3.0801 2.4599 3.1262 0.9679 2.4598 0.0509 0.0508 (0.05%)
1.0 —3.6587 —3.5627 3.1923 4.1608 1.4504 3.1922 0.0676 0.0678 (—0.21%)
1.2 —2.6036 —4.1280 3.9205 5.2158 2.0158 3.9204 0.0847 0.0851 (—0.48%)
Fig. 12 h(p) and 1 T
pmixed (9% = 0) for V-notch -—
opening angle of w = 315°
(E=1,v=0.3,a =0.03mm) 0.8 - 1
S\% 0.6 1
X
ES
£ 04r 4
02} ®=315° 1
—e—Mode | only — Crack at 0°
- * ~Mixed Mode - Crack at 0°
00 1 2 3 4
u
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Table 4 Mixed mode loading: H;j(n) for o = 315°, E = 1,v = 0.3, @ = 0.5050097, ap = 0.6597016,
a=0.03, p; =80, pp = 110, pso = 250

2 Hyp(n) Hy () Hia (1) AHy AHy AHyp
0* = 20°

0.0 —7.8195 —2.1122 0.0001 0.0000 0.0000 0.0000
0.4 —6.6995 —2.5384 1.2737 1.1200 0.4262 1.2736
0.6 —5.7933 —2.9203 2.1945 2.0262 0.8081 2.1944
0.8 —4.8338 —3.3932 3.1354 2.9857 1.2810 3.1353
1.0 —3.8368 —3.9531 4.0781 3.9827 1.8409 4.0781
1.2 —2.8187 —4.5885 5.0183 5.0008 2.4763 5.0182
0* =25°

0.0 —7.8195 —2.1122 0.0001 0.0000 0.0000 0.0000
0.4 —6.4908 —3.4451 3.2095 1.3286 1.3329 3.2094
0.6 —5.9165 —3.1876 2.5788 1.9030 1.0754 2.5788
0.8 —5.0054 —3.7570 3.6975 2.8141 1.6448 3.6974
1.0 —4.0560 —4.4037 4.8238 3.7634 2.2915 4.8237
1.2 —3.0832 —5.1223 5.9509 4.7362 3.0100 5.9508
0* = 30°

0.0 —7.8195 —2.1122 0.0001 0.0000 0.0000 0.0000
0.4 —6.2591 —3.6310 2.7343 1.5603 1.5188 2.7342
0.6 —5.9011 —3.8913 3.2461 1.9184 1.7791 3.2461
0.8 —5.1738 —4.3775 4.2635 2.6457 2.2653 4.2634
1.0 —4.3162 —4.8774 5.5672 3.5033 2.7651 5.5671
1.2 —2.6548 —6.0300 7.3158 5.1646 3.9178 7.3158

of a sharp V-notch, being corrected herein to include the influence of the notch tip radius.
Table 7 summarizes the experimental data and the failure loads predicted by the assumption
of a sharp V-notch and these predicted including the influence of the notch tip radius.

In Table 7 we computed critical Abl””’ using (70) and A1, using the sharp V-notch crite-
rion reported in Yosibash et al. (2006) We then defined a correction factor to the sharp notch

hlum

estimation as . Figures 16 and 17 present the correctlon factors as a function of

and a. The case A = 01is the mode I loading and the value of 2 A1 = 1.08 fora = 0. O3mm
is obtained Wthh is 10% lower compared to the one reported in Fig. 9 (Leguillon and
Yosibash 2003)—this is because of the different K ;. values used herein compared to the one
in Leguillon and Yosibash (2003).

Using the correction factor we computed the corrected failure load. Prediction results are
plotted in Fig. 18.

In all cases the predicted crack initiation angle for the sharp and blunt case were very
similar £1°.

It can be seen that the correction factor provides better correlation of the predicted values
to the experimental observations.

7 Summary and conclusions
Structures containing V-notches fail at significantly lower loads then their material strength
would suggest. Predicting the failure load, especially for complex mixed mode state of

stresses, has been a topic of active research for the past couple of years. Several failure
criteria for predicting the failure load of such structures assuming the V-notch tip is sharp
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Table 6 AH||(w,0%), AHi21(n, 0%) and AH(u, 0*) for o = 270°, E = 1,v = 0.3, p; = 80,
p2 = 110, poo = 250
n —45 —40 -35 -30 -25 -20 —15 -10 =5 0
AH (i, 0%)
0 0 0 0 0 0 0 0 0 0 0
0.4 0.50 0.61 0.71 0.81 0.91 0.99 1.06 1.12 1.15 1.16
0.6 0.99 1.16 1.34 1.50 1.66 1.80 1.91 1.99 2.05 2.06
0.8 1.56 1.80 2.04 2.28 2.49 2.68 2.83 2.94 3.01 3.04
1 2.18 2.50 2.81 3.10 3.37 3.60 3.80 3.94 4.03 4.06
1.2 2.85 3.23 3.61 3.97 4.29 4.57 4.79 4.96 5.07 5.10
2 5.77 6.43 7.07 7.65 8.18 8.63 8.99 9.26 9.42 9.48
2.5 7.74 8.56 9.35 10.07 10.72 11.28 11.72 12.05 12.25 12.31
3 9.76 10.74 11.68 12.55 13.32 13.98 14.50 14.89 15.12 15.20
35 11.83 12.94 14.06 15.07 15.96 16.72 17.32 17.77 18.04 18.13
4 13.92 15.07 16.44 17.62 18.63 19.49  20.18 20.68  20.98 21.08
AH221 (1, 6%)
0 0 0 0 0 0 0 0 0 0 0
0.4 1.21 1.30 1.35 1.34 1.24 1.09 0.87 0.60 0.29 0.01
0.6 2.35 2.45 2.48 2.40 2.22 1.93 1.540 1.07 0.55 0.021
0.8 3.66 3.77 3.75 3.58 3.28 2.82 2.24 1.55 0.79 0.024
1 5.10 5.19 5.11 4.85 4.39 3.76 2.97 2.05 1.049 0.02
1.2 6.64 6.71 6.56 6.17 5.56 4.74 3.73 2.58 1.31 0.02
2 13.72 13.59 13.02 12.05 10.72 9.04 7.05 4.83 2.45 0.004
2.5 18.68 18.39 17.53 16.15 14.30 12.00 9.34 6.39 3.24 0.005
3 24.04 2356 2236 20.52 18.12 15.18 11.79 8.05 4.08 0.007
35 2978  29.02 2748 25116  22.16 18.52 14.37 9.81 4.96 0.019
4 35.82 34.69 3286 30.04 2641 22.05 17.08 11.64 5.88 0.026
AH(, 0%)
0 0 0 0 0 0 0 0 0 0 0
0.4 0.92 0.92 0.79 0.78 0.62 0.53 0.43 0.32 0.22 0.22
0.6 1.63 1.56 1.30 1.28 0.89 0.73 0.46 0.33 0.23 0.23
0.8 2.47 2.36 2.14 1.90 1.36 1.13 0.95 0.62 0.50 0.45
1 3.46 3.27 291 2.47 2.16 1.64 1.27 1.03 0.87 0.82
1.2 4.55 4.31 3.89 3.27 2.86 2.26 1.90 1.62 1.35 1.30
2 10.21 9.50 8.80 7.83 6.79 6.04 5.17 4.66 4.35 4.27
2.5 15.07 13.83 12.78 11.43 10.33 9.08 8.16 7.34 6.94 6.80
3 20.14 18.71 17.33 15.82 14.25 12.73 11.59 10.73 10.09 9.93
35 2598 2431 22.63 20.80 18.93 17.17 15.59 14.53 13.80 13.57
4 3253 30.59 2851 26.43 24.16  22.08  20.39 18.92 18.31 17.95
Table 7 Dimensions, experimental and predicted failure loads for 3PB PMMA specimens w = 315°
Specimen  Configuration (mm) L/H/b (mm) Failure load (N) 0; Exp (°)
# xp xsl  xs2 b=thickness Exp Sharp Blunt

prediction prediction
bl-2 2 18 22 80 x10x 10 317 183 250 85
bl-3 6 14 26 80 x 10 x 10 327 231 313 80
bl-4 10 10 30 80 x 10 x 10 533 329 438 68
bl-5 135 65 335 80 x 10 x 10 744 500 648 60
bl-6 16 4 36 80 x 10 x 10 1280 824 993 50
b2-2 2 18 22 80 x10x 10 226 183 215 85
b2-3 6 14 26 80 x 10 x 10 301 231 264 79
b2-4 10 10 30 80 x 10 x 10 408 329 378 72
b2-5 135 65 335 80 x 10 x 10 613 500 565 68
b2-6 16 4 36 80 x 10 x 10 998 824 905 60
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Fig.16 Correction factor for PMMA as a function of the notch tip radius: Left—w = 315° (A /A dimension
is mm~0-15%) Right- w = 270° (A3/A; dimension is mm~0-364)
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Fig. 17 Correction factor for PMMA as a function of the mode mixity: Left—w = 315° (A/A| dimension
is mm—0-13%), Right- @ = 270° (A2 /A dimension is mm—0-364)

have been presented for mixed mode I and II loading. Actual V-notches are never sharp
but when the V-notch tip radius is small @ < 0.01 mm some mixed mode sharp V-notch
criteria provide accurate predictions of the failure load. As the V-notch tip radius increases
their accuracy deteriorates and correction factors accounting for this V-notch tip radius are
required. Such correction factors have been reported for the simpler case of pure mode I
loading but to the best of our knowledge none exist for mixed mode cases.

Herein we presented a method to compute correction factors to the critical load predicted
by the sharp V-notch mixed mode failure criterion reported in Yosibash et al. (2006). The
correction factor is influenced by both the V-notch tip radius and the mixed mode state of
loading. It has been demonstrated that the sharp V-notch criterion presented in Yosibash et al.
(20006) is the limiting case where the V-notch tip radius a — 0. Using mixed mode exper-
imental data reported in Priel et al. (2007) on PMMA we demonstrate that the correction
brings the predicted sharp V-notch values closer to the experimental observations (Fig. 18).
The remaining discrepancy is probably due to micro-mechanisms neglected in this analysis
(as plastic effects, etc).

From our analysis it is apparent (16) that the correction factor needed for a fixed V-notch
tip radius decreases as the mode mixity increases. We obtain the same drop in correction
factor values when we compute the correction factor for increasing values of V-notch open-
ing angle, be it for mixed mode or pure mode I loading. This phenomenon can be attributed
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to the drop in the mode I singular stress field which decreases for raising values of mode
mixity and/or increasing value of V-notch tip radii. It is demonstrated in Fig. 16 that for
small V-notch tip radii (¢ < 0.01 mm for the PMMA analyzed in this paper) no correction is
needed and the sharp mixed mode criterion is sufficient to accurately predict the critical load.
When one considers relatively large V-notch tip radii the accuracy of the proposed correction
factor deteriorates because the formulation of the criterion is based on the smallness of the
V-notch tip radius allowing an asymptotic analysis.
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