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Abstract The failure criterion of Leguillon at
reentrant corners in brittle elastic materials
(Leguillon 2002, Eur J Mech A/Solids 21: 61–72;
Leguillon et al. (2003), Eur J Mech A—Solids
22(4): 509–524) validated in (Yosibash et al. 2004,
Int J Fract 125(3–4): 307–333) for mode I load-
ing is being extended to mixed mode loading and
is being validated by experimental observations.
We present an explicit derivation of all quantities
involved in the computation of the failure crite-
rion. The failure criterion is validated by predict-
ing the critical load and crack initiation angle of
specimens under mixed mode loading and com-
parison to experimental observations on PMMA
(polymer) and Macor (ceramic) V-notched speci-
mens.
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1 Introduction

Failure laws for brittle materials containing
V-notches of variable opening angles, multi-
material interfaces or orthotropic materials have
become of major interest because of failure initia-
tion phenomena that occur in composite materials
and electronic devices (see, e.g. Mohammed and
Liechti 2000; Yosibash et al. 2003). A reliable law
for predicting the failure initiation instance (crack
formation) in these cases in the vicinity of singular
points, especially when a complex state of stress is
present in the vicinity of the V-notch tip, is still a
topic of active research and interest. At such points
the stress tensor is infinity under the assumption of
linear elasticity. A typical example of a singular
point is the V-notch tip, for which a crack tip is a
particular case when the V-notch solid angle is 2π .

For the simplified mode I state of stresses in the
vicinity of a V-notch tip, i.e. tension perpendicu-
lar to the V-notch bi-sector alone, several failure
criteria have been proposed and verified by experi-
mental observations, as in Dunn et al. (1977a), Fett
(1996), Lazzarin and Zmabardi (2001), Leguillon
(2002), and Seweryn (1994). A comparison of sev-
eral of the presented failure criteria (and a newly
proposed one) against experimental observations
is presented in Yosibash et al (2004).

For a mixed mode stress state in the vicinity
of a V-notch tip, the number of failure initiation
criteria suggested and validated via experimental
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observations is much smaller. Among these are
(Dunn et al. 1977b; Labossiere et al. 2002; Seweryn
and Lukaszewicz 2002; Seweryn et al. 1997). The
failure criterion in Dunn et al. (1997b) for brittle
isotropic materials is based on the mode I general-
ized stress intensity factor (GSIF) and is restricted
to low values of mode mixity when mode I domi-
nates. This failure criterion is being also applied to a
V-notch at a silicon/glass bimaterial interface (Lab-
ossiere et al. 2002), correlating mode I GSIF to the
experimental observations for two V-notch open-
ing angles. It is difficult to ascertain precisely the ef-
fect of mode mixity from the results in Labossiere
et al. (2002) because the change in mode mixity
is relatively small for one V-notch opening angle,
and there is no systematic dependence of the fail-
ure load on mixity measure for the other V-notch
opening angle. The failure criteria investigated by
Seweryn et al. (1997) although predicting well the
failure initiation, have been shown to be inferior to
Leguillon’s criterion for mode I loading. Therefore,
we herein extend the failure criterion presented by
Leguillon (2002), based on finite fracture mechan-
ics concept, to mixed mode loading. This criterion,
shown to predict very well failure initiation under
mode I loading for various V-notch angles (see,
e.g. Leguillon 2002; Leguillon and Yosibash 2003),
satisfies both the classical Griffith criterion and
the strength criterion. It relies on the linear elas-
tic asymptotic solution in the vicinity of a sharp
V-notch tip, and the assumption of small-scale
cracking (see, e.g. Dunn et al. 2001; Reedy 2000),
applicable to relatively brittle materials. In Dunn
et al. (2001) and Reedy (2000) the linear elas-
tic solution in the vicinity of a V-notch tip which
is perturbed by geometric discontinuities (small
cracks, holes, etc.) and/or plasticity is shown to be
controlled by the leading terms of the asymptotic
solution for the corresponding unperturbed sharp
V-notch tip.

We consider a domain containing a V-notch with
a solid angle ω (so that the opening angle is 2π −ω)
with a small crack of length � that initiates at an an-
gle θ0, see Fig. 1. Following Leguillon’s failure initi-
ation criterion for mode I loading (Leguillon 2001)
and the preliminary work (Leguillon and Siruguet
2002), we extend it herein to a mixed mode load-
ing, and validate it by experimental observations.
The failure criterion depends on two material

x1
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r

θ
l

P

2π−ω

Fig. 1 The V-notched specimen with a crack at its tip

parameters, the 1-D stress at brittle fracture, σc
(strength), and the fracture energy release rate per
a unit surface f , Gc (toughness), the first two gen-
eralized stress intensity factors A1 and A2 asso-
ciated with the V-notch tip and three geometrical
functions H11, H12, H22 that depend on the V-notch
geometry alone.

Preliminaries and notations, including the stress
and displacement fields in the vicinity of a V-notch
tip in two-dimensional elastic isotropic domains,
are provided in Sect. 2. Thereafter we perform an
asymptotic analysis that provides the change in po-
tential energy in a V-notch domain due to a small
crack of length � that initiates at it’s tip in Sect.
3. This analysis presents three new geometrical
functions and detailed numerical methods for their
computation, followed by the explicit derivation of
failure criterion. In Sect. 4, we use the p-version of
the finite element method to compute the required
geometrical functions, and verify that indeed the
asymptotic analysis for the difference in poten-
tial energy holds true. Finally, the failure criterion
is validated by comparing the predicted failure
load and crack initiation angles to experimen-
tal observations on V-notched specimens made of
PolyMethil Metacrylate (PMMA) and Machinable
Ceramics (Macor) in Sect. 5. Both tests reported
in the literature and new ones performed by us are
considered, having a large mode mixity variation.
Summary and conclusions are provided in Sect. 6.

2 Preliminaries and notations

The displacements and stresses in the vicinity of a
traction free V-notch tip can be expressed by an
asymptotic series which is provided in this section.
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In the literature (see Szabó and Babus̆ka 1988) the
asymptotic series is usually expressed in a cylin-
drical coordinate system, which is rotated by π/2
radians in respect to the coordinate system shown
in Fig. 1. To distinguish between the two coordi-
nate systems the one used in this section is marked
with an asterics, i.e. θ∗ = θ − π/2, see Fig. 2.

The displacements in the vicinity of the V-notch
tip are expressed as a series, for which the first
three terms are given by:
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ur

uθ

}
= u(0, 0)
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where u(0, 0) is the rigid body displacement of the
V-notch tip and the corresponding first two terms
of the stress tensor in polar coordinates are:
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In (1–3), we have used the following notations:

σ I
θθ (θ

∗ = 0)
def= (1 + α1)

(1 − α1)

sin[ω(1 + α1)/2]
sin[ω(1 − α1)/2] − 1, (3)

σ II
rθ (θ

∗ = 0)
def= 1 − (1 − α2)

(1 + α2)

sin[ω(1 + α2)/2]
sin[ω(1 − α2)/2] (4)

in order to normalize the “eigen-stresses” so that
for mode I

σ I
θθ (θ

∗ = 0) = 1

and for mode II:

σ II
rθ (θ

∗ = 0) = 1

then σθθ (r, θ∗ = 0) = A1rα1−1 and σrθ (r, θ∗ = 0) =
A2rα2−1.

The two “eigen-values” α1 and α2 are the small-
est roots of the characteristic equations;

sin(α1ω) + α1 sin(ω) = 0, (5)

sin(α2ω) − α2 sin(ω) = 0. (6)

For a crack (ω = 2π) the Eqs. 5 and 6 are iden-
tical and the first two roots are real and simple
α1 = α2 = 1/2. In this case the “classical” mode I

and II stresses and displacements for a crack,
well known in fracture mechanics (Kanninen and
Popelar 1985), are obtained and the coefficients

A1 and A2 are related to the stress intensity A1 =
KI/

√
2π , A2 = KII/

√
2π . When ω �= 2π , then not

all roots are real and multiple roots may exist. From
the engineering viewpoint, V-notch solid angles up
to 4π/3 (240◦) are of greatest importance and in
this cases the smallest roots are real — see a sum-
mary in Table 1.

For a V-notch solid angle smaller than 1.43028π

(257.45◦), then α2 > 1 and the mode II stress com-
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Table 1 First two eigen-values for selected angles ω

Solid angle ω 2π (crack) 11π/6(330◦) 7π/4(315◦) 5π/3(300◦) 3π/2(270◦) 4π/3(240◦)

α1 1/2 0.5014530 0.5050097 0.5122214 0.5444837 0.6157311
α2 1/2 0.5981918 0.6597016 0.7309007 0.9085292 1.148913

Fig. 2 The coordinate system at the V-notched tip

ponents are bounded, whereas mode I stress com-
ponents are bounded for ω < π .

As an example we present in Fig. 3 the eigen-
stresses and in the four eigen-displacements for
mode I and mode II for a V-notch with a solid
angle of ω = 7π/4, and E = 1 and ν = 0.36.

3 The failure initiation criterion for mixed mode
loading

We extend Leguillon’s failure criterion to mixed
mode loading and provide explicit formulae for
the determination of the various entities required
for its formulation. The corner-stone of this cri-
terion is the postulate that a finite crack length
�0 has to be instantaneously created so to satisfy
both the strength and toughness requirements. For
a given small load, a large crack is required to sat-
isfy the toughness criterion, whereas only at small
distance from the notch tip the tangential stress
reaches σc (the strength criterion is satisfied). To

satisfy both criteria simultaneously, the load has to
be increased so that the upper bound of the crack
length decreases to satisfy the toughness criterion,
and the distance from the notch tip where tangen-
tial stress reaches σc increases. Only when the load
is increased to a level where the lower bound of a
crack to satisfy the toughness criterion equals the
upper bound of the distance to satisfy the stress
criterion, a crack of this length is crated satisfying
simultaneously the two criteria.

To this end let us first consider the Griffith en-
ergy criterion as it is manifested for finite fracture
mechanics (Hashin 1996; Taylor et al. 2005) when a
small crack of length �0 is spontaneously formed at
a V-notch tip. In this case, for a crack to be formed
the following inequality has to hold:

−δ


�
≥ Gc, (7)

where δ
 denotes the difference in the potential
energy between a V-notched cracked domain and
the V-notched un-cracked domain:

− δ

def= −(
(�) − 
(� = 0)) (8)

and Gc = K2
Ic

E/(1−ν2)
for plane strain.

By an asymptotic analysis, we prove in the fol-
lowing that:

− δ
 = −(
(�) − 
(0))

= A2
1H11(�, θ0)�

2α1 + A1A2H12(�, θ0)�
α1+α2

+ A2
2H22(�, θ0)�

2α2 + · · · (9)

where −δ
 is expressed in terms of Ai, � and newly
defined “Geometrical factors” named Hij which
are defined in the sequel Fig. 4.

3.1 An asymptotic analysis for a V-notch tip with
a crack at an angle θ0

In the following section, we provide an asymptotic
analysis of the displacement field when a small
finite crack is introduced at the V-notch tip. Let us
denote the solution (displacements and stresses)
to the elasticity problem shown in Fig. 1 by u�
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Fig. 3 Modes I and II Polar eigen-stresses for the 7π/4 V-notch
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and σ �. If the crack is small enough compared to
the dimensions of the V-notch and the specimen,
and if one moves away from the V-notch tip, an
outer expansion of the solution is obtained assum-
ing � → 0, which is the solution in the vicinity of
a V-notch given in (1) and (3), written in a more
compact form as:

u(r, θ)
def=

{
ur

uθ

}
0

= u(0, 0) +
L∑

i=1

Ai rαiu(i)(θ)

+ smaller order terms, (10)

σ (r, θ)
def=

⎧⎨
⎩

σrr

σθθ

σrθ

⎫⎬
⎭

0

=
L∑

i=1

Ai rαi−1σ (i)(θ)

+ smaller order terms, (11)

where u(0, 0) denotes a constant displacement of
the notch tip, and αi and u(i)(θ) are the eigen-pairs,
which satisfy each the equilibrium equation and the
traction free boundary conditions on �1 and �2.

On the other hand, “looking at” the very close
neighborhood of the V-notch tip, i.e. if a coordinate
transform of the form: yi = xi/� is performed, the
inner expansion of the solution can be computed.
In this case, the solution is � dependent, and the
small crack of length � becomes of length 1 in the
stretched coordinate, and the domain of interest
becomes unbounded in terms of ρ = r/�. The solu-
tion, in the unbounded domain, denoted by ul can
be represented as:

u�(�y1, �y2) = d0(�)v0(y1, y2) + d1(�)v1(y1, y2)

+ d2(�)v2(y1, y2) + · · · (12)

with

lim
�→0

di+1(�)

di(�)
= 0

In Fig. 5 the Outer/Inner expansion domains are
shown. To evaluate the various expressions in (12),
we need to determine what are the boundary con-
dition that (12) has to satisfy as ρ → ∞. These
in turn are obtained from the outer expansion as
r → 0. Expressing u in (10) in ρ coordinates:

u = u(0, 0) + A1 �α1ρα1u(1)(θ) + A2 �α2ρα2u(2)(θ)

+ higher order terms. (13)

We may now match each term in (12) as ρ → ∞
with each of the terms in (13).

First term
One notices that if d1(�) = 1 and v0(y1, y2) =

u(0, 0) =
{

c1
c2

}
then v0(y1, y2) satisfies both equi-

librium equation and traction free boundary condi-
tions on �i, i = 1, 2, 3, 4, and as ρ → ∞ one obtains
that:

d0(�)v0(y1, y2) =
{

c1
c2

}
⇒

ρ→∞ u(0, 0).

Second term
If d1(�) = A1 �α1 and

v1(y1, y2) ∼ ρα1u(1)(θ) as ρ → ∞ (14)

then, we may match the inner and outer expansions
as ρ → ∞, and r → 0.

A major difficulty to solve for v1 above is the fact
that it tends to infinity as ρ → ∞, thus it’s strain
energy is unbounded. Therefore, let us represent

v1(y1, y2) = ρα1u(1)(θ) + v̂1(y1, y2). (15)

In this case v̂1 → 0 as ρ → ∞, and the limit of v1
as in (15), is satisfied. Thus, to obtain v1 one needs
to solve for v̂1 the following elasticity problem:

L(v1) = L(ρα1u(1)(θ)) + L(v̂1)

= L(v̂1) = 0 in 
∞, (16)

T (v1) = T (ρα1u(1)(θ)) + T (v̂1)

= T (v̂1) = 0 on �1, �2, (17)

T (v1) = T (ρα1u(1)(θ)) + T (v̂1) ⇒ T (v̂1)

= −T (ρα1u(1)(θ)) on �3, �4, (18)

σ (v̂1) ∼

ρ→∞ 0 or v̂1 ∼

ρ→∞ 0, (19)

where L(•) is the 2-D elasticity operator on the •
displacements, T (•)

def= σ (•) ·n is the traction oper-
ator, and σ (•) is the stress field. Notice, that α1 and
u(1) are eigen-pairs of the V-notch problem so they
satisfy identically the elasticity equations and trac-
tion free boundary conditions on the V-notch faces
�1, �2.

Third term
Following similar arguments as for the second

term one obtains: d2(�) = A2 �α2 and

v2(y1, y2) ∼ ρα2u(2)(θ) as ρ → ∞. (20)

Furthermore,

v2(y1, y2) = ρα2u(2)(θ) + v̂2. (21)
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Fig. 5 Outer and inner expansions

where v̂2 is the solution to the following elasticity
problem:

L(v̂2) = 0 in 
∞, (22)

T (v̂2) = 0 on �1, �2, (23)

T (v̂2) = −T (ρα2u(2)(θ)) on �3, �4, (24)

σ (v̂2) ∼

ρ→∞ 0 or v̂2 ∼

ρ→∞ 0. (25)

Remark 1 In an unbounded domain traction free
boundary conditions are equivalent to homoge-
nous Dirichlet boundary conditions at infinity up
to an irrelevant rigid motion.

Remark 2 It is more convenient to specify homo-
geneous Dirichlet boundary conditions at infinity
than traction free boundary conditions to avoid the
uncertainty on rigid motions.

Using the asymptotic analysis the expression for
δ
 can be derived as follows.

3.2 Computing δ


Consider the domain 
∞ in the vicinity of the crack
at a V-notch tip, and a path � emanating at on face
of the V-notch and terminating at the other face as
shown in Fig. 6.

We define a path integral � as following:

�(f , g)
def= 1

2

∫
�

[
T (f )g − T (g)f

]
dS. (26)

Using Betti’s theorem one may show that:

δ
 = 
(�) − 
(� = 0) = �(u�, u0). (27)

Substituting (13) and (12) in (27), and using the
linearity property of the � functional, one obtains:

y1

y2

ρ

θ
1

2π−ω
Γ1 Γ2

Γ3

Γ4

Ωoo

Γ

Fig. 6 The inner expansion infinite domain with a given
path

δ
 = �
[(

u(0, 0) + A1�
α1

(
ρα1u(1) + v̂1

)
+ A2�

α2
(
ρα2u(2) + v̂2

))
(u(0, 0)

+ A1�
α1ρα1u(1)+A2�

α2ρα2u(2)
)]+h.o.t.

= �(u(0, 0), u(0, 0)) + A1�
α1�(u(0, 0), ρα1u(1))

+ A2�
α2�(u(0, 0), ρα2u(2))

+ A1�
α1�(ρα1u(1) + v̂1, u(0, 0))

+ A2
1�

2α1�(ρα1u(1) + v̂1, ρα1u(1))

+ A1A2�
α1+α2�(ρα1u(1) + v̂1, ρα2u(2))

+ A2�
α2�(ρα2u(2) + v̂2, u(0, 0))

+ A2A1�
α1+α2�(ρα2u(2) + v̂2, ρα1u(1))

+ A2
2�

2α2�(ρα2u(2) + v̂2, ρα2u(2)) + h.o.t.

(28)

By definition �( f , f ) = 0, and because distinct
eigen-pairs are bi-orthogonal under the �-inte-
gral, i.e. �(u(i), u( j)) = 0 if i �= −j (see Blum and
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Dobrowolski 1982), then (28) reduces to:

δ
= A1�
α1�(u(0, 0), ρα1u(1))+A2�

α2�(u0, ρα2u(2))

+ A1�
α1�(ρα1u(1) + v̂1, u(0, 0))

+ A2
1�

2α1�(v̂1, ρα1u(1))

+ A1A2�
α1+α2�(v̂1 , ρα2u(2))

+ A2�
α2�(ρα2u(2) + v̂2 , u(0, 0))

+ A2A1�
α1+α2�(v̂2 , ρα1u(1))

+ A2
2�

2α2�(v̂2 , ρα2u(2)) + h.o.t. (29)

Another observation is that u(0, 0) is a constant
vector, therefore T (u(0, 0)) = 0 and expressions
like �(u(0, 0), ραiu(i)) become:

�(u(0, 0), ραiu(i))

= 1
2

∫
�

[
T (u(0, 0))ραiu(i) − T (ραiu(i))u(0, 0)

]
dS,

= −u0

2

∫
�

T (ραiu(i))dS. (30)

Furthermore, because T (ραiu(i)) is the traction
associated with an eigen-pair, and because the
V-notch faces are free of tractions, (and the inte-
grals along �3 and �4 cancel as they are along same
line in opposite directions) one may use the Green
theorem to transform the path integral into an area
integral in which the elasticity operator acts on the
eigen-pair, obtaining:

�(u(0, 0), ραiu(i)) = −u(0, 0)

2

∫

∞

L(ραiu(i))d
.

Because the eigen-pairs identically satisfy the
homogeneous elasticity operator then �(u(0, 0),
ραiu(i)) = 0, simplifying (29) to:

δ
 = A1�
α1�(v̂1 , u(0, 0)) + A2

1�
2α1�(v̂1 , ρα1u(1))

+ A1A2�
α1+α2�(v̂1 , ρα2u(2))

+ A2�
α2�(v̂2 , u(0, 0))

+ A2A1�
α1+α2�(v̂2 , ρα1u(1))

+ A2
2�

2α2�(v̂2 , ρα2u(2)) + h.o.t. (31)

One may also show that �(v̂i , u(0, 0)) = 0 as
follows. Because u(0, 0) is constant:

�(v̂i , u(0, 0)) = u0

2

∫
�

T (v̂i) dS.

Again, due to the V-notch traction free faces
T (v̂i) = 0 on �1 and �2, (and the integrals along �3

and �4 cancel as they are along same line in oppo-
site directions) one may use the Green theorem to
transform the path integral into an area integral,
obtaining:

�(v̂i , u(0, 0)) = u0

2

∫

∞

L(v̂i)d
 = 0.

Thus, (31) becomes:

δ
 = A2
1�

2α1�(v̂1 , ρα1u(1))

+ A1A2�
α1+α2

[
�(v̂1, ρα2u(2))+�(v̂2, ρα1u(1))

]

+ A2
2�

2α2�(v̂2 , ρα2u(2)) + h.o.t. (32)

Introducing the definition of the geometrical
parameters:

−�(v̂i , ραiu(i))
def= Hii,

−�(v̂i , ραju(j))
def= Hij,

−�(v̂j , ραiu(i))
def= Hji (33)

the expression in (32) becomes:

− δ
 = A2
1�

2α1 H11 + A1A2�
α1+α2(H12 + H21)

+ A2
2�

2α2 H22 + h.o.t, (34)

which is precisely (9).

Remark 3 The geometrical parameters Hij, per
definition, depend only on the material proper-
ties, V-notch solid angle ω and direction of crack
initiation θ0, and are independent of the loading
or crack length provided the crack length remains
small compared to the specimen size (asymptotic
assumption).

The asymptotic expression of δ
 is used in the
toughness criterion so to formulate the failure cri-
terion for mixed mode loading.

3.3 Failure criterion for mixed mode loading

Substituting (9) into the toughness criterion (7)
one obtains the lower limit for �:

A2
1�

2α1−1H11(ω, θ0) + A1A2�
α1+α2−1(H12(ω, θ0)

+ H21(ω, θ0)) + A2
2�

2α2−1H22(ω, θ0) ≥ Gc. (35)

On the other hand, the upper limit for � is the max-
imum distance from the V-notch tip at an angle
θ0 at which the tangential stress is higher than σc
(strength criterion):
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σθθ (�, θ0)=A1�
α1−1σ

(1)
θθ (θ0)+A2�

α2−1σ
(2)
θθ (θ0)≥σc.

(36)

For 1
2 ≤ α1 ≤ α2 ≤ 1, the exponents of � in (35) are

positive, whereas in (36) are negative. Defining:

m(�)
def= A2

A1
�α2−α1 , (37)

we may reformulates (35) and (36):

� ≥
(

Gc

A2
1

[
H11(ω, θ0) + m(H12(ω, θ0) + H21(ω, θ0)) + m2H22(ω, θ0)

]
)1/2α1−1

, (38)

� ≤
(

A1(σ
(1)
θθ (θ0) + mσ

(2)
θθ (θ0))

σc

)2/2−2α1

. (39)

If both the toughness and strength criteria have
to hold at the instance of crack jump then the lower
and upper bound of � in (38) and (38) have to coin-
cide. This results in the following generalized stress
intensity factor:

A−2
1 =

(
Gc

H11(ω, θ0) + m(H12(ω, θ0) + H21(ω, θ0)) + m2H22(ω, θ0)

)−2+2α1

(40)

×
(

(σ
(1)
θθ (θ0) + mσ

(2)
θθ (θ0))

2

σ 2
c

)2α1−1

.

Substituting (38), one obtains the finite crack size
�0 that has to be generated instantly so to satisfy
(35 and 36) simultaneously:

�0 = Gc

H11(ω, θ0) + m(�0)(H12(ω, θ0) + H21(ω, θ0)) + m2(�0)H22(ω, θ0)
(41)

×
(

σ
(1)
θθ (θ0) + m(�0)σ

(2)
θθ (θ0)

σc

)2

.

Note, that the determination of �0 requires a solu-
tion of an implicit equation because m depends on
�0.

After �0 is determined, m(�0) is known and can
be substituted in (38) to obtain the GSIF at failure,
denoted by A1c:

A1c =
(

Gc

H11(ω, θ0) + m(H12(ω, θ0) + H21(ω, θ0)) + m2H22(ω, θ0)

)α1−1

(42)

×
(

σc

σ
(1)
θθ (θ0) + mσ

(2)
θθ (θ0)

)2α1−1

.

Remark 4 Notice that A1c depends on θ0 and the
mode mixity ratio A2/A1. This means that for each
θ0 a different value of A1c is obtained. Therefore,
the angle θ0 that produces the smallest value of A1c
for a given A2/A1 is the crack initiation angle and
is denoted by θ0c.

Notice, that �0 depends on θ0 also. Therefore for
the determination of the critical GSIF one has to

determine �0 for all values of θ0, and use these �0
for each angle to determine the minimum value of
A1c.

Under mode I loading, for which A2 = 0,
(38) degenerates to the explicit expression (28) in
Leguillon (2002).

4 Computing the ingredients required for the
failure criterion

The failure criterion (38) requires the determina-
tion of Hij-values, therefore the v̂i displacements
have to be computed by numerical methods in an
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infinite domain, followed by a path integral to be
chosen. These geometrical functions need to be
computed for any ω and θ0 once only and used
thereafter.

4.1 Computation of Hij functions

In practical application we choose a finite circular
domain having a large radius R 
 1, and solve
(16–18) and (22–25) on this domain. The outer cir-
cular surface of the domain is used as the path over,
which Hijs are computed. On the circular domain
v̂i = 0 therefore (33) is simplified:

Hii = −�
(
v̂i , ραiu(i)) = −1

2

∫ 3π/2−ω/2

−π/2+ω/2

× T (v̂i)
∣∣
R Rαiu(i)R dθ = −Rαi+1

2

∫ 3π/2−ω/2

−π/2+ω/2

× T (v̂i)
∣∣
R u(i)(θ) dθ , (43)

Hij + Hji = −�
(
v̂i , ραju(j)) − �

(
v̂j , ραiu(i))

= −Rαj+1

2

∫ 3π/2−ω/2

−π/2+ω/2
T (v̂i)

∣∣
R u(j)(θ) dθ

− Rαi+1

2

∫ 3π/2−ω/2

−π/2+ω/2
T (v̂j)

∣∣
R u(i)(θ) dθ

; i �= j. (44)

The algorithm for the computation of the Hij func-
tions using finite element methods is as follows:

1. For a given V-notch solid angle, ω, determine
analytically the eigen-pairs αi and u(i)(θ) for
i = 1, 2, according to Sect. 2.

2. Create a finite element model of a circular sec-
tor of radius R (as a parameter) having a V-
notch of an opening angle solid ω with a crack
of length 1 at its tip at an angle θ0.

3. Homogeneous Dirichlet boundary conditions
are applied on the outer perimeter of the sector
at ρ = R and traction free BCs on the V-notch
faces.

4. On the crack faces two different sets of trac-
tions are applied:

σθθ (θ0) = −σθθ

(
ρα1u(1)(θ0)

)
, (45)

σrθ (θ0) = −σrθ
(
ρα1u(1)(θ0)

)
, (46)

σθθ (θ0) = −σθθ

(
ρα2u(2)(θ0)

)
, (47)

σrθ (θ0) = −σrθ
(
ρα2u(2)(θ0)

)
. (48)

5. Two finite element solutions for each set of
tractions are obtained: v̂1 and v̂2, on a domain
having an outer radius R = 200. We have ver-
ified that v̂i are unaffected by the outer radius
when increasing it to R = 300, 400, 500. Also,
the FE numerical errors were below 1.5% in
energy norm.

6. The final step is computation of (44) and (44)
at the path ρ = R for i, j = 1, 2 using Gaussian
quadrature of high-order (90 Gaussian points)
to ensure an accuracy of numerical integration.

7. Return to Step 2 with a different angle θ0 of
the crack.

4.1.1 The finite element model

We create a 2-D, plane-strain FE model consist-
ing of a circular section with a solid angle ω with
a crack of length 1 using the p-version FE code
StressCheck.1 As an example, a model with a crack
at an angle of θ0 = 80◦ at a ω = 315◦ V-notch tip
is shown in Fig. 7. The crack inclination angle θ0
and V-notch solid angle ω may be changed para-
metrically. We perform FE analyses increasing the
polynomial order from p = 1 to p = 8 and moni-
tor the relative error in energy norm so it is below
1.5% for all FE analyses reported in the sequel.

The outer radius was taken to be R = 200 and
to ensure that the model simulates the unbounded
domain, computations were also preformed for
R = 300, 400 and 500. It was found that in this
range R has negligible influence on the Hij values.

Homogeneous Dirichlet boundary conditions
are prescribed over the outer perimeter (ur = uθ =
0) whereas the V-notch faces are traction free. On
the crack faces the traction boundary conditions
(45–48) are prescribed as shown in Fig. 8.

Denoting the stresses obtained by the FEA
when BCs (45 and 46) are applied on the crack face
by the superscript σ (FE−1), and the ones obtained
when BCs (47 and 48) are applied by σ (FE−2),
we can compute H11, H22, H12 numerically using

1 StressCheck is a trademark of Engineering Software
Research and Development, Inc., St. Louis, MO, USA.
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Fig. 7 p-FE model for Hij extraction. Left The FE model, Right Zoom at the crack at the V-notch tip

Fig. 8 Traction applied on the crack edges: Left mode I, Right mode II

Gaussian quadrature:

H11 = Rα1+1

2
ω

2

N∑
i=1

Wi

(
σ (FE−1)

rr (θi)u(1)
r (θi)

+ σ
(FE−1)
rθ (θi)u

(1)
θ (θi)

)
r=R,

(49)

H22 = Rα2+1

2
ω

2

N∑
i=1

Wi

(
σ (FE−2)

rr (θi)u(2)
r (θi)

+ σ
(FE−2)
rθ (θi)u

(2)
θ (θi)

)
r=R,

(50)

H12 + H21 = Rα2+1

2
ω

2

N∑
i=1

Wi

(
σ (FE−1)

rr (θi)u(2)
r (θi)

+ σ
(FE−1)
rθ (θi)u

(2)
θ (θi)

)
r=R,

+ Rα1+1

2
ω

2

N∑
i=1

Wi

(
σ (FE−2)

rr (θi)u(1)
r (θi)

+ σ
(FE−2)
rθ (θi)u

(1)
θ (θi)

)
r=R,

(51)

Were N is the Gaussian quadrature order, Wi are
the Gaussian weights, and θi are the angles associ-
ated with the abcissas or the Gaussian quadrature.

4.1.2 Results

For a material with Young modulus E = 1 (MPa)
and Poisson ratio ν = 0.36 we computed the func-
tions H1, H2, H12 for ω = 330◦, 315◦, 300◦, 270◦,
and 240◦ for crack angles ranging from θ = 30◦–
θ = 150◦. Hij functions for any other E in (MPa)
and ν can be easily obtained by

Hnew
ij (ω, θ0) = Hij(ω, θ0)

1
1 − 0.362

1 − ν2

E
. (52)

In order to demonstrate the convergence of Hij,
we present in Table 2 the values obtained at p =
6, 7, 8 for ω = 315◦ and θ0 = 79.5.

The effect on domain’s outer radius R on the
results is demonstrated by computing Hij at vari-
ous R =100–400, as shown in Table 3.

In Tables 4 and 5, we summarize Hij for
E = 1 (MPa) and ν = 0.36 and ω = 330◦, 315◦,
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Table 2 Hij for ω = 315◦ and θ0 = 79.5 at different p-FE
levels E = 1 MPa, ν = 0.36

FE p-level Hij values

H11 H22 H12 + H21

6 5.2408 3.2242 1.671
7 5.2420 3.2208 1.669
8 5.2433 3.2237 1.670

Table 3 Hij for ω = 315◦ and θ0 = 79.5 on domains with
different Rs (E = 1 MPa, ν = 0.36)

R Hij values

H11 H22 H12 + H21

100 5.219 3.221 1.660
200 5.243 3.224 1.670
300 5.251 3.224 1.672
400 5.255 3.224 1.674

300◦, 270◦, 240◦, also plotted in Fig. 9. Only the an-
gles θ0 from 30 to 90◦ are provided in the tables
because:

Hii(θ = 90 − β) = Hii(θ = 90 + β),

Hij(θ = 90 − β) = −Hij(θ = 90 + β).

4.2 Verification of the asymptotic expression
for δ


After computing the geometrical functions
Hij(ω, θ) we verify that (9) holds true. We con-
sider a V-notched specimen with ω = 315◦ and
assume a crack of length � = 0.01 initiates at
an angle θ0 = 80◦ at the V-notch tip. The spec-
imen’s dimensions and finite element mesh used
are shown in Fig. 10. The specimen is loaded by a
non-symmetric three point bending load P = 1
[N]. Assume the specimen is made of PMMA
having E = 3100(Mpa) and ν = 0.36, then, we
can compute −δ
 by two different FE analyses
of the V-notched specimen with and without the
crack. Using the mesh shown in Fig. 10, we ob-
tained −δ
FE = 3.322 × 10−7 with a numerical
error in energy norm of less than 1%. On the
other hand, for the V-notch in PMMA, we obtain
H11 = 0.00169, H22 = 0.00103, and H12 + H21 =
0.00051, and for the shown a-symmetric loading
we have A1 = 0.0446 MPa mm1−α1 for a unit load

and A2/A1 = 0.217mm − 0.135, m = 0.105, so
we may use (9) to compute −δ
 = 3.350 × 10−7.
The obtained value is less than 1% difference com-
pared to the finite element solution. For a larger
crack length � = 0.05, m = 0.135 and, we obtain
−δ
FE = 1.7018×10−6 and −δ
 = 1.7246×10−6,
having a relative difference of about 1.5%.

5 Validation of the failure criterion by
experimental observation

We validate the failure criterion presented herein
by comparing the predicted loads at failure and
crack initiation angles to these obtained by exper-
imental observations. We consider experiments on
PMMA specimens having different V-notch angles
and mode mixity ratios reported in Seweryn and
Lukaszewicz (2002), as well as experiments per-
formed on specimens made of PMMA and Macor
(machinable ceramics) having a 315◦ V-notch for
different mode mixity ratios.

5.1 Experiments on PMMA reported

In Seweryn and Lukaszewicz (2002) several exper-
iments preformed on double V-notched PMMA
specimens at room temperature with different
notch opening angles are reported. The material
parameters reported in Seweryn and Lukaszewicz
(2002) for PMMA are E = 3300 MPa, ν = 0.35,
KIc = 1.202 MPa

√
m, σc = 102.8 MPa, and speci-

mens were loaded so to produce mixed mode load-
ing. In order to predict the critical load using the
proposed failure criterion the mode mixity A2/A1
is required. Because, the applied boundary con-
ditions in the reported experiments are not well
understood, we extract the values of the force at
failure Fc as reported in the graphs for each loading
angle ϕ. These values are used to compute the nor-
mal P and tangential T components of the force
at failure P = Fc × cos(ϕ) and T = Fc × sin(ϕ).
Finally, the stress intensity factors at failure can be
obtained from Table 1 in Seweryn and Lukaszewicz
(2002) where the values of ξI and ξII are reported
for different V-notch opening angles.

For example, we provide the method for com-
puting the ratio A2/A1 for ω = 320◦ (α1 =
0.503, α2 = 0.638) for the specimen loaded at
ϕ = 30◦. We retrieve from Table 1 in Seweryn and
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Table 4 Hij for ω = 315◦, 330◦, 300◦(E = 1 MPa, ν = 0.36)

θ0 ω = 330◦ ω = 315◦ ω = 300◦

H11 H22 H12 + H21 H11 H22 H12 + H21 H11 H22 H12 + H21

30◦ 3.0965 5.5913 6.3403 3.0600 4.6212 5.8688 2.9552 3.8332 5.4388
35◦ 3.3952 5.4651 6.2988 3.3566 4.5299 5.8488 3.2627 3.7196 5.3466
40◦ 3.6885 5.3045 6.1559 3.6476 4.4054 5.7318 3.5502 3.6272 5.2614
45◦ 3.9718 5.1185 5.9101 3.9283 4.2551 5.5158 3.8272 3.5085 5.0809
50◦ 4.2404 4.9168 5.5623 4.1941 4.0878 5.2013 4.0893 3.3713 4.8056
55◦ 4.4899 4.7095 5.1159 4.4204 3.9126 4.7917 4.3320 3.2242 4.4384
60◦ 4.7160 4.5062 4.5770 4.6634 3.7380 4.2840 4.5515 3.0756 3.9847
65◦ 4.9146 4.3163 3.9539 4.8591 3.5741 3.7161 4.7439 2.9337 3.4519
70◦ 5.0822 4.1482 3.2571 5.0243 3.4282 3.0544 4.9061 2.8061 2.8499
75◦ 5.2159 4.0094 2.4988 5.1552 3.3076 2.3443 5.0352 2.6994 2.1902
80◦ 5.3132 3.9058 1.6930 5.2510 3.2161 1.5881 5.1291 2.6192 1.4858
85◦ 5.3722 3.8418 0.8550 5.3096 3.1502 0.8003 5.1860 2.5694 0.7509
90◦ 5.3920 3.8202 5.614E-04 5.3287 3.1409 6.753E-04 5.2051 2.5525 7.06E-04
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Fig. 9 Hij for ω = 315◦ (E = 1 (MPa) and ν = 0.36) for ω = 330◦, 315◦, 300◦, 270◦, 240◦. Solid line H11, Dashed line H22,
Dotted line H12 + H21
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Fig. 10 PMMA specimen with a V-notch and the finite element mesh

Lukaszewicz (2002) ξI = 0.6323 and ξII = 0.9981
and from Fig. 15 in Seweryn and Lukaszewicz
(2002) we obtain Fc/Pc ≈ 1.11 for ϕ = 30◦ (the
average value of three experimental points). The
value of Pc (critical load for pure tensile load-
ing of the relevant V-notch opening angle) is re-
ported in Fig. 13 in Seweryn and Lukaszewicz
(2002), Pc = 1.954 kN, therefore, we may compute
Fc = 1.11×1.954 = 2.150 kN. The next step is com-
puting P = Fc × cos(ϕ) = 1.861 kN and T = Fc ×
sin(ϕ) = 1.075 kN. Finally, using ξI and ξII, we may
compute the so-called stress intensity factors in
Seweryn and Lukaszewicz (2002) KI = 1.17 MPa
m0.497 and KII = 1.07 MPa m0.362. Because, we
use a unit system of MPa and mm, then after a
unit transformation KI = 36.343 MPa mm0.497 and
KII = 13.062 MPa mm0.362 , i.e. KII/KI = 0.359
mm−0.135. Notice, that the GSIFs used in our anal-
ysis do not include the 2π factor as the stress inten-
sity factors in Seweryn and Lukaszewicz (2002),

therefore KII/KI has to be multiplied by (2π)0.497

(2π)0.362 to

finally obtain A2/A1 = 0.460 mm−0.135.
For the given V-notch angle and for all possi-

ble crack initiation angles, the values of Hij are
computed according to Sect. 4 and the values of
�0 and A1c are computed by (38) and (38) for the
given notch angle and mode mixity. We preform
the calculations for different crack initiation angles
ranging from θ = 30–θ = 90◦. The crack initiation
angle is determined by the angle that provides the
lowest value of A1c.

The value of A1c is compared to the value of A1
computed according to KI at failure. For our exam-
ple problem we compute A(min)

1c = 0.453 MPa m0.497

at θc = 65◦ compared to the experimental critical
value of A1c = 0.460 MPa m0.497 and θc ≈ 65◦. This
gives as a critical load prediction of Fc = 2118 N

in comparison to the average experimental critical
load of 2150 N.

In Tables 6 and 7, we summarize the experimen-
tal results for two V-notch opening angles from
Seweryn and Lukaszewicz (2002), and the pre-
dicted values by the presented failure criterion.

The failure loads in three experiments reported
in Seweryn and Lukaszewicz (2002) for the two V-
notch angles 320 and 280◦ for different load mix-
ity ratios is compared to the predicted failure load
in Fig. 11, and the crack initiation angle in experi-
ments compared to the one predicted is shown in
Fig. 12.

One may notice the very good predictability of
the failure load and crack initiation angle for the
ω = 320◦ specimens for all mode mixity values. For
the specimens with a V-notch angle of ω = 280◦ the
failure load is predicted well for a mixity ratio until
A2/A1 = 1 mm−0.218, and deviates thereafter. The
crack initiation angle is also not well predicted for
this case. It is important to note that the various
failure criteria for this case in Seweryn and Lu-
kaszewicz (2002) also do not match well the exper-
imental results.

5.2 Experiments on three-point-bending
specimens made of PMMA

Three point bending (3PB) experiments were con-
ducted on PMMA notched specimens at room tem-
perature loaded so to produce a mixed mode state
at the notch tip.

To obtain the material parameters we con-
ducted two flexural tests on PMMA bar samples
80×10×10 mm (without a notch) at room tempera-
ture obtaining σc=105.8 MPa and σc = 117.8 MPa.
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Table 5 Hij for ω = 270 and 240◦(E = 1, ν = 0.36)

θ0 ω = 270◦ ω = 240◦

H11 H22 H12 + H21 H11 H22 H12 + H21

30◦ 2.5878 2.4714 4.1873 1.9182 1.4851 2.8891
35◦ 2.8676 2.4660 4.2622 2.1729 1.5340 3.0419
40◦ 3.1422 2.4273 4.2538 2.4258 1.5576 3.1330
45◦ 3.4071 2.3605 4.1586 2.6672 1.5339 3.1272
50◦ 3.6578 2.2721 3.9755 2.8974 1.4858 3.0418
55◦ 3.8903 2.1691 3.7059 3.1120 1.4193 2.8760
60◦ 4.1005 2.0594 3.3540 3.3069 1.3412 2.6319
650 4.2848 1.9504 2.9264 3.4786 1.2590 2.3144
700 4.4346 1.8601 2.4001 3.6194 1.1764 1.9522
750 4.5492 1.7913 1.7977 3.7232 1.0988 1.5743
800 4.6220 1.7565 1.2856 3.7979 1.0401 1.1447
850 4.6633 1.7540 0.6647 3.8419 1.0041 0.6809
900 4.6793 1.7506 3.266E-3 3.8536 0.9875 6.23E-3

Table 6 Experimental load at failure and crack initiation angle according to Seweryn and Lukaszewicz (2002) and predicted
results for the V-notch with an angle of ω = 320◦

A2/A1 Experimental Prediction

[mm−0.135] θc [deg] Avg. critical load [N] θc [deg] Critical load [N] �0 [mm]

0.213 75 2013 75 2008 0.0218
0.460 65 2150 65 2118 0.0205
0.797 52 2560 55 2334 0.0190
1.381 48 2656 45 2717 0.0169
2.975 35 3190 35 3399 0.0148

Fig. 11 Predicted and experimental critical load [N] for PMMA specimens Seweryn and Lukaszewicz (2002) with 320◦ (left)
and 280◦ (right) V-notch angles

The average values of E = 3100 MPa and σc =
111.8 MPa were used in our computations.

We performed also four fracture toughness
experiments obtaining KIc = 1.03, 1.07, 1.15,
1.25 MPa

√
m with an averaged value of KIc =

1.12 MPa
√

m.

The various V-notched samples are all with the
same solid opening angle of ω = 315◦, a radius
of 0.03 mm at the tip and dimensions as shown in
Fig. 13).

In Table 8 the different boundary conditions
used to generate different mode mixity ratios are
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Fig. 12 Predicted and experimental crack initiation angle for PMMA specimens Seweryn and Lukaszewicz (2002) with 320◦
(left) and 280◦ (right) V-notch angles

Fig. 13 Dimensions for
the PMMA 3PB
specimens with 315◦
V-notch

summarized, and in Fig. 14, we show pictures of
the crack created at the V-notch tip in the various
specimens.

5.2.1 Predicted load and crack initiation angle
compared to experimental observations.

We computed according to the proposed criterion
the load at failure and crack initiation angles for the
tested specimens. This was accomplished by cre-
ating p-FE models representing the experimental
samples.2 The FE models were constructed accord-
ing to the dimensions of the same 3PB configura-
tion but with a unit load, having several layers of
elements graded in a geometrical mesh refinement
in the vicinity of the V-notch angle to reduce the
numerical errors. For each experimental configu-
ration the GSIFs at the V-notch tip were extracted

2 Computations were performed with the p-FE code Stress-
Check — Trademark of Engineering Software Research and
Development Inc., St. Louis, MO, USA

from the FE analysis (see a typical FE model in
Fig. 10) and the ratio AFE

2 /AFE
1 computed. For the

specific load mixity ratio we computed the values
of Hij, �0 A1c for a range of crack initiation angles
θ = 90–30◦. The angle θ at which the lowest A1c
is obtained is denoted as the crack initiation angle
θc and A1c(θc) as the critical notch GSIF. The pre-
dicted critical load can then be computed by the
ratio A1c(θc)/AFE

1 .
Because KIc, has an influence on the predicted

failure load for V-notches having angles above ω =
270◦, we computed failure load at the two limits -
for the upper bound of KIc = 1.03 MPa

√
m and

for the lower bound KIc = 1.25 MPa
√

m. This
provides the higher and lower bounds of the pre-
dicted load for fracture Phigh

cr and Plow
cr , respectively.

Note also that in our case the value of σc has very
small influence on the failure loads because in the
failure criterion it is given as σ

2α1−1
c , and because

α1 = 0.5050097, it’s influence is negligible.
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Table 7 Experimental load at failure and crack initiation angle according to Seweryn and Lukaszewicz (2002) and predicted
results for the V-notch with an angle of ω = 280◦

A2/A1 Experimental Prediction

[mm−0.218] θc [deg] Avg. critical load [N] θc [deg] Critical load [N] �0 [mm]

0.172 75 2533 85 2320 0.0240
0.371 65 2480 80 2565 0.0244
0.643 55 3070 75 3075 0.0252
1.113 50 3556 65 4101 0.0268
2.400 40 4833 50 6404 0.0303

Fig. 14 Pictures of the cracks at the 315◦ V-notch tip in 3PB PMMA specimens,(scale identical to all pictures)



308 Z. Yosibash et al.

Table 8 Constrains and
loading location for the
different PMMA
specimens tested

Specimen Loading configuration [mm] θc [deg] Pcr [N]
xp xs2 xs1

B2-2 2 18 22 85 226
B2-3 6 14 26 79 301
B2-4 10 10 30 72 408
B2-5 13.5 6.5 33.5 68 613
B2-6 16 4 36 60 998

Table 9 FE analysis results for 3PB PMMA specimens

Specimen Hij values for θc A2/A1 �0 [mm] θc [deg] Phigh
cr [N] Plow

cr [N]
H1 H2 H12 + H21 [mm−0.154]

B2-2 0.00171 0.00101 0.00025 0.073 0.0165 86 200 166
B2-3 0.00170 0.00102 0.00041 0.156 0.0165 82 253 209
B2-4 0.00169 0.00104 0.00056 0.216 0.0164 77 360 298
B2-5 0.00164 0.00108 0.00085 0.333 0.0162 73 537 463
B2-6 0.00154 0.00117 0.00127 0.616 0.0155 63 899 749

Table 10 Constrains and
loading locations for the
different MACOR
specimens tested

Specimen Loading configuration [mm] θc [deg] Pcr [N]
xp1 xp2 xs2 xs1

M-6 30 0 30 20 70 2,200
M-7 30 10 30 20 46 2,800
M-8 30 13 30 20 43 3,370
M-9 30 15 30 20 33 5,540
M-10 30 17 30 20 27 6,590

Fig. 15 Predicted and experimental crack initiation angle (left) and critical load [N] (right) for 3PB PMMA specimens with
315◦ V-notch angle
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We summarize in Table 9 the obtained results,
and present these in a graph in Fig. 15.

One may notice the good correlation between
the predicted and experimental data. It is expected
that the predicted failure load will be lower com-
pared to the experimental results because of the
blunt V-notch tip in experiments, whereas the fail-
ure criterion assumes a sharp V-notch (see Leguil-
lon and Yosibash (2003) for a correction factor due
to notch tip radius).

5.3 Experiments on four-point-bending specimens
made of MACOR

Four point bending (4PB) experiments were
conducted on Machinable Ceramics (MACOR -
manufactured by Aremco) specimens at room tem-
perature loaded so to produce a mixed mode
state at the notch tip. Four point bending exper-
iments were done instead of three point bending
to achieve a larger mixity ratio.

To obtain the material parameters we conducted
flexural tests and ultrasonic inspection on two MA-
COR bar samples 80 × 18 × 10 mm (without a
notch) at room temperature. The values of the
Young modulus obtained for the flexural tests were
E = 76532, 77221 MPa with an average value of
E = 76876 MPa and the value obtained by the
ultrasonic inspection was E = 66900 MPa. In our
computations the value of E obtained by ultrasonic
inspections was used because it is regarded as more
accurate. We noticed in our computation that the
two different Young moduli have very little influ-
ence on the failure load and crack initiation angle.
One flexural test was conducted in order to obtain
the value of the critical stress σc = 103 MPa.

To obtain the fracture toughness, we performed
two experiments from which, we estimate the
range of KIc to be between KIc =1.1–1.2 MPa

√
m.

This value is smaller than the value reported by the
manufacturer KIc = 1.53 (this value is a generic
value not obtained from tests on the batch from
which the specimens were manufactured).

The various V-notched samples are all with the
same solid opening angle of ω = 315◦, a radius
of 0.03 mm at the tip and dimensions as shown in
Fig. 16.

In Table 10 the different boundary conditions
used to generate different mode mixity ratios are
summarized, and in Fig. 17, we present photo-
graphs of the fracture paths emanating at the V-
notch tip under the different boundary conditions.

5.3.1 Predicted load and crack initiation angle
compared to experimental observations

We computed according to the proposed crite-
rion the load at failure and crack initiation angles.
This was accomplished by creating p-FE models
representing the experimental samples. The FE
models were constructed according to the dimen-
sions of the same 4PB configuration, only that
for convenience of modeling the V-notch was in-
deed V-shaped, not identical to the specimen’s
“V-notch.” We checked that this induced an er-
ror of less than 0.1%. In the four point bending
tests, because the loading is not symmetric, the
forces P1 and P2 in Fig. 16 on a sample are not
equal. Because in the experiment we prescribed
displacements boundary conditions, and measured
the resultant force P1 + P2, we applied displace-
ments boundary conditions on the FE model at the
loading points. The value of the displacement was
determined so that the resultant force was equal
to the load applied in the experiment. For each
experimental configuration the GSIFs at the V-
notch tip were extracted from the FE analysis and
same procedure described for PMMA specimens
was followed. We summarize in Table 11 the ob-
tained results.

The lower and upper bounds of the estimated
critical loads in Fig. 18 are due to the two values
of KIc. A good correlation between the predicted
and experimental data is obtained.

6 Summary and conclusions

The failure criterion of Leguillon at reentrant cor-
ners in brittle elastic materials (Leguillon 2002;
Leguillon et al. 2003) validated in Yosibash et
al. (2004) for mode I loading is being extended
herein to mixed mode loading. As in other failure
criteria, it requires the knowledge of two mate-
rial parameters: the critical stress intensity factor
KIc and the strength (in general a peak stress) σc
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Fig. 16 Dimensions for
the MACOR 4PB
specimens with 315◦
V-notch

Table 11 FE analysis results for the MACOR specimens

Specimen Hij values for θc A2/A1 �0 [mm] θc [deg] Plow
cr [N] Phigh

cr [N]
H1 H2 H12 + H21 [mm−0.154]

M-6 7.255e-5 4.285e-5 1.060e-5 0.34 0.0182 72.5 2,101 2,287
M-7 7.213e-5 4.328e-5 1.739e-5 1.30 0.0157 50 3,029 3,267
M-8 7.171e-5 4.412e-5 2.376e-5 1.73 0.0148 45 3,845 4,138
M-9 6.958e-5 4.582e-5 3.606e-5 2.20 0.0140 40 4,710 5,058
M-10 6.534e-5 4.964e-5 5.388e-5 3.26 0.0130 35 5,886 6,300

for the material of interest. We provide a rigor-
ous derivation of the extended criterion, which re-
quires a simultaneous satisfaction of the energy
release rate and strength criteria, and compute
the various ingredients required for the determi-
nation of the failure load and crack initiation an-
gle. The validity of the proposed failure criterion
is examined by comparing predicted failure loads
and crack initiation angles for a range of mode mix-
ity ratios to these measured in experiments. Two
sources of experimental results were considered
for validating the failure criterion: (a) Experiments
performed on PMMA specimens with different
V-notch opening angles and mode mixity ratios
reported in Seweryn and Lukaszewicz (2002), and
(b) Experiments performed by the authors on 3PB
V-notched PMMA specimens and 4PB V-notched
Macor specimens.

The criterion predicts very well both the failure
loads and crack initiation angles for the 320◦ V-
notched specimens made of PMMA under a wide
range of mode mixity and a fair prediction of fail-
ure loads is noticed for the 280◦ V-notch speci-
mens made of PMMA reported in Seweryn and
Lukaszewicz (2002). Poor prediction of crack initi-

ation angles for the 280◦ V-notch specimens made
of PMMA is observed, however this is consistent
with poor predictions of other failure criteria pre-
sented in Seweryn and Lukaszewicz (2002) for the
same samples and may be a result of an error in
the experimental procedure.

A very good predictability is demonstrated for
the experiments conducted by us on 3PB 315◦
V-notched specimens made of PMMA. Because
the failure criterion assumes a mathematical sharp
V-notched tip the predicted failure loads are ex-
pected to be the lower bound to the experimen-
tal failure loads, as indeed is the case in Fig. 15.
A very good predictability is also demonstrated
for the 4PB 315◦ V-notched specimens made of
Macor.

The accuracy of the predicted failure load for
PMMA specimens deteriorates as the mode mix-
ity increases. This may be attributed to the non-
exact measurement of σc, and the blunt tip radius.
Future investigations will assess the validity of the
failure criterion for a wider range of brittle mate-
rials and V-notch angles, as well as the influence of
the V-notch tip radius (as done for mode I loading
in Leguillon and Yosibash (2003)).



A failure criterion for brittle elastic materials under mixed-mode loading 311

Fig. 17 Photographs of
the fracture path at the
315◦ V-notch tip in 4PB
MACOR specimens

Fig. 18 Predicted and experimental crack initiation angle (left) and critical load [N] (right) for 4PB MACOR specimens with
315◦ V-notch angle
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