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Abstract. The asymptotic solution in the vicinity of a crack front in a three-dimensional (3-D) elas-
tic domain is provided explicitly following the general framework in M. Costabel, M. Dauge and
Z. Yosibash, 2004, SIAM Journal of Mathematical Analysis, 35(5), 1177–1202. Using it, we show ana-
lytically for several fully 3-D displacement fields (which are neither plane strain nor plane stress) that
the pointwise path-area JX1-integral in 3-D is path-independent. We then demonstrate by numerical
examples, employing p -finite element methods, that good numerical approximations of the path-area
JX1-integral may be achieved which indeed show path independency. We also show that computation
of the path part of the JX1 on a plane perpendicular to the crack front is path dependent. How-
ever, one may still use this path integral computed at several radii, followed by the application of
Richardson’s extrapolation technique (as R →0 ) to obtain a good estimate for JX1-integral.

Key words: Edge stress intensity functions, high order finite elements, J -integral.

1. Introduction

The most important parameters in linear elastic fracture mechanics (LEFM) are the
stress intensity factors (SIFs), which are associated directly or indirectly with frac-
ture criteria and crack propagation. The most common extraction method for these
parameters in two-dimensional (2-D) domains relay on a path independent integral,
called the J -integral, surrounding the crack tip. The J -integral was presented for
two-dimensional domains by Cherepanov (1967) and Rice (1968). A vast amount of
research has focused in the past on extending its applicability to cracks in three-
dimensional (3-D) domains, however as will be discussed in the sequel, the extension
requires some assumptions which restrict its generality and applicability.

We herein present explicit representation of the displacements field in the vicin-
ity of a three-dimensional crack edge in isotropic elastic domains. Both traction free
and clamped boundary conditions are considered on the crack faces, and general dis-
placement fields are derived in the vicinity of the crack edge (without any restriction,
as plane strain or plane stress conditions, applied). Using the explicit solutions we
show that the past known extensions of the J -integral to three-dimensions yield a
pointwise path-area independent integral. Several publications in the past show that
the pointwise path-area J -integral is path-area independent for the special cases of
plane-strain/stress conditions, as well as for a path which tends to zero. Neverthe-
less, for a path surrounding the crack edge at a finite distance, under a more general
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3-D displacement field, such evidence is not available. Herein we extend the path-area
independency of this 3-D pointwise J -integral to more general cases involving both
clamped and traction free crack faces, without the need of assuming plane-strain or
plane-stress assumptions.

1.1. The path independent J integral for 2 -D domains

The J -integral was presented by Cherepanov (1967) and by Rice (1968), for two-
dimensional domains containing cracks. Consider a 2-D crack along the X1 axis as
shown in Figure 1. To distinguish between 2-D and 3-D quantities, Latin indices range
from 1 to 2, and i , j and k indices range from 1 to 3. Herein we use the Einstein
summation notation, where 2 repeated indices represent summation. The well known
path independent J -integral in 2-D domain is given by:

J =
∫

�

(W dX2 −T · ∂1U dS) (1)

where W is the strain-energy density (W = ∫ ε

0 σβγ dεβγ ) which equals 1
2σβγ εβγ

in linear elasticity, εβγ = 1
2(∂βUγ + ∂γ Uβ) is the infinitesimal strain tensor, U =

{U1,U2,U3}T is the displacement vector, ∂β = ∂
∂Xβ

and T (Tβ = σγβnγ ) is the trac-
tion vector defined according to the outward normal to the path �, and � is any
path initiating at one face and terminating on the other face of the crack, surround-
ing the crack tip as illustrated in Figure 1. The J -integral was proved to be path
independent in 2-D domains. The proof is presented for completeness in Appendix A.
The property of path-independency of the J -integral combined with the fact that it
equals to the strain energy release rate G in linear elastic bodies, enables one to com-
pute the stress intensity factors KI and KII :

J =G = K2
I +K2

II

E∗ E∗ =
{

E for plane stress,
E

1−ν2 for plane strain.
(2)

Figure 1. Two dimensional domain with a crack. � is any curve surrounding the crack.



Path independency of the point-wise J integral in 3-D 3

1.2. The point-wise JX1 -integral for three-dimensional domains

Extension of the J -integral to 3-D linear elastic domains containing a crack has
been approached by two different methods. The first extends the original 2-D
J -integral to a 3-D integral as shown by Chiarelli and Frediani (1993) and Huber
et al. (1993). The second method is by using the virtual crack extension method for
a 3-D domain containing a crack as obtained by Shih et al. (1986). They consid-
ered a small increment along the crack tip, δs, in the vicinity of the singular point,
s. They allow a virtual crack to advance in the direction normal to the crack front.
As a result a volume integral is obtained. When the increment of crack length tends
to zero (δs → 0) the integral becomes identical to the integral obtained by Huber
et al. (1993). Finite element methods are used to compute the volume integral and an
example of an axisymmetric crack is presented. Both methods lead to the same for-
mulation providing the point-wise value of the J -integral at a given point s along
the crack front:

JX1(s)=
∫

�

(
Wn1 −σijnj · ∂1Ui

)
ds −

∫
A(�)

∂3 (σi3∂1Ui)dA(�), (3)

where s is a point along the crack front, W in this case equals 1
2σij εij and X1 is

a Cartesian coordinate normal to the crack front at point s, as illustrated in Figure
2. It is important to note that the path-area independency in Shih et al. (1986), Chi-
arelli and Frediani (1993) and Huber et al. (1993) is obtained under the assumption
of plane-strain/stress, or at the limit when A(�)→0 .

The JX1 contains two integrals: the first is a path integral and the second is an
area integral. Both the path � and the area (enclosed by the path � ) lay in X1–X2

plane which is perpendicular to the crack front. In computing JX1(s), the derivatives of
stresses, strains and displacements are required, and when based on numerical approx-
imations their values in the vicinity of a singular point is poor. Therefore the compu-
tation of the area integral with a reasonable numerical accuracy is not an easy task.

Rigby and Aliabadi (1998) have shown that under plane stress or plane strain assump-
tion, the path-area integral, JX1(s) is path-area independent. They proved that for any
selection of path � the JX1(s) integral has the same value. The JX1(s)-integral was
also addressed by Gosz et al. (1998). Although the volume integral was presented,
the authors use either plane stress or plane strain assumptions in order to calculate

Figure 2. The local coordinate system at point s along the crack face in a 3-D domain.
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JX1(s) and therefore the volume integral is reduced to an area integral. The method is
applicable to bimaterial cracks when only KI and KII are considered. Chiarelli and
Frediani also used numerical methods for the computation of JX1(s). Their method
involves coordinates change according to the selected point s along the crack front.
The stress and displacement components are extracted from the finite element solution
where the derivatives (as ∂1U2 and ∂1U3 ) are obtained by differentiating the shape
functions. Gauss quadrature integration is used for calculation of the path and area
integrals of JX1(s).

The area integral in JX1(s) was addressed also by Eriksson (2000). He demon-
strates that the area integral can be simplified in some crack geometries by chang-
ing the coordinate system of the integration according to the geometry of the crack.
Moreover, Eriksson shows that there are four geometry conditions in which the area
integral vanishes. The first two conditions are related with the geometry of the crack
and the other two terms are related with the selection of coordinate system for inte-
gration of JX1(s).

Beyond the numerical difficulties associated with the need to use numerical val-
ues and derivatives close to the singular points, many publications in the past 10 years
apply the restriction of plane strain or plane stress when computing the JX1(s)-integral.
However, in a general 3-D domain, even when a simple straight crack front is present,
neither a plane strain nor a plane stress situation exists, and in this case we show evi-
dence that the JX1(s) -integral is still path independent if both the path and the area
integral are computed. A remedy to the need of computing the area integral is by using
the path integral alone (as in a 2-D case) at different circles with decreasing radii, fol-
lowed by Richardson’s extrapolation as the radius tends to zero.

We provide in Section 2 the asymptotic solution of the displacements in the vicin-
ity of a 3-D cracked edge – both traction free and clamped boundary conditions on
crack faces are considered. We chose six problems with analytical solutions (two of
which are plane-strain) to be used in Section 3 to examine the JX1(s)-integral. In
Section 3 we show that for all six problems of interest JX1(s) is path independent
and provide also numerical results illustrating the path-independency. One may com-
pute only the path-part of the integral (as in 2-D domains) at decreasing radii in
conjunction with Richardson’s extrapolation for an accurate determination of JX1(s).
Finally, we consider a common problem of engineering interest, the compact tension
specimen (CTS), and apply the suggested methods to compute JX1(s) at two points
along it’s crack edge.

2. The elastic solution in the vicinity of the crack front (edge)

In three-dimensional domains three different functional representation of the singular
solutions to the Navier–Lamé equations exist, depending whether one is interested
in the vicinity of an edge, a vertex or the intersection of the edge with the vertex
(see Figure 3). In this work we consider the solution in the vicinity of an edge only
(which is denoted by E ). Our point of departure is the functional representation
of the elastic solution (displacements or stresses) in the vicinity of the crack front
(edge), which may be characterized by an infinite number of eigen-pairs.

Although the asymptotic expansion for the two-dimensional stress fields in the
vicinity of a singular point is well known, in reality three-dimensional domains are
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Figure 3. (a) Schematic 3-D domain, 	 ; (b) edge and vertex singularities in 3-D domain.

present. Therefore a refined analysis for three-dimensional solutions in the vicinity
of an edge is required. Hartranft and Sih (1967) are the first (to the best of our
knowledge) to address the elastic solution in the vicinity of a three-dimensional crack
front. However, their solution has not been widely used due to its complexity and
lack of explicit representation. Leblond and Torlai (1992) present the solution of the
displacements and stresses in the vicinity of a straight and curved crack front in 3-D
domains, however, the assumption of plane strain is adopted, so that the fully 3-D
asymptotic solution is not provided. Nevertheless, using the plane-strain asymptotic
solution, the expansion for curved crack fronts is derived, containing higher order
terms and an explicit dependency of the “stress intensity factors” on the crack front
coordinate. Lately, a simplified algorithm which explicitly provides the functional rep-
resentation of the elastic solution (eigen-pairs computation) in a general setting for
elliptic problems is provided in Costabel et al. (2004). An explicit use for the algo-
rithm is given in Omer et al. (2004) where the explicit solution for a scalar elliptic
problem is provided. In this section the asymptotic solution (the displacements) in
the vicinity of a 3-D cracked edge is derived which is subsequently used to show that
the pointwise path-area JX1(s)-integral is path independent.

2.1. Differential equations for 3-D eigen-pairs

Consider a 3-D domain 	 with a solid angle ω , created by the intersection of two
flat surfaces, as shown in Figure 3. In the case ω=2π, a cracked domain is obtained.
We denote the flat surfaces by �1 and �2 .

Remark 1. For mathematical convenience, the coordinate system presented in this
chapter is denoted by x1, x2, x3 , so that the x1 axis lies along crack’s faces.
This notation is different compared to the coordinate system, X1,X2,X3 , used for
the definition of quantities in the JX1(s)-integral. The two systems are connected by
the relationships x1 =−X1 and x3 =−X3 . The displacements in the X system will
be denoted by U, and in the x system by u. In order to compute the JX1(s)-inte-
gral the displacements, after being derived, will be transferred into the X1,X2,X3

system, as will be presented in Appendix B. The polar coordinate system related with
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cartesian system X is, r, θ̃ ,X3 , where the polar coordinate system related with x is,
r, θ, x3 .

For simplicity of presentation assume that the domain 	 contains only one
straight edge E , and is generated by the product 	 = G × I where I is an inter-
val [−x3, x3], and G is a plane bounded sector of opening ω . The coordinate sys-
tem is chosen so that G coincides with the (x1, x2) plane and I is along x3 . We
denote the coordinates (x1, x2, x3) by x . Let (r, θ) be polar coordinates centered at
the vertex of G. The edge E of interest is the set {x ∈R

3 | r = 0, x3 ∈ I }. To distin-
guish between the displacements vector in Cartesian or polar coordinates, we denote
the later by ũ={ur, uθ , ux3}T and use either of them when more convenient.

Remark 2. The methods presented herein are restricted to geometries where the
edges are straight lines and the angle ω is fixed along x3.

The exact solution of the Navier–Lamè (N–L) system of equations, L(ũ) = 0,
(L denotes the N–L operator), in the neighborhood of the edge E is obtained by
splitting the operator L into three parts (see Dauge, 1988; Costabel and Dauge, 1993):

L= [M0(∂r , ∂θ )]+ [M1(∂r , ∂θ )]∂3 + [M2]∂2
3 (4)

where [Mi ] are 3×3 matrix operators (presented in explicit form in the sequel). The
splitting allows the consideration of a solution ũ of the form:

ũ=
∑
j�0

∂
j

3 A(x3)�j (r, θ) (5)

herein ∂
j

3 ≡ ∂j

∂x3
. The N–L system in view of (5) becomes:

∑
j�0

∂
j

3 A(x3)[M0]�j +
∑
j�0

∂
j+1
3 A(x3)[M1]�j +

∑
j�0

∂
j+2
3 A(x3)[M2]�j =0 (6)

and after rearranging:

A(x3)[M0]�0 + ∂3A(x3)([M0]�1 + [M1]�0)+
+

∑
j�0

∂
j+2
3 A(x3)

(
[M0]�j+2 + [M1]�j+1 + [M2]�j

)=0. (7)

Equation (7) has to hold for any smooth function A(x3). Thus, the functions �j

must satisfy the three equations below, each defined on a two-dimensional domain G

which is generated by the intersection of a plane perpendicular to the crack edge and
the 3-D domain:


[M0]�0 =0
[M0]�1 + [M1]�0 =0
[M0]�j+2 + [M1]�j+1 + [M2]�j =0, j �0

(r, θ)∈G (8)

accompanied by either traction free or homogeneous Dirichlet boundary conditions
on the two surfaces �1 and �2.
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The first partial differential equation in (8) generates the solution �0 , denoted
primal singular function, which is the well known two-dimensional eigen-function of
the form:

�0 = rαϕ0(θ), (9)

where �0 is the eigen-function associated with the eigen-value α of the degenerate
boundary value problem over the 2-D domain G. The second PDE in (8) generates
the function �1 which depends on �0 and is of the form:

�1 = rα+1ϕ1(θ). (10)

The sequence �j (where j � 2) are the solutions of the third equation of (8).
These are of the form:

�j = rα+jϕj (θ). (11)

The �j , where j >1 are called shadow functions associated with the primal func-
tion �0. There are an infinite number of shadow functions �j associated with any
positive eigen-value αi , and therefore:

�
(αi)
j = rαi+jϕ

(αi)
j (θ) j =0,1, . . . (12)

Thus, for each eigen-value αi , the 3-D solution, in the vicinity of an edge is:

ũ(αi) =
∑
j�0

∂
j

3 Ai(x3)r
αi+jϕ

(αi)
j (θ) (13)

and the overall solution ũ is:

ũ=
∑
i�1

∑
j�0

∂
j

3 Ai(x3)r
αi+jϕ

(αi)
j (θ) (14)

where Ai(x3) is the edge stress intensity function (ESIF) associated with the ith
eigen-value.

2.2. Boundary conditions for the primal and shadow eigen-functions

We will consider either traction free or clamped (homogeneous Dirichlet) boundary
conditions on the two flat surfaces �1 and �2.

2.2.1. Traction free boundary conditions
Assuming traction free boundary conditions on �1 and �2 results in:

[T ](�̃u)|�1,�2 = (
[T0](∂r , ∂θ )ũ+ [T1](∂r , ∂θ )∂3ũ

)|�1,�2 =0 (15)

The operators [T0] and [T1] are explicitly provided in (26) in the next sub-section.
Inserting (5) in (15) one obtains:∑

j�0

∂
j

3 A(x3)[T0]�j |�1,�2 +
∑
j�0

∂
j+1
3 A(x3)[T1]�j |�1,�2 =0 (16)

and after rearranging:
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A(x3)[T0]�0|�1,�2 +
∑
j�0

∂
j+1
3 A(x3)

(
[T0]�j+1 + [T1]�j

) |�1,�2 =0. (17)

Equation (17) has to hold for any smooth function A(x3) and therefore the bound-
ary conditions for the eigen-functions are:

{
[T0]�0 =0
[T0]�j+1 + [T1]�j =0, j �0

on �1,�2. (18)

The first equation in (18) is the boundary conditions for �0 which is identical to
the 2-D problem. The second equation in (18) is the boundary conditions for each �j

where j �1.

2.2.2. Homogeneous dirichlet boundary conditions
Assuming homogeneous Dirichlet boundary conditions on �1 and �2 results in:

ũ|�1,�2 =
∑
i�1

∑
j�0

∂
j

3 Ai(x3)r
αi+jϕ

(αi)
j (θ)|�1,�2 =0 (19)

and therefore

ϕj (θ)=0, j �0 on �1,�2 (20)

2.3. Explicit expressions for eigen-pairs for a crack

Consider a domain 	 in which I is the interval [−1,1], and G is a plane bounded
sector of opening ω = 2π defined by {r ∈ (0,1), θ ∈ (0,ω)} (the case of a crack), as
shown in Figure 4. Although any radius or interval I can be chosen, these simpli-
fied numbers have been chosen for simplicity of presentation (we select for example
the units of the interval I and the radius r to be [meters]). The edge of interest E
is the set {x ∈R

3 | r =0, x3 ∈ I } .

Figure 4. Model domain of interest 	 .
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The Navier–Lamé equations (4) in polar coordinates are:

(λ+2µ)∂2
r ur + (λ+2µ)

1
r
∂rur − (λ+2µ)

1
r2

ur +µ
1
r2

∂2
θ ur +µ∂2

3 ur

−(λ+3µ)
1
r2

∂θuθ + (λ+µ)
1
r
∂r∂θuθ + (λ+µ)∂r∂3u3 =0 (21)

(λ+µ)
1
r
∂r∂θur + (λ+3µ)

1
r2

∂θur + (λ+2µ)
1
r2

∂2
θ uθ +µ∂2

r uθ

+µ
1
r
∂ruθ −µ

1
r2

uθ +µ∂2
3 uθ + (λ+µ)

1
r
∂3∂θu3 =0 (22)

(λ+µ)∂r∂3ur + (λ+µ)
1
r
∂3ur + (λ+µ)

1
r
∂3∂θuθ +µ∂2

r u3

+µ
1
r
∂ru3 +µ

1
r2

∂2
θ u3 + (λ+2µ)∂2

3 u3 =0 (23)

with λ,µ being the Lamé constants associated with the engineering material con-
stants E the Young modulus and ν the Poisson ratio. The system (21)–(23) can be
expressed as:

L(ũ)= [M0](∂r , ∂θ )ũ+ [M1](∂r , ∂θ )∂3ũ+ [M2](∂r , ∂θ )∂
2
3 ũ=0

with:

[M0]=

(λ+2µ)

(
∂2

r + 1
r
∂r − 1

r2

)+µ 1
r2 ∂2

θ −(λ+3µ) 1
r2 ∂θ + (λ+µ) 1

r
∂r∂θ 0

(λ+µ) 1
r
∂r∂θ + (λ+3µ) 1

r2 ∂θ (λ+2µ) 1
r2 ∂2

θ +µ
(
∂2

r + 1
r
∂r − 1

r2

)
0

0 0 µ
(
∂2

r + 1
r
∂r + 1

r2 ∂2
θ

)


(24)

[M1]=

 0 0 (λ+µ)∂r

0 0 (λ+µ) 1
r
∂θ

(λ+µ)
(
∂r + 1

r

)
(λ+µ) 1

r
∂θ 0


 , [M2]=


µ 0 0

0 µ 0
0 0 (λ+2µ)


.

(25)

The boundary conditions considered on the crack surface are either traction free
or homogeneous Dirichlet. If traction free boundary conditions (15) are considered:


(σrr) |θ=0,2π =0
(σrθ ) |θ=0,2π =0
(σr3) |θ=0,2π =0

⇒




(
µ

( 1
r
∂θur + ∂ruθ − 1

r
uθ

)) |θ=0,2π =0(
(λ+2µ) 1

r
ur +λ∂rur + (λ+2µ) 1

r
∂θuθ +λ∂3u3

) |θ=0,2π=0.(
µ

(
∂3uθ + 1

r
∂θu3

)) |θ=0,2π =0

The boundary conditions are split into two parts as in (15) with:

[T0]=

 µ 1

r
∂θ µ∂r −µ 1

r
0

(λ+2µ) 1
r
+λ∂r (λ+2µ) 1

r
∂θ 0

0 0 µ 1
r
∂θ


 , [T1] =


0 0 0

0 0 λ

0 µ 0


 . (26)

The solution to the first equation in (8) and one of the boundary conditions (the
first equation in (18) for traction free boundary conditions and (20) for homogeneous
Dirichlet boundary conditions) results in an infinite number of primal eigen-pairs,
which are precisely the 2-D eigen-pairs in the vicinity of a crack tip:
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[M0]�0 =�0,
(

[T0] �0|0,2π =�0 or �0|0,2π =�0
)

⇒ �
(αi)

0 , α1 =α2 =α3 =1/2 · · ·
(27)

With each eigen-value, αi , there is an associated edge stress intensity function
denoted by Ai(x3).

The shadow function �1 can then be computed by solving the inhomogeneous
PDE in the second equation in (8) with −[M1]�0 at the right hand side. The shadow
function �2, and higher order ones are then obtained by the recursive PDE in the
third equation in (8).

We further simplify the problem of interest and assume that A1(x3) is the only
non-zero edge stress intensity function, and is at most a polynomial of degree two (A1

is associated with mode I loading). In this case α1 = 1
2 the exact solution consists of

the primal leading function �
(α1)

0 and two shadow functions �
(α1)

1 ,�
(α1)

2 , having the
form:

ũ(α1) = A1(x3)�
(α1)

0 + ∂1
3A1(x3)�

(α1)

1 + ∂2
3 A1(x3)�

(α1)

2

= A1(x3)r
α1ϕ

(α1)

0 + ∂1
3A1(x3)r

α1+1ϕ
(α1)

1 + ∂2
3 A1(x3)r

α1+2ϕ
(α1)

2

= A1(x3)r
α1


u0(θ)

v0(θ)

w0(θ)


+ ∂1

3A1(x3)r
α1+1


u1(θ)

v1(θ)

w1(θ)


+ ∂2

3 A1(x3)r
α1+2


u2(θ)

v2(θ)

w2(θ)


.

(28)

We provide now the explicit expressions for the functions u0, v0, . . . ,w2, thus, for
the traction free boundary conditions the displacements in the vicinity of the crack
edge are:

ũ(α1) = A1(x3)r
1
2


 (Q1 −1) sin

( 1
2θ

)+ sin
( 3

2θ
)

(Q1 +1) cos
( 1

2θ
)+ cos

( 3
2θ

)
0




+ ∂1
3A1(x3)r

3
2


 0

0
−2 sin

( 1
2θ

)− 2
3(Q1 +1) sin

( 3
2θ

)



+ ∂2
3 A1(x3)r

5
2


 Q2 sin

( 1
2θ

)+Q3 sin
( 3

2θ
)

− 1
6(Q1 +1) cos

( 1
2θ

)+Q4 cos
( 3

2θ
)

0


, (29)

where

Q1 = (2λ+6µ)

(λ+µ)
, Q2 = (3λ−µ)

6(λ+µ)
, Q3 = (45λ2 +138λµ+61µ2)

90(λ+µ)2
,

Q4 = (−15λ2 +2λµ+49µ2)

90(λ+µ)2
. (30)

and in the case of homogeneous Dirichlet boundary conditions the displacements are
of the form:
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ũ(α1) = A1(x3)r
1
2


 − sin

( 1
2θ

)+C1 sin
( 3

2θ
)

−C1 cos
( 1

2θ
)+C1 cos

( 3
2θ

)
0


+ ∂1

3A1(x3)r
3
2


 0

0
C2 sin

( 1
2θ

)



+ ∂2
3 A1(x3)r

5
2


 C3 sin

( 1
2θ

)+C4 sin
( 3

2θ
)

1
6C1 cos

( 1
2θ

)− 1
6C1 cos

( 3
2θ

)
0


 (31)

where

C1=(3λ+7µ)

(λ+5µ)
, C2=2(λ+µ)

(λ+5µ)
, C3=(−3λ+µ)

6(λ+5µ)
, C4=− (3λ+7µ)2

6(λ+5µ)(7λ+11µ)
.

(32)

The graphic representation of the primal eigen-function and the first two shadow-
functions is presented in Figures 5, 6 for traction free and homogeneous Dirichlet
boundary conditions, respectively, where λ = 0.5769 and µ = 0.3846 (Young mod-
ulus E = 1 and Poisson ratio ν = 0.3 ). The units of the material properties λ , µ

and E are
[ N

m2

]
. These values and units are chosen for simplicity of the presenta-

tion, although any other values, scales or units may be chosen.
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Figure 5. Primal and shadow-functions ϕ
(α1)

0 (θ), ϕ
(α1)

1 (θ), ϕ
(α1)

2 (θ) for α1 = 1
2 , ω = 2π , traction free

boundary conditions, λ=0.5769 and µ=0.3846.
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Figure 6. Primal and shadow-functions ϕ
(α1)

0 (θ), ϕ
(α1)

1 (θ), ϕ
(α1)

2 (θ) for α1 = 1
2 , ω = 2π , homogeneous

Dirichlet boundary conditions, λ=0.5769 and µ=0.3846 .

Remark 3. Under the assumption of plane-strain and mode I loading, the classical 2-D
solution U in the vicinity of a crack tip with traction free boundary conditions is:

{
U1

U2

}
= KI(1+ν)

E
√

2π
r1/2




cos
(

1
2 θ̃

)
(κ −1+2 sin2

(
1
2 θ̃

)
)

sin
(

1
2 θ̃

)
(κ +1−2 cos2

(
1
2 θ̃

)
)


 (33)

where κ =3−4ν .
In this case A1 in (28) is a constant so the relation between A1 and the classi-

cal KI for traction free boundary conditions is (see also (B.1) in Appendix B, for
λ=0.5769 and µ=0.3846 ):

1.3KI√
2π

cos
(

1
2 θ̃

)(
0.8+2 sin2

(θ̃)
)
=A1

(
−2.6 sin

(
1
2(−θ̃ +π)

)
−sin

(
3
2(−θ̃ +π)

))
0.65KI√

2π

(
2.6 cos

(
1
2 θ̃

)
− cos

(
3
2 θ̃

))
=A1

(
2.6 cos

(
1
2 θ̃

)
− cos

(
3
2 θ̃

))
(34)

0.65KI√
2π

=A1

which turns out to be independent of θ̃ .
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Remark 4. The strain component ε33 computed using the displacements in (28), for
the case where A1 is constant, is:

ε33 = ∂2u3

∂x2
3

=0. (35)

On the other hand if plane-stress condition is assumed ε33 is give by (see (B.3)):

ε33 = σ11

E
− ν

E
(σ11 +σ22) ⇒ ε33 =− ν

E
(σ11 +σ22)=−0.923076r− 1

2 sin( 1
2θ) (36)

and therefore in 3-D the plane-stress assumption conditions can not hold in the vicin-
ity of the singular point.

Remark 5. One may notice that the first term in (28) associated with A1(x3) domi-
nates as r → 0, because the ‘shadow functions’ associated with derivatives of A1 are
multiplied by increasing orders of r . Therefore, limr→0 JX1(s) regains the relationship
given in (2).

3. Analytical and numerical computation of JX1(s)

Once the elastic solution in the vicinity of an edge was obtained, we are in the position
to compute JX1(s) both analytically and numerically using finite element methods. The
purpose of computation is to show that numerical approximations of JX1(s) are path
independent for the problems considered. Although the area integral J area

X1
(s) con-

tains larger errors in the numerical calculation due to the second numerical derivatives
computed in the vicinity of the singular point, good approximation may be obtained
when these derivatives are numerically computed with high order. We will show that in
practical engineering problems, one may estimate JX1(s) with good accuracy comput-
ing the path integral only (which is path-dependent in 3-D) at several radii of decreasing
value, followed by Richardson’s extrapolation.

We consider the six example problems with λ=0.5769 and µ=0.3846 and either
traction free or homogeneous Dirichlet boundary conditions on �1 and �2, see
Table 1.

Because ∂n
3 A

(A)

1 (x3)=∂n
3 A

(D)

1 (x3)=0 for n�1, the exact solution of examples (A)

and (D) contains only the primal eigen-function, �0, and the displacements repre-
sent a plane-strain situation. Examples (B) and (E) contain the shadow function

Table 1. Six example problems for which JX1(X3) is computed.

Example # ESIF: A(x3) Boundary conditions over �1,�2

A 1 Traction free
B 1+x3 Traction free
C 1+x3 +x2

3 Traction free
D 1 Homogeneous Dirichlet
E 1+x3 Homogeneous Dirichlet
F 1+x3 +x2

3 Homogeneous Dirichlet
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�1 and the primal eigen-function �0, whereas the two examples (C) and (F ) con-
tain two shadow functions �2 and �1 and the primal function �0. The exact solu-
tions of examples (A)–(F ) are:

ũ(A)
(r, θ, x3) =


u(A)

r

u
(A)
θ

u
(A)

3


= r

1
2


 2.6 sin

( 1
2θ

)+ sin
( 3

2θ
)

4.6 cos
( 1

2θ
)+ cos

( 3
2θ

)
0


 (37)

ũ(B)
(r, θ, x3)=


u(B)

r

u
(B)
θ

u
(B)

3


 = (1+x3)r

1
2


 2.6 sin

( 1
2θ

)+ sin
( 3

2θ
)

4.6 cos
( 1

2θ
)+ cos

( 3
2θ

)
0




+ r
3
2


 0

0
−2 sin

( 1
2θ

)−3.066666 sin
( 3

2θ
)

 (38)

ũ(C)
(r, θ, x3) =


u(C)

r

u
(C)
θ

u
(C)

3


= (1+x3 +x2

3)r
1
2


 2.6 sin

( 1
2θ

)+ sin
( 3

2θ
)

4.6 cos
( 1

2θ
)+ cos

( 3
2θ

)
0




+ (1+2x3)r
3
2


 0

0
−2 sin

( 1
2θ

)−3.066666 sin
( 3

2θ
)



(39)

+2r
5
2


 0.23333 sin

( 1
2θ

)+0.65644 sin
( 3

2θ
)

−0.76667 cos
( 1

2θ
)+0.03244 cos

( 3
2θ

)
0




ũ(D)
(r, θ, x3) =


u(D)

r

u
(D)
θ

u
(D)

3


= r

1
2


 − sin

( 1
2θ

)+1.76923 sin
( 3

2θ
)

−1.76923 cos
( 1

2θ
)+1.76923 cos

( 3
2θ

)
0


 (40)

ũ(E)
(r, θ, x3)=


u(E)

r

u
(E)
θ

u
(E)

3


 = (1+x3)r

1
2


 − sin( 1

2θ)+1.76923 sin( 3
2θ)

−1.76923 cos( 1
2θ)+1.76923 cos( 3

2θ)

0




+ r
3
2


 0

0
0.76923 sin( 1

2θ)


 (41)
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ũ(F )
(r, θ, x3)=


u(F)

r

u
(F)
θ

u
(F)

3


 = (1+x3 +x2

3)r
1
2


 − sin

( 1
2θ

)+1.76923 sin
( 3

2θ
)

−1.76923 cos
( 1

2θ
)+1.76923 cos

( 3
2θ

)
0




+(1+2x3)r
3
2


 0

0
0.76923 sin( 1

2θ)




+2r
5
2


−0.08974 sin( 1

2θ)−0.15772 sin( 3
2θ)

0.29487 cos( 1
2θ)−0.29487 cos( 3

2θ)

0


 (42)

In the case of examples (A) , (D) the ESIF is a constant and therefore the exact
solutions ũ(A) , ũ(D) are identical to the 2-D solution whereas example (B), (C),
(E) and (F ) represent a 3-D problem (containing either �0 and �1 or �0 , �1

and �2 ).
Consider now the domain 	 shown in Figure 4 defined by r ∈ [0,1], θ ∈

[0,ω], x3 ∈ [−1,1]}. If we prescribe the displacements boundary conditions to be
one of the displacements shown in (37)–(42) (of examples (A) – (F ) ) on the surface
∂	−�1 −�2 , and let �1 and �2 be either free of tractions (in the case of exam-
ples (A)–(C) ) or homogenous Dirichlet (in the case of examples (D)–(F ) ), then the
displacements throughout all 	 are precisely as given in (37)–(42), respectively.

3.1. Computing JX1(s) analytically

For each of the example problems (A)–(F ) the exact solution is known, and therefore
the path-area JX1(s)-integral may be computed analytically (the units of the JX1(s)

integral are: [ N
m ]). Notice, however, that the X coordinate system must be used to rep-

resent all quantities for the computation of JX1(s). Thus, we provide in Appendix B the
displacements (corresponding to (37)–(42)), strains and stresses in the X system for
example problems (A)–(F ).

We consider a circular path � of radius R, surrounding the crack front at point
s ≡X3 along the crack on a plane perpendicular to the crack, as shown in Figure 7.

Figure 7. The path � and the area A(�) enclosed by the path.
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Because JX1(X3) contains a path integral and an area integral, we denote each by
J

path
X1

(X3) and J area
X1

(X3), respectively.
We show that JX1(X3) is path independent (the value of the integral is a func-

tion of X3 only) for examples (A)–(F ) . The solutions of examples (A) and (D)

are identical to a plane strain situation for which J area
X1

(X3) vanishes and the path
integral, J

path
X1

(X3) reduces to the well known J -integral in 2-D problems. The other
four example problems ((B), (C), (E), (F )) on the other hand, represent a general
3-D problem for which both the area and path integrals are R dependent. However,
the JX1(X3)-integral (JX1(X3) = J

path
X1

(X3) − J area
X1

(X3)) is path independent as shown
in the sequel.

The displacements, strains and stresses for example problems (A)–(F ) (provided
in Appendix B) are used to compute JX1(s) analytically:

3.1.1. Example A
The area-integral J

area(A)
X1

(X3)≡0, so

J
(A)
X1

(X3)=J
path(A)

X1
(X3)=13.533. (43)

As expected J
(A)
X1

(X3) is a constant and therefore path independent.

3.1.2. Example B
The path-integral for example problem (B) is:

J
path(B)

X1
(X3)=

∫ π

−π

(
Wn1 −Tβ · ∂1Uβ

)
R

R dθ̃ =13.533(1+X3)
2 +8.69978R2, (44)

and the area-integral is:

J
area(B)
X1

(X3)=
∫ R

0

∫ π

−π

∂3
(
σβ3∂1Uβ

)
r d r dθ̃ =8.69978R2. (45)

Therefore J
(B)
X1

(X3) is:

J
(B)
X1

(X3)=J
path(B)

X1
(X3)−J

area(B)
X1

(X3)=13.533(1+X3)
2. (46)

Notice that JX1(X3) for example problem (B) is path-independent, however both
the path and area integrals are path-dependent having a O(R2) dependency (the
radius of the circular path).

At the point X3 =−0.2 along the crack front:

J
(B)
X1

(X3 =−0.2)=19.48752. (47)

On the other hand, we may use (35) to compute the stress intensity factor at
X3 =−0.2:

KI =3.85635A1(X3)=3.85635(1− (−0.2)). (48)
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Now assuming that (2) can be extended beyond the situation of plane-strain (to
our best knowledge, a proof that JX1 =G does not exist for 3-D domains) and tak-
ing E∗ for plane strain E∗(E =1, ν =0.3)=1.0989 :

G(X3 =−0.2)= K2
I

E∗ = (3.85635(1− (−0.2)))2

1.0989
=19.48752, (49)

we obtain the same value as in (47).

3.1.3. Example C
The path-integral for example problem (C) is:

J
path(C)

X1
(X3) =

∫ π

−π

(
Wn1 −Tβ · ∂1Uβ

)
R

R dθ̃

= 13.533(1−X3 +X2
3)

2 + 52.19871(0.5 − X3 +X2
3)R

2 −21.78168R4,

(50)

and the area integral is:

J
area(C)
X1

(X3) =
∫ R

0

∫ π

−π

∂3
(
σβ3∂1Uβ

)
r d r dθ̃

= 52.19871(0.5−X3 +X2
3)R

2 −21.78168R4. (51)

Therefore J
(C)
X1

(X3) is:

J
(C)
X1

(X3)=J
path(C)

X1
(X3)−J

area(C)
X1

(X3)=13.533(1−X3 +X2
3)

2. (52)

The value of JX1(X3) for example problem (C) is path-independent, but both the
path and area integrals are path-dependent having a O(R2)+O(R4) dependency.

Again, let us compute the value of J
(C)
X1

at X3 =−0.2, (52) results in:

J
(C)
X1

(X3 =−0.2)=20.80834. (53)

From (35) one obtains:

KI =3.85635A1(X3)=3.85635(1− (−0.2)+ (−0.2)2) (54)

and G for plane strain situation is:

G(X3 =−0.2)= K2
I

E∗ = (3.85635(1− (−0.2)+ (−0.2)2))2

1.0989
=20.80834. (55)

As in example problem (B), we obtain the same value of G(X3 =−0.2) as in (53).

3.1.4. Example D
The area-integral J

area(D)
X1

(X3)≡0, so

J
(D)
X1

(X3)=J
path(D)

X1
(X3)=−3.60571, (56)

and because example (D) represents a plane strain situation, J
(D)
X1

(X3) is path
independent.
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3.1.5. Example E
The path-integral JX1(X3) of example problem (E) is:

J
path(E)

X1
(X3) =

∫ π

−π

(
Wn1 −Tβ · ∂1Uβ

)
R

R dθ̃ =−3.60346(1−X3)
2 +1.42280R2,

(57)

and the area-integral is:

J
area(E)
X1

(X3)=
∫ R

0

∫ π

−π

∂3
(
σβ3∂1Uβ

)
r d r dθ̃ =1.42280R2. (58)

Therefore J
(E)
X1

(X3) is:

J
(E)
X1

(X3)=J
path(E)

X1
(X3)−J

area(E)
X1

(X3)=−3.60346(1−X3)
2 (59)

JX1(X3) for example problem (E) is path-independent, and as seen previously both
the path and area integrals are path-dependent having a O(R2) dependency.

3.1.6. Example F
The path-integral of JX1(X3) for example problem (F ) is:

J
path(F )

X1
(X3) =

∫ π

−π

(
Wn1 −Tβ · ∂1Uβ

)
R

Rdθ̃

= −3.60346(1+X3 +X2
3)

2 +8.53677(0.5+X3 +X2
3)R

2 +1.21678R4

(60)

and the area-integral is:

J
area(F )
X1

(X3) =
∫ R

0

∫ π

−π

∂3
(
σβ3∂1Uβ

)
r dr dθ̃

= 8.53677(0.5+X3 +X2
3)R

2 +1.21678R4. (61)

Therefore J
(F)
X1

(X3) is:

J
(F)
X1

(X3)=J
path(F )

X1
(X3)−J

area(F )
X1

(X3)=−3.60346(1+X3 +X2
3)

2. (62)

The value of JX1(X3) for example problem (F ) is path-independent, but both the
path and area integrals are path-dependent having a O(R2)+O(R4) dependency.

3.2. Numerical computation of JX1(s) for examples (A)–(F )

As the JX1(s)-integral is frequently used in numerical methods, we herein compute
its value for examples (A)–(F ) by p -finite element methods (Szabb and Babuŝka,
1991), using the commercial finite element code StressCheck. The specific code has
been chosen because of the p -FE technology, and the possibility to post-process the
results using a COM interface based on VisualBasic. The domain 	 is discretized
by using a mesh with geometrical progression towards the singular edge with a fac-
tor of 0.17, having six layers of elements. In X3 direction, a uniform discretization
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using five elements has been adopted. There are 240 3-D elements (hexahedral and
pentahedral), over which the polynomial degree, using trunk space has been increased
from 1 to 7 (at p=7 the FE model contains 31,614 degrees of freedom) to ensure
the convergence of the results. The estimated error in energy norm at p=7 is 0.25%.
The finite element mesh is shown in Figure 8.

We specify over the entire boundaries of the domain Dirichlet boundary condi-
tions according to the selected examples (A)–(F ), (37)–(42). This implies that the
solution at any point r, θ, x3 is exactly (37)–(42).

For the numerical computation of JX1(X3) in (3), the finite element approximations
of Ui(r, θ̃ ,X3), εij (r, θ̃ ,X3), and σij (r, θ̃ ,X3) are used, and the integral is com-
puted numerically using Gaussian quadrature of order 10 for each integration vari-
able. The use of a quadrature order of 32 does not change the results considerably.
The numerical computation of JX1(X3) involves both path and area integrals, where
the integration area includes the singular point. Because of the poor accuracy of the
numerical solution (stresses, strains and displacements) in the vicinity of the singular
point, we expect the numerical calculation of the area integral to be of a lower accu-
racy compared to the path integral. Moreover, the components of the area integral
include numerical second derivatives of the displacements, which adds to the inaccu-
racies of the numerical results. The second derivative was computed using a second
order difference approximation for partial derivative, i.e.:

∂2U2(X1,X2,X3)

∂X1∂X3
= 1

2�X1

(
U2(X1+�X1,X2,X3+�X3)−U2(X1+�X1,X2,X3−�X3)

2�X3

−U2(X1−�X1,X2,X3+�X3)−U2(X1−�X1,X2,X3−�X3)

2�X3

)
+O(�X2

1,�X2
3).

(63)

The numerical results of J
path
X1

, J area
X1

and JX1 of each of the examples extracted
from the FE solution at p = 7 for different R -values are summarized in Appen-
dix C in Tables C1–C6. We chose a random point X3 =−0.2 along the crack front at
which the computations are performed. The results demonstrate that the area integral
is computed with small numerical errors due to the refined FE model and the sec-
ond-order numerical derivatives and its contribution to the total JX1 is progressively
smaller as R → 0. The numerical value of JX1 is less than 0.4% error compared to
the exact value, for all inspected R ’s.

Figure 8. The p -FE mesh.
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The relative error in percentage, defined as:

100
J Num

X1
−J Exact

X1

J Exact
X1

is plotted as a function of R in Figure 9, demonstrating that indeed the numerical
approximation of JX1 is closely path independent, where the deviations are attrib-
uted to the numerical errors of the FE solution.

To avoid the computation of the area integral, which requires high numerical
derivatives as well as data in the close vicinity of the singular point, often the path
integral alone is computed in a plane perpendicular to the crack front, i.e. the J

path
X1

.
The J

path
X1

-integral has an O(R2) dependency, which is demonstrated by plotting in

Figure 10 the relative error of the numeric calculation of J
path
X1

( 100 · (JX1 −J
path
X1

)

JX1
), at

different values of R ’s for example problems (B)− (C), and (E)− (F ).
Using Richardson’s extrapolation with the remainder behaving as O(R2) for

numeric J
path
X1

at decreasing radii, one may obtains J
path
X1

|R→0 = JX1 . In Tables 2–5
we demonstrate the good results obtained by Richardson’s extrapolation for example
problems (B)−(C) and (E)−(F ).

3.3. The compact tension specimen - an example problem of engineering
importance

As an example of engineering relevance, we consider the computation of JX1 at
two arbitrary points along the crack front of a compact tension specimen (CTS).

Figure 9. Relative error of JX1 computed numerically at different paths for example problems
(A)–(F ) .
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Figure 10. Relative error of J
path
X1

for example problems (B)–(C) , and (E)–(F ) .

Consider the classical CTS as shown in Figure 11. We select the length units in the
figure to be [cm], however any other units may be chosen. For simplicity the units
of material properties λ, µ and E are [ N

cm2 ] , ( λ=0.5769 , µ=0.3846 , E =1, ν =
0.3 ), and therefore the units of JX3 integral and KI are [ N

cm ] and N
cm2

√
cm, respec-

tively. The CTS is subject to bearing loads at the tearing holes having an equiva-
lent force in the X2 direction and constant in X3 direction, as presented in Fig-
ure 12. All other faces are traction free. The thickness of the specimen is 2 ranging
from −1<X3 <1 . The specimen is subjected to a tension load of 100 [N] such that
only Mode I is excited along the crack front. Although the boundary conditions
and geometry is independent of X3 , due to the vertex singularities and the free faces
at X3 =±1 the solution is X3 dependent and approximating it by a 2-D plane strain
solution results in modeling-errors.

The CTS is discretized by using a p -FEM mesh, with geometrical progression
towards the singular edge with a factor of 0.15 where the smallest layer in the vicin-
ity of the edge is at r =0.15. In X3 direction we also use a mesh graded in a geo-
metrical progression close to the vertex singularity at X3 =±1. Smallest layer in the
vicinity of the vertex is −1 < X3 < −1 + 0.152 , 1 < X3 < 1 − 0.152. A finite element
analysis was performed, increasing the polynomial order of the elements from p =1
to p =7. At p =7 the estimated relative error in energy norm is 2.52%.

The values of JX1 , J
path
X1

and J area
X1

using FE solution at p=7 for different R -
values at two selected points X3 = −0.2 and X3 = −0.4 are summarized in Table
6. The smallest radius was chosen to be R = 0.2 because the smallest elements
in the vicinity of the singular edge are of radius of 0.15 and the numerical solu-
tion in these elements are of low accuracy. The maximum value of JX1 at X3 =
−0.2 is JX1(X3 =−0.2)|R=0.2 =34397.25567 whereas the minimum value is JX1(X3 =
−0.2)|R=0.3 =34178.97096 . The relative error between these two values is:
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Table 2. Example problem (B) : Richardson extrapolation. J
(B)

X1
(−0.2)=19.48752.

R J
path
X1

(−0.2)

R =0.80 25.07020
19.37594

R =0.70 23.73561 19.76433
19.54521 19.51013

R =0.60 22.62387 19.61094 19.02800
19.57725 19.15469 19.75347

R =0.50 21.69296 19.30749 19.63630
19.42837 19.53959

R =0.40 20.87771 19.47874
19.46031

R =0.30 20.25760

Table 3. Example problem (C) : Richardson extrapolation. J
(C)

X1
(−0.2)=20.80834.

R J
path
X1

(−0.2)

R =0.80 36.58996
27.64889

R =0.70 34.49440 20.82879
24.67647 20.95895

R =0.60 31.88964 20.90734 20.43340
22.83948 20.57150 20.93766

R =0.50 29.12431 20.68397 20.85622
21.64991 20.79904

R =0.40 26.43353 20.76888
21.09129

R =0.30 24.09630

Table 4. Example problem (E) : Richardson extrapolation. J
(E)

X1
(−0.2)=−5.18898.

R J
path
X1

(−0.2)

R =0.80 −4.28200
−5.16507

R =0.70 −4.48897 −5.23855
−5.19709 −5.18768

R =0.60 −4.67684 −5.20785 −5.11896
−5.20234 −5.13702 −5.22808

R =0.50 −4.83741 −5.16074 −5.21046
−5.17938 −5.19571

R =0.40 −4.96052 −5.18654
−5.18392

R =0.30 −5.05826
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Table 5. Example problem (F ) : Richardson extrapolation. J
(F)

X1
(−0.2)=−5.540680.

R J
path
X1

(−0.2)

R =0.80 −1.00392
−5.89582

R =0.70 −2.15046 −5.59045
−5.76273 −5.53685

R =0.60 −3.10882 −5.55811 −5.47049
−5.66300 −5.48793 −5.58633

R =0.50 −3.88926 −5.51143 −5.56762
−5.57935 −5.55162

R =0.40 −4.49770 −5.54108
−5.55509

R =0.30 −4.96031

Figure 11. Dimensions of CTS. The thickness of the specimen is 2 ranging from −1<X3 <1.

100(JX1 |max −JX1 |min)

JX1 |max
= 100(34397.25567−34178.97096)

34397.25567
=0.63460% (64)

thus the relative error is less than 1% (recall that estimated relative error in energy
norm in the FE analysis is 2.52%).

The maximum/minimum values of JX1 at X3 =−0.4 are JX1(X3 =−0.4)|R=0.2 =
33812.02876 and 33602.06610. The relative error between these two values is:

100(JX1 |max −JX1 |min)

JX1 |max
= 100(33812.02876−33602.06610)

33812.02876
=0.62097% (65)

again the relative error is less than 1%.
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Figure 12. p -FEM model of the CTS with a bearing load (the loading at the upper hole is as in
the shown lower hole, in the opposite direction).

Table 6. Numerical values of JX1 , J
path
X1

and J area
X1

at X3 =−0.2 and X3 =−0.4 for the CTS.

Numerical results, X3 =−0.2 Numerical results, X3 =−0.4

JX1 J
path
X1

J area
X1

JX1 J
path
X1

J area
X1

R =0.85 34346.76585 32387.57008 −1959.19578 33772.13377 32073.86886 −1698.26491
R =0.80 34323.39161 32480.46959 −1842.92202 33749.77839 32122.41412 −1627.36426
R =0.75 34287.64206 32565.91838 −1721.72368 33713.12905 32163.75753 −1549.37152
R =0.70 34258.20391 32667.72166 −1590.48225 33680.92656 32222.75233 −1458.17423
R =0.65 34242.12139 32788.89236 −1453.22903 33660.88911 32303.26426 −1357.62485
R =0.60 34243.44680 32931.95563 −1311.49117 33658.67247 32409.11732 −1249.55515
R =0.55 34279.14826 33108.72044 −1170.42783 33690.51300 32552.99582 −1137.51718
R =0.50 34286.36396 33265.86787 −1020.49609 33706.66013 32683.32129 −1023.33884
R =0.45 34304.05709 33412.78316 −891.27393 33724.30692 32808.74824 −915.55868
R =0.40 34276.35140 33511.31953 −765.03187 33696.70770 32891.96010 −804.74760
R =0.35 34233.05917 33596.36112 −636.69803 33658.24510 32966.53911 −691.70599
R =0.30 34178.97096 33677.65453 −501.31644 33602.06610 33041.70858 −560.35752
R =0.25 34281.17603 33896.62084 −384.55519 33700.45273 33256.69113 −443.76161
R =0.20 34397.25567 34120.94327 −276.41240 33812.02876 33482.75676 −329.27201

4. Summary and conclusion

The extension of the Cherepanov–Rice J integral to three dimensional domains,
resulting in a path-area integral evaluated at a point s along the crack front JX1(s),
has been extensively used to compute edge stress intensity functions at any point s .
Past derivations assume either a plane stress/strain situation, or a restriction on the
integration path such that R →0 to ensure it’s path independency.

Herein we have shown that for more general three-dimensional states of stress
under mode I loading, JX1(s) is a path-area-independent integral, hence, its use is
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advocated. We have used the exact 3-D asymptotic solution in the vicinity of a crack
front in a three-dimensional elastic domain derived explicitly following the general
framework in Costabel et al. (2004) in order to check path independency.

Although one may estimate pointwise edge stress intensity functions at point s

along the crack front by equating the JX1(s) -integral to the pointwise energy release
rate (under the assumption of plane strain), this connection for 3-D domains has not
been yet validated by a proof (to our best knowledge). Nevertheless, numerical evi-
dence suggests that this relationship may be provable.

Using the finite element method in conjunction with Richardson’s extrapolation
one may compute the path integral JX1(s)

path alone at decreasing values of R and
extrapolate to the limit R→0. In this case the path-dependent JX1(s)

path integral con-
verges to JX1(s) as R →0.
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Appendix A: The 2-D J -integral path independency

In order to show the path independency of J , let us choose a close path such as
�∗ = �1 + �2 + �3 + �4 , enclosing an area A(�∗) , see Figure 13. By using Green’s
theorem equation (1) becomes:

∫
�∗

(WdX2 −T · ∂1Uds)=
∫

A(�∗)

(
∂1W − ∂γ

(
σβγ ∂1Uβ

))
dX1dX2. (A.1)

Figure 13. Two dimensional domain with a crack. �∗ is a close path enclosing an area A(�∗) .
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Using the chain rule, the strain energy density (first term of the area integral in (A.1))
is:

∂1W = ∂W

∂εβγ

· ∂εβγ

∂X1
=σβγ ∂1εβγ . (A.2)

Substituting relation (A.2) into (A.1) and using the symmetric relation of the stress
tensor (σβγ =σγβ ), the area integral is reduced to:

∫
�∗

(WdX2 −T · ∂1Uds)=
∫

A(�∗)

(
σβγ ∂γ

(
∂1Uβ

)− ∂γ

(
σβγ ∂1Uβ

))
dX1dX2 (A.3)

because of the equilibrium equation without body forces, ∂γ σβγ =0, the area integral
vanishes, so:

∫
�∗

(WdX2 −T · ∂1Uds)=0. (A.4)

The path integrals over �2 and �4 vanish because dX2 = 0 and either T = 0 or
U = 0 so that ∂1U = 0 on both paths. By changing the direction of integration on
�3 , equation (A.4) is simplified:

∫
�1

(WdX2 −T · ∂1Uds)=
∫

�3

(WdX2 −T · ∂1Uds)≡J. (A.5)

The paths �1 and �3 are randomly selected, so the right hand side as well as the
left hand side of relation (A.5) may be considered as an invariant where � is a path
in the domain which starts at one edge and ends at the other edge of the crack.

Appendix B: Displacements, strains and stresses in Cartesian coordinates for example
problems (A)−(F )

The expressions for the computation of the JX1(s)-integral are given in Polar coor-
dinate system (r, θ̃ ,X3) . Therefore, we provide herein the displacements, strains and
stresses in the required system.

B. 1. Displacements, strains and stresses for example problem (A)

U
(A)

1

(
r, θ̃ ,X3

)
= r

1
2

(
2.6 cos

(
1
2
θ̃

)
− cos

(
3
2
θ̃

))

U
(A)

2

(
r, θ̃ ,X3

)
= r

1
2

(
4.6 sin

(
1
2
θ̃

)
− sin

(
3
2
θ̃

))
(B.1)

U
(A)

3

(
r, θ̃ ,X3

)
= 0



Path independency of the point-wise J integral in 3-D 27

ε
(A)

11

(
r, θ̃ ,X3

)
= r− 1

2

(
0.3 cos

(
1
2
θ̃

)
+0.5 cos

(
5
2
θ̃

))

ε
(A)

22

(
r, θ̃ ,X3

)
= r− 1

2

(
1.3 cos

(
1
2
θ̃

)
−0.5 cos

(
5
2
θ̃

))

ε
(A)

33

(
r, θ̃ ,X3

)
= 0 (B.2)

ε
(A)

12

(
r, θ̃ ,X3

)
= r− 1

2

(
−0.5 sin

(
1
2
θ̃

)
+0.5 sin

(
5
2
θ̃

))

ε
(A)

13

(
r, θ̃ ,X3

)
= 0

ε
(A)

23

(
r, θ̃ ,X3

)
= 0

and

σ
(A)

11

(
r, θ̃ ,X3

)
= r− 1

2

(
1.153845 cos

(
1
2
θ̃

)
+0.384615 cos

(
5
2
θ̃

))

σ
(A)

22

(
r, θ̃ ,X3

)
= r− 1

2

(
1.923075 cos

(
1
2
θ̃

)
−0.384615 cos

(
5
2
θ̃

))

σ
(A)

33

(
r, θ̃ ,X3

)
= r− 1

2 0.923076 cos
(

1
2
θ̃

)
(B.3)

σ
(A)

12

(
r, θ̃ ,X3

)
= r− 1

2

(
−0.384615 sin

(
1
2
θ̃

)
+0.384615 sin

(
5
2
θ̃

))

σ
(A)

13

(
r, θ̃ ,X3

)
= 0

σ
(A)

23

(
r, θ̃ ,X3

)
= 0

B. 2 . Displacements, strains and stresses for example problem (B)

U
(B)

1

(
r, θ̃ ,X3

)
= r

1
2 (1−X3)

(
2.6 cos

(
1
2
θ̃

)
− cos

(
3
2
θ̃
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(B)
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r, θ̃ ,X3

)
= r

1
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(
4.6 sin
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2
θ̃

)
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(
3
2
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(B.4)

U
(B)

3
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r, θ̃ ,X3
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2 cos
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1
2
θ̃
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−3.066666 cos
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(
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B. 3. Displacements, strains and stresses for example problem (C)
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B. 4. Displacements, strains and stresses for example problem (D)
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Appendix C: Numerical and exact values of J
path
X1

, J area
X1

and JX1 computed at
X3=−0.2 for example problems (A)–(F)

Table C1. Numerical and exact values of J
path(A)

X1
, J

area(A)

X1
and J

(A)

X1
computed at X3 =−0.2.

J
path
X1

J area
X1

JX1

Exact numeric % Error Exact numeric Exact numeric % Error

R =0.85 13.53300 13.54290 −0.07315 0 −0.00002 13.53300 13.54292 −0.07332
R =0.80 13.53300 13.54487 −0.08770 0 −0.00010 13.53300 13.54496 −0.08842
R =0.75 13.53300 13.52752 0.04047 0 −0.00007 13.53300 13.52759 0.03995
R =0.70 13.53300 13.52562 0.05453 0 0.00002 13.53300 13.52560 0.05470
R =0.65 13.53300 13.52719 0.04289 0 0.00011 13.53300 13.52709 0.04368
R =0.60 13.53300 13.53765 −0.03436 0 0.00013 13.53300 13.53752 −0.03340
R =0.55 13.53300 13.53909 −0.04503 0 0.00017 13.53300 13.53892 −0.04375
R =0.50 13.53300 13.55302 −0.14796 0 0.00010 13.53300 13.55393 −0.15467
R =0.45 13.53300 13.53890 −0.04357 0 −0.00005 13.53300 13.53895 −0.04396
R =0.40 13.53300 13.53269 0.00228 0 −0.00019 13.53300 13.53288 0.00085
R =0.35 13.53300 13.52421 0.06498 0 −0.00004 13.53300 13.52425 0.06468
R =0.30 13.53300 13.52422 0.06489 0 −0.00002 13.53300 13.52424 0.06473
R =0.25 13.53300 13.52468 0.06146 0 0.00006 13.53300 13.52462 0.06190
R =0.20 13.53300 13.53017 0.02094 0 0.00002 13.53300 13.53014 0.02109
R =0.15 13.53300 13.53003 0.02194 0 0.00006 13.53300 13.52997 0.02238
R =0.10 13.53300 13.51938 0.10060 0 −0.00001 13.53300 13.51939 0.10054
R =0.05 13.53300 13.48695 0.34030 0 0.00000 13.53300 13.48695 0.34031

Table C2. Numerical and exact values of J
path(B)

X1
, J

area(B)

X1
and J

(B)

X1
computed at X3 =−0.2.

J
path
X1

J area
X1

JX1

Exact Numeric % Error Exact Numeric % Error Exact Numeric % Error

R =0.85 25.77311 25.78427 −0.04331 6.28559 6.28607 −0.00751 19.48752 19.49821 −0.05485
R =0.80 25.05538 25.07063 −0.06085 5.56786 5.56564 0.04000 19.48752 19.50499 −0.08967
R =0.75 24.38115 24.37309 0.03303 4.89363 4.89316 0.00949 19.48752 19.47993 0.03894
R =0.70 23.75041 23.73566 0.06211 4.26289 4.26294 −0.00115 19.48752 19.47272 0.07595
R =0.65 23.16318 23.15176 0.04928 3.67566 3.67440 0.03414 19.48752 19.47736 0.05213
R =0.60 22.61944 22.62337 −0.01736 3.13192 3.13211 −0.00602 19.48752 19.49126 −0.01918
R =0.55 22.11920 22.12737 −0.03693 2.63168 2.63195 −0.01021 19.48752 19.49542 −0.04054
R =0.50 21.66246 21.69289 −0.14046 2.17495 2.17436 0.02679 19.48752 19.51853 −0.15913
R =0.45 21.24922 21.25777 −0.04022 1.76171 1.76074 0.05482 19.48752 19.49703 −0.04881
R =0.40 20.87948 20.87820 0.00616 1.39197 1.39086 0.07940 19.48752 19.48734 0.00093
R =0.35 20.55324 20.53975 0.06564 1.06572 1.06468 0.09764 19.48752 19.47507 0.06389
R =0.30 20.27050 20.25741 0.06457 0.78298 0.78270 0.03540 19.48752 19.47471 0.06574
R =0.25 20.03126 20.01808 0.06578 0.54374 0.54379 −0.00951 19.48752 19.47429 0.06788
R =0.20 19.83551 19.83177 0.01887 0.34799 0.34777 0.06491 19.48752 19.48400 0.01804
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Table C2. Continued.

J
path
X1

J area
X1

JX1

Exact Numeric % Error Exact Numeric % Error Exact Numeric % Error

R =0.15 19.68326 19.67844 0.02452 0.19575 0.19545 0.15129 19.48752 19.48299 0.02324
R =0.10 19.57452 19.55443 0.10261 0.08700 0.08679 0.24407 19.48752 19.46765 0.10198
R =0.05 19.50927 19.44247 0.34241 0.02175 0.02167 0.35050 19.48752 19.42079 0.34240

Table C3. Numerical and exact values of J
path(C)

X1
, J

area(C)

X1
and J

(C)

X1
computed at X3 =−0.2.

J
path
X1

J area
X1

JX1

Exact Numeric % Error Exact Numeric % Error Exact Numeric % Error

R =0.85 37.34620 37.32753 0.04999 16.53786 16.53933 −0.00886 20.80834 20.78820 0.09677
R =0.80 36.60787 36.60013 0.02114 15.79953 15.79001 0.06023 20.80834 20.81012 −0.00855
R =0.75 35.64419 35.62643 0.04982 14.83585 14.82871 0.04811 20.80834 20.79772 0.05104
R =0.70 34.50581 34.48207 0.06881 13.69747 13.69433 0.02293 20.80834 20.78774 0.09900
R =0.65 33.24010 33.22225 0.05369 12.43176 12.42262 0.07356 20.80834 20.79964 0.04183
R =0.60 31.89117 31.88967 0.00470 11.08283 11.08173 0.00993 20.80834 20.80794 0.00192
R =0.55 30.49986 30.50357 −0.01215 9.69152 9.69116 0.00371 20.80834 20.81240 −0.01954
R =0.50 29.10374 29.13655 −0.11273 8.29541 8.29329 0.02553 20.80834 20.84327 −0.16786
R =0.45 27.73713 27.74181 −0.01687 6.92879 6.92689 0.02747 20.80834 20.81492 −0.03163
R =0.40 26.43105 26.43627 −0.01972 5.62272 5.61993 0.04960 20.80834 20.80634 0.00960
R =0.35 25.21329 25.19746 0.06280 4.40495 4.39910 0.13290 20.80834 20.79836 0.04796
R =0.30 24.10834 24.09450 0.05743 3.30000 3.29699 0.09138 20.80834 20.79751 0.05204
R =0.25 23.13744 23.12019 0.07459 2.32911 2.32697 0.09178 20.80834 20.79322 0.07267
R =0.20 22.31857 22.30964 0.04003 1.51023 1.50953 0.04639 20.80834 20.80011 0.03957
R =0.15 21.66642 21.65805 0.03864 0.85808 0.85739 0.08085 20.80834 20.80066 0.03690
R =0.10 21.19243 21.16952 0.10813 0.38409 0.38334 0.19662 20.80834 20.78618 0.10650
R =0.05 20.90477 20.83412 0.33798 0.09643 0.09588 0.57275 20.80834 20.73824 0.33689

Table C4. Numerical and exact values of J
path(D)

X1
, J

area(D)

X1
and J

(D)

X1
computed at X3 =−0.2.

J
path
X1

J area
X1

JX1

Exact numeric % Error Exact numeric Exact numeric % Error

R =0.85 −3.60346 −3.60566 −0.06101 0 0.00005 −3.60346 −3.60571 −0.06245
R =0.80 −3.60346 −3.60541 −0.05415 0 0.00007 −3.60346 −3.60549 −0.05623
R =0.75 −3.60346 −3.60329 0.00473 0 0.00007 −3.60346 −3.60336 0.00281
R =0.70 −3.60346 −3.60176 0.04731 0 0.00004 −3.60346 −3.60180 0.04618
R =0.65 −3.60346 −3.60164 0.05065 0 0.00000 −3.60346 −3.60164 0.05054
R =0.60 −3.60346 −3.60349 −0.00071 0 −0.00003 −3.60346 −3.60346 0.00019
R =0.55 −3.60346 −3.60542 −0.05425 0 −0.00002 −3.60346 −3.60539 −0.05361
R =0.50 −3.60346 −3.60626 −0.07765 0 0.00001 −3.60346 −3.60627 −0.07787
R =0.45 −3.60346 −3.60525 −0.04962 0 0.00005 −3.60346 −3.60530 −0.05099
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Table C4. Continued.

J
path
X1

J area
X1

JX1

Exact numeric % Error Exact numeric Exact numeric % Error

R =0.40 −3.60346 −3.60275 0.01979 0 0.00005 −3.60346 −3.60280 0.01849
R =0.35 −3.60346 −3.60048 0.08272 0 0.00002 −3.60346 −3.60050 0.08216
R =0.30 −3.60346 −3.60158 0.05222 0 0.00000 −3.60346 −3.60158 0.05218
R =0.25 −3.60346 −3.60756 −0.11379 0 −0.00002 −3.60346 −3.60755 −0.11332
R =0.20 −3.60346 −3.60614 −0.07426 0 −0.00001 −3.60346 −3.60612 −0.07375
R =0.15 −3.60346 −3.60497 −0.04185 0 0.00000 −3.60346 −3.60497 −0.04190
R =0.10 −3.60346 −3.60554 −0.05756 0 0.00000 −3.60346 −3.60554 −0.05755
R =0.05 −3.60346 −3.60685 −0.09395 0 0.00000 −3.60346 −3.60685 −0.09394

Table C5. Numerical and analytical values of J
path(E)

X1
, J

area(E)

X1
and J

(E)

X1
computed at X3 =−0.2.

J
path
X1

J area
X1

JX1

Exact Numeric % Error Exact Numeric % Error Exact Numeric % Error

R =0.85 −4.16102 −4.16478 −0.09037 1.02797 1.02785 0.01135 −5.18899 −5.19263 −0.07022
R =0.80 −4.27840 −4.28200 −0.08420 0.91059 0.91073 −0.01564 −5.18899 −5.19273 −0.07217
R =0.75 −4.38866 −4.38847 0.00442 0.80032 0.80035 −0.00375 −5.18899 −5.18882 0.00317
R =0.70 −4.49182 −4.48897 0.06340 0.69717 0.69710 0.01054 −5.18899 −5.18606 0.05630
R =0.65 −4.58786 −4.58503 0.06166 0.60113 0.60106 0.01177 −5.18899 −5.18609 0.05588
R =0.60 −4.67678 −4.67684 −0.00125 0.51221 0.51197 0.04562 −5.18899 −5.18881 0.00338
R =0.55 −4.75859 −4.76133 −0.05762 0.43040 0.43013 0.06239 −5.18899 −5.19146 −0.04767
R =0.50 −4.83329 −4.83741 −0.08524 0.35570 0.35554 0.04352 −5.18899 −5.19295 −0.07641
R =0.45 −4.90087 −4.90361 −0.05588 0.28812 0.28813 −0.00339 −5.18899 −5.19173 −0.05297
R =0.40 −4.96134 −4.96052 0.01656 0.22765 0.22774 −0.03864 −5.18899 −5.18825 0.01414
R =0.35 −5.01469 −5.01054 0.08292 0.17429 0.17429 0.00285 −5.18899 −5.18482 0.08023
R =0.30 −5.06093 −5.05826 0.05292 0.12805 0.12800 0.03927 −5.18899 −5.18626 0.05259
R =0.25 −5.10006 −5.10595 −0.11542 0.08892 0.08882 0.12060 −5.18899 −5.19477 −0.11137
R =0.20 −5.13207 −5.13603 −0.07699 0.05691 0.05681 0.17794 −5.18899 −5.19284 −0.07419
R =0.15 −5.15697 −5.15919 −0.04295 0.03201 0.03194 0.23581 −5.18899 −5.19113 −0.04123
R =0.10 −5.17476 −5.17768 −0.05641 0.01423 0.01416 0.45926 −5.18899 −5.19184 −0.05500
R =0.05 −5.18543 −5.19029 −0.09377 0.00356 0.00352 1.17840 −5.18899 −5.19381 −0.09290

Table C6. Numerical and exact values of J
path(F )

X1
, J

area(F )

X1
and J

(F)

X1
computed at X3 =−0.2.

J
path
X1

J area
X1

JX1

Exact Numeric % Error Exact Numeric % Error Exact Numeric % Error

R =0.85 −4.16102 −4.16478 −0.09037 1.02797 1.02785 0.01135 −5.18899 −5.19263 −0.07022
R =0.80 −4.27840 −4.28200 −0.08420 0.91059 0.91073 −0.01564 −5.18899 −5.19273 −0.07217
R =0.75 −4.38866 −4.38847 0.00442 0.80032 0.80035 −0.00375 −5.18899 −5.18882 0.00317
R =0.70 −4.49182 −4.48897 0.06340 0.69717 0.69710 0.01054 −5.18899 −5.18606 0.05630
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Table C6. Continued.

J
path
X1

J area
X1

JX1

Exact Numeric % Error Exact Numeric % Error Exact Numeric % Error

R =0.65 −4.58786 −4.58503 0.06166 0.60113 0.60106 0.01177 −5.18899 −5.18609 0.05588
R =0.60 −4.67678 −4.67684 −0.00125 0.51221 0.51197 0.04562 −5.18899 −5.18881 0.00338
R =0.55 −4.75859 −4.76133 −0.05762 0.43040 0.43013 0.06239 −5.18899 −5.19146 −0.04767
R =0.50 −4.83329 −4.83741 −0.08524 0.35570 0.35554 0.04352 −5.18899 −5.19295 −0.07641
R =0.45 −4.90087 −4.90361 −0.05588 0.28812 0.28813 −0.00339 −5.18899 −5.19173 −0.05297
R =0.40 −4.96134 −4.96052 0.01656 0.22765 0.22774 −0.03864 −5.18899 −5.18825 0.01414
R =0.35 −5.01469 −5.01054 0.08292 0.17429 0.17429 0.00285 −5.18899 −5.18482 0.08023
R =0.30 −5.06093 −5.05826 0.05292 0.12805 0.12800 0.03927 −5.18899 −5.18626 0.05259
R =0.25 −5.10006 −5.10595 −0.11542 0.08892 0.08882 0.12060 −5.18899 −5.19477 −0.11137
R =0.20 −5.13207 −5.13603 −0.07699 0.05691 0.05681 0.17794 −5.18899 −5.19284 −0.07419
R =0.15 −5.15697 −5.15919 −0.04295 0.03201 0.03194 0.23581 −5.18899 −5.19113 −0.04123
R =0.10 −5.17476 −5.17768 −0.05641 0.01423 0.01416 0.45926 −5.18899 −5.19184 −0.05500
R =0.05 −5.18543 −5.19029 −0.09377 0.00356 0.00352 1.17840 −5.18899 −5.19381 −0.09290
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