
International Journal of Fracture 125: 307–333, 2004.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

Failure criteria for brittle elastic materials

ZOHAR YOSIBASH, ARIE BUSSIBA and ILAN GILAD
Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering, Ben-Gurion
University of the Negev, Beer-Sheva 84105, Israel. E-mail: zohary@bgumail.bgu.ac.il

Received 28 November 2002; accepted in revised form 8 December 2003

Abstract. The validity of several known failure initiation criteria at reentrant corners in brittle elastic materials is
examined and a simple one is proposed. Their predictions, under mode I stress field, are compared to experimental
observations carried out on PMMA (polymer) and Alumina-7%Zirconia (ceramic) V-notched specimens. Because
all realistic V-notched reentrant corners are blunt, a detailed experimental procedure has been followed, focusing
on specimens with different notch tip radii. It is demonstrated that by assuming a sharp V-notch, some failure
criteria predict reasonably well the experimental findings, and that corrections are needed in order for these to take
into consideration the realistic radius at the notch tip.
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Abbreviations: SED – strain energy density; GSIF – Generalized stress intensity factor.

1. Introduction

The successful use of linear elastic fracture mechanics theory in predicting brittle fracture
in isotropic cracked solids is attributed to the successful correlation of a single parameter,
namely the stress intensity factor, with experimental findings. For cracks in two-dimensional
domains made of isotropic materials, it is associated with the first coefficient in the expansion
of the displacements field in the vicinity of a crack tip, given by the following expression (see
Williams, 1952):
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where (r, θ) are cylindrical coordinates of a system located in the crack tip and it involves
only integer and half-integer powers. The first two exponents α1 and α2 are equal to 1/2, and
the functions u

(�)

1 (θ) and u
(�)

2 (θ) are known explicitly. L may be taken as large as required,
and the remainder ureg is a vector of smooth functions. Usually ‘mode I’ stress intensity factor,
KI = A1 ∗ √

2π associated with the ‘symmetric crack mode’, determines the onset of failure:
i.e. when it equals KI c (a material dependent parameter) fracture occurs. This onset of failure
criteria has been first suggested by Irwin (1957). The feasibility of using the single parameter
KI c (material dependent value) to determine the onset of failure is a result of the universal
nature of the stress tensor in the vicinity of the crack tip. For crack tips, under mode I loading,
a duality exists between the Irwin criterion and Griffith criterion. The later is based on a critical
value Gc of the energy release rate G defined as the derivative of the potential energy with
respect to the crack length (Griffith, 1921).
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Recently, failure laws for two-dimensional domains with V-notches, multi-material inter-
faces or orthotropic materials have attracted major interest because of the relation to composite
materials and electronic devices. A sufficiently simple and reliable condition for predicting
failure initiation (crack formation) in the above mentioned cases, involving singular points, is
still a topic of active research and interest. At such points the stress tensor is infinity under
the assumption of linear elasticity. A typical example of a singular point is the reentrant V-
notch tip, for which a crack tip is a particular case when the V-notch opening angle is of zero
degrees.

For these general singular points, namely, singularities associated with corners, non-iso-
tropic multi-material interfaces and abrupt changes in boundary conditions, the linear elastic
displacements field in the vicinity of the singular point is expressed by:
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where α� (denoted by eigen-values) may be any number greater than zero, or complex numbers
with the real part greater than zero and under special circumstances, where m �= 0, power-
logarithmic stress singularity may exist (as shown in (Dempsey, 1995) these singularities
typically occur on transition loci separating regions of real and complex eigen-values). These
cases when power-logarithmic stress singularities exist are not addressed herein, and in this
case we consider expression (1).

In the aforementioned, to our best knowledge, a small volume of research activity has been
conducted in the past for establishing a failure law applicable to brittle materials. The works
of Dunn et al. (1997a, b) provide experimental correlation of A1 (and possibly A2) to fracture
initiation in the case that α1 and α2 are real and the singular points are V-notches in isotropic
materials. Hattori et al. (1989, 1991) propose a two-parameter failure law based on A1 and the
exponent α1 for V-notch configurations, and demonstrated that a good correlation is achieved
with experimental results. Reedy and Guess (1995, and the references therein), correlated
failures of adhesive-bonded butt tensile joints with A1. In all these cases a V-notch configura-
tion is addressed, and no special attention is devoted to the connection of A�, α� and u(�)(θ).
Novozhilov (1969) proposed a simple failure criterion based on the average normal stress
along the anticipated path of the crack formation. The validity of Novozhilov criterion has
been examined by Seweryn (1994) by experiments performed on V-notch samples. Leguillon
(2001, 2002) proposed a criterion for failure initiation at a sharp V-notch based on a combin-
ation of the Griffith energy criterion for a crack, and the strength criterion for a straight edge.
This approach provides a criterion similar to Novozhilov criterion, and shows good agreement
with experimental observations in Dunn et al. (1997b). A very recent work by Seweryn and
Lukaszewicz (2002) addresses some of the failure criteria in the vicinity of a V-notch tip
under mixed mode loading. Herein, we examine two of the most promising failure criteria
(and discuss them in more detail in the sequel), the one proposed by Leguillon based on the
strain energy release rate, and the second based on averaged stress by Novoshilov–Seweryn,
and suggest a simplified failure criteria based on the strain energy density. This criterion was
presented in Amar and Yosibash (2002), denoted as the SED criterion. It proposes as the
failure criterion the critical value of the average strain energy in a sector in the vicinity of
the singular point over the volume of this sector. Same criterion has been also studied by
Lazzarin and Zambardi (2001), denoted in their paper as the ‘finite-volume-energy’ criterion,
and good correlation to experimental data of other publications is demonstrated. The SED is
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rigourously treated herein from the mathematical point of view, bringing its formulation to a
contour integral using the expansion in (1), and validated by our own experiments. Although
we denote this failure criterion as the SED criterion, it is a different criterion as the SED
criterion by Sih (see, e.g. Sih and Macdonald, 1974), as will be explained in Section 2.

Cases when α1 is complex are not addressed either. Some possible definition of complex
stress intensity factors associated with interface cracks (when α1 is complex) are given by Rice
(1988) and Suo (1989). The complex representation of the displacements field in the neigh-
borhood of a general two-dimensional singular point poses several difficulties in establishing
a failure law. Therefore, it is desirable that any proposed failure criterion has the following
properties:
(a) Independent of the units used. I.e., given the criterion for two different opening angles

(ω1 and ω2), in a unit system, let us say F1 and F2, then a change of units must not change
the ratio F1/F2.

(b) Uniquely applicable to real and complex eigen-values (as in the case of cracks in a bi-
material interface).

(c) Uniquely applicable to single and mixed mode loading.
(d) Degenerate to known failure criteria for cracks when reentrant V-notch angle is zero, and

to strength criteria for straight edge (V-notch angle of 180◦).
As in reality no V-notch tip is sharp, but has a rounded (finite) tip, so our purpose is to ex-

amine quantitatively the influence of the V-notch tip radius on failure initiation. We perform a
parametric examination on the deviation of the predicted values (by the failure laws, assuming
a sharp tip) compared to experimental observations.

The paper is organized as follows: We start with notations and a short description of
the functional representation of the solution in the neighborhood of a singular point. Then
review three published failure initiation criteria, compare between them, including their ad-
vantages and drawbacks. In Section 2 we formulate and discuss in details the ‘Strain Energy
Density’ (SED) failure criterion. The validity of the various criteria is investigated by com-
parison to experimental observations. Sets of experiments performed on composite ceramic
Alumina-7%Zirconia, and Poly-Methyl-Methacrylate (PMMA, or known as Plexiglass) V-
notched specimens are summarized in Section 3. These mimic 2-D domains under plane-strain
condition, made of brittle materials, and loaded so as to produce ‘mode I’ stress field in the
neighborhood of the singular point. The necessary information for the various failure criteria is
extracted from p-finite element analysis simulating the experimental data, and documented in
Section 4. Using the extracted information, the validity of the various failure laws in predicting
the experimental observations is investigated. Finally, conclusions are given in Section 5.

1.1. SINGULAR SOLUTIONS AND NOTATIONS

Consider a 2-D domain having a V-notch reentrant corner as described in Figure 1, assuming
that the V-notch tip is sharp, i.e. ρ = 0 (this assumption will be removed in the sequel). By
locating a cylindrical coordinate system in the V-notch tip, the displacements and stresses in
the vicinity of the singular point are represented by the asymptotic series (1) so the stresses
are given by :
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s
(�)
11 (θ)

s
(�)
22 (θ)

s
(�)
12 (θ)


 + σ reg =

L∑
�=1

A�r
α�−1s(�)(θ) + σ reg, (3)



310 Z. Yosibash et al.

Figure 1. The singular point and notations.

where A�’s depend on the loading and boundary conditions away from the singular point,
directions 1 and 2 mean x1 and x2, and σ reg is a regular stress tensor, remaining bounded as
r tends to zero. The eigen-pairs α�(≤ α�+1) and u(�)(θ) depend on the geometry, boundary
conditions and material properties in the vicinity of the singular point.

These eigen-pairs may be complex, in which case they appear in pairs of a complex number
and its conjugate. For example, assume the first eigen-pair is a complex number, i.e. α1 =
α�

1 + ıα�
1 and s(1)(θ) = s(1),� + ıs(1),� , so that α2 = α�

1 − ıα�
1 and s(2)(θ) = s(1),� − ıs(1),�

(ı
def=√−1). In this case, it is common to express the associated generalized stress intensity

factors as a complex number A1 + ıA2 and its conjugate A1 − ıA2. Denoting δ = α�
1 ln(r),

the stresses in series (1) take the form:
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(4)

Although some of the failure criteria can be generalized to these cases involving complex
eigen-pairs (like the Leguillon criterion and the SED criterion in the sequel), these are not
addressed herein.

There may be also situations for which power logarithmic singularities exist, i.e. terms of
the form rα� log r (see e.g. Dempsey, 1995), cases which will not be addressed herein either.

1.2. NOVOZHILOV–SEWERYN CRITERION

The failure criterion proposed by Novozhilov (1969) and expanded by Seweryn (1994), sug-
gests to consider the average normal stress along the anticipated path of the failure. So failure
occurs when the average stress equals a material dependent value, denoted by σc, which is the
stress at failure without the presence of a notch. A characteristic length scale is introduced,
denoted by d0, along which the average stress is considered. Let us assume that the failure
will occur along axis x2 in Figure 1. Based on (1), the average normal stress to axis x2 is σ11.
Integrating along a distance d0, the average stress is defined by:
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σc = 1

d0

∫ d0
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Assume that d0 � 1, then all terms for � ≥ 2 are negligible in comparison with the first term
in the series, so that (1) simplifies to:

σc = A1

α1
d

α1−1
0 s

(1)

11 (θ = 90◦). (6)

For the well-known particular case of a crack, failure occurs when

A1s
(1)
11 (θ = 90◦) = KIc√

2π
, (7)

where KIc
is the plane strain fracture toughness. Eliminating A1 from (7), and substituting

α1 = 1/2 in (6), one obtains:
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π

K2
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σ 2
c
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Coming back to (6), and substituting d0 from (8) we finally obtain:

A1s
(1)

11 (θ = 90◦) = α1σc

(
2√
2π

KIc

σc

)2−2α1

. (9)

In the sequel, the value A1s
(1)

11 (θ = 90◦) is called generalized stress intensity factor (GSIF),

and its value at failure is denoted by kc
def=GSIFcr .

The above criterion proposed by Novozhilov (1969) has the advantage of reducing to the
well known classical failure criterion for cracks, when α1 = 1/2:

A1s
(1)

11 (θ = 90◦) = KIc√
2π

and the usual strength criterion for a straight edge (when ω = π , so that α1 = 1):

A1s
(1)

11 (θ = 90◦) = σc

Seweryn (1994) examined the validity of Novozhilov’s failure criterion by performing
experiments on V-notch samples made of plexiglass and Dualuminum having opening angle
of ω = 20◦ to 180◦, with tip radius of ρ = 0.01 mm. Using the critical load at failure, the
generalized stress intensity factor at failure can be computed, and by using (9) one can predict
the fracture toughness:

KIc
=

√
2πσc

2

(
A1s

(1)

11 (θ = 90◦)
α1σc

) 1
2−2α1

. (10)

Because the KIc
value is not known, it has been computed from the results obtained for the

various opening angles. Table 1 summarizes the results reported by Seweryn (1994).
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Table 1. Values of (2π)1−αA1s
(1)
11 (θ = 90◦) [MPa m1−α] and KIc

[MPa
√

m] computed by (10) from
Seweryn (1994)

ω 20◦ 40◦ 60◦ 80◦ 100◦ 120◦ 140◦ 160◦

Plexiglass

Computed KIc
1.859 1.789 1.960 1.892 1.752 1.561 1.594 2.493

(2π)1−αA1s
(1)
11 (θ = 90◦) 1.866 1.851 2.167 2.436 3.059 4.347 8.861 28.60

Duraluminum

Computed KIc
53.39 55.85 56.67 56.24 56.10 53.40 49.62 53.18

(2π)1−αA1s
(1)
11 (θ = 90◦) 53.51 57.10 60.53 66.34 80.15 102.00 150.44 291.81

As can be noticed in Table 1, as the opening angle ω increases, the criterion’s validity
deteriorates. Very recently, the Novoshilov–Seweryn failure criterion has been extended to
mixed mode failure by Seweryn and Lukaszewicz (2002), where its validity compared to other
failure criteria in predicting the failure load and direction is demonstrated when compared to
experimental observations.

1.3. LEGUILLON CRITERION

Leguillon (2001, 2002) proposed a criterion for failure initiation at a sharp V-notch based
on a combination of the Griffith energy criterion for a crack, and the strength criterion for
a straight edge. This approach is based on the change of the potential energy in a notched
specimen due to a creation of a small crack in the direction θ0 which generates maximum
change in potential energy. Here as well, a characteristic length scale is introduced, which is
the length of the created crack �0:

�0 =
(
s
(1)
θθ (θ0)

)2

K(ω)

K2
Ic

σ 2
c

. (11)

For a V-notch in an isotropic material under symmetrical loading, the critical material de-
pendent parameter kc is given by:

kc
def=A1s

(1)
11 (θ = 90◦) =

(
Gc

K(ω)

)1−α1

σ 2α1−1
c , (12)

where Gc is the fracture energy per a unit surface (also denoted by toughness) and σc is the
1-D stress at brittle failure (strength), both being material properties. The parameter K(ω)

depends on the local geometry and boundary conditions in the neighborhood of the V-notch
tip, the eigen-value α and its corresponding eigen-function, and the material properties (E
and ν in isotropic materials) . It is important to realize that K(ω) is not the generalized stress
intensity factor for the V-notch, but is computed by an integration procedure as shown in the
appendix of (Leguillon, 2002). For example, in Table 2 by Leguillon (2002), the values of
K(ω) for a V-notch in PMMA which is an isotropic homogeneous material with E = 2.3 GPa
and ν = 0.36 are given, see Table 2.

Based on Table 2 and the expression for evaluating K(ω), for any traction free reentrant V-
notch configuration in an isotropic homogeneous material with new material properties Enew

and νnew the new values of K(ω) may be easily obtained:
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Table 2. Values of K(ω) as reported by Leguillon (2002)

ω 0◦ 30◦ 45◦ 60◦ 90◦ 120◦ 150◦ 165◦ 180◦

K(ω) 0.00248 0.00243 0.00242 0.00237 0.00212 0.00176 0.00128 0.00098 0.00069

Table 3. Values of K(ω) for Alumina-7%Zirconia

ω 30◦ 60◦ 90◦ 120◦

K(ω) 1.68683E-05 1.64518E-05 1.47164E-05 1.22174E-05

Knew(ω) = K(ω)
2.3

1 − 0.362

1 − (νnew)2

Enew
, Enew in GPa (13)

For example for Alumina-7%Zirconia with E ≈ 360 GPa and ν = 0.23, the new values for
K(ω) are given in Table 3.

Correlation of the current criterion with experimental observations in PMMA V-notched
specimens as well as in bi-material wedges shows a good agreement.

1.4. DUNN ET AL. CRITERION

Dunn et al. (1997b) proposed to use the V-notch generalized stress intensity factor (GSIF),
denoted by kc as the single parameter to be correlated to failures. kc values were obtained
at failure by using experiments done on PMMA specimens (Dunn et al., 1997b) and single
crystal Silicon (Suwito and Dunn, 1998) show reasonable similarity for sharp V-notch angles.
This method requires the evaluation of kc for each V-notch opening angle. Furthermore, its
applicability for large opening angle is questionable (as ω → π , approaching a straight
edge, the eigen-stresses tend to be a constant, thus the generalized stress intensity factor is
meaningless).

Although the addressed criteria provide good correlation to experimental observations,
there are some difficulties in applying them because:

(1) The units of the critical ‘stress intensity factor’ are somewhat entangled.
(2) It is difficult to generalize the methods to a mixed mode loading.
(3) The critical stress intensity factor (KIc) for the material of interest has to be known.
(4) A fracture stress σc has to be assumed. This value may be taken as σY (yield stress), and

for brittle materials it is supposed to be also the stress at fracture. However, even for brittle
materials, the stress at fracture is higher than the conventional definition of σY .

To overcome these difficulties, and provide a simpler failure criterion, we suggest the use
of a simpler concept in the next section.

2. The strain energy density (SED) criterion

It is conceivable to assume that failure initiates when the average elastic strain energy con-
tained in a sector having the singular point as its center, over the volume of this sector, reaches
a critical value. This averaged elastic strain energy density, which we denote by strain energy
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Figure 2. The SED domain of interest and notations.

density (SED), and Lazzarin and Zambardi (2001) denote by finite-volume-energy, reminds
the well known SED criterion by Sih and Macdonald (1974). However these are considerably
different in several respects. The SED of Sih is a pointwise value evaluated at any point on
an arc located at a radius R away from the crack tip and is usually applied to crack tip singu-
larities. Because it is a function of θ , a minimum value of Sih’s SED can be found at a given
angle θ∗. Thus, Sih’s SED may be used as a criterion for predicting the crack propagation dir-
ection, as well as a failure criterion. This pointwise minimum, correlated to a critical material
dependent parameter, is the failure criterion. The SED failure criterion proposed herein is an
avaraged value, is not aimed at predicting directions of crack propagation, but at predicting
failure initiation at a specific critical value independent of the opening angle of the V-notch
tip.

Consider a circular sector 
R of radius R centered in the singular point:


R
def={(r, θ)|0 ≤ r ≤ R, θ0 ≤ θ ≤ θ1},

with traction free boundary conditions on the faces intersecting in the singular point. See
Figure 2.

The elastic strain energy U(u)[R] in a 2-D domain of constant thickness b under the
assumption of plane-strain is defined as:

U(u)[R]def= 1
2b

�

R

σjkεjk d
 j, k = 1, 2, (14)

where summation notation is implied unless otherwise specified. Using the kinematic connec-
tions between strains and displacements εjk = 1

2 (∂juk + ∂kuj ), then using Green’s theorem
we transform the area integral in (14) into a boundary integral on ∂
R:

U(u)[R] = 1
2b

∫
∂
R

σjknkuj dS, (15)

here nj is the j th component of the outward normal vector to the boundary ∂
R. Along
the two straight lines 1 and 2 this integral is zero because of the traction free boundary
conditions. Reuse the strain-stress connection, we finally express the strain energy in 
R by a
1-D integral:

U(u)[R] = 1
2b

∫ θ1

θ0

[
σjknkuj

]
r=R

R dθ. (16)
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Note that on 3 the outward normal vector is (cos θ, sin θ), and using (1), (16) becomes:

U(u)[R]= 1
2b

∑
k,�

AkA�R
αk+α�
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θ0

[
s
(k)

11 (θ)u
(�)
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12 (θ)
(
u

(�)

1 (θ) sin θ+u
(�)

2 (θ) cos θ
)

+s
(k)

22 (θ)u
(�)

2 (θ) sin θ
]

dθ
(17)

For isotropic materials, with traction free boundary conditions in the neighborhood of the
singular point, the following orthogonality rule holds (see e.g. Yoshibash, 1994):∫ θ1

θ0

[
s
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11 u

(�)
1 cos θ + s
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12
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]
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(18)

which simplifies (17) to:

U(u)[R]= 1
2

∑
k

A2
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2αk

∫ θ1
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[
s
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11 u
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1 cos θ+s
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12
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)
+s
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22 u
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]
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(19)

We define the strain energy density (SED) as:

SED[R]def=U(u)[R]
b × 
R

so, using (19), we finally obtain:

SED[R] = 1

2π − ω

∑
k

A2
kR

2αk−2
∫ θ1

θ0

[
s
(k)

11 u
(k)

1 cos θ + s
(k)

12

(
u

(k)

1 sin θ + u
(k)

2 cos θ
)

+s
(k)

22 u
(k)

2 sin θ
]

dθ. (20)

The SED[R], depends of course on a typical length size R, and it should be small enough
so that 
R is within the K-dominance region, ensuring that the singular terms represent the
exact solution. To ensure that this holds, U(u)[R] is computed first by using (19), followed
by a second computation using the stress and strain tensors according to (14). If the two
computations provide different results, the domain 
R is too large, and only one term in the
asymptotic expansion does not represent well the stress field within the sector of radius R. On
the other hand, R should be large enough so it is larger compared to the plastic radius rp and
the V-notch tip radius ρ.

Of course, the value of SED[R] has to be in the range of the two extremes obtained for
ω = 0◦ (a crack) and ω = 180◦ (a straight edge). The expressions for SED[R]straight and
SED[R]crack in terms of KIc and σc are given in Appendix A, and as will be shown for the two
brittle materials used in our investigation SED[R]straight ≈ SED[R] ≈ SED[R]crack when R

is chosen properly. As will be shown in the sequel, for brittle materials, the upper and lower
restrictions on R can be met. Also, using KIc and σc, one can compute a material dependent
integration radius Rmat , so that the SED is independent of the opening angle ω (see derivation
in Appendix A), obtaining:

Rmat = (1 + ν)(5 − 8ν)

4π

(
KIc

σc

)2

. (21)
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Figure 3. Specimen geometry and loading configuration (FPB type) for the Alumina-7%Zirconia case.

However, this integration radius Rmat may be required to be smaller in size compared to the
plastic radius or the V-notch tip radius ρ, or larger than the K-dominance zone. In this case,
given the value of SED[R1], one can easily determine the value of SED for a domain having
a different radius R2 by the simple equation derived from (20):

SED[R2] = SED[R1]
(

R1

R2

)2−2α1

. (22)

3. Materials and experimental procedures

The validity of the various failure criteria has to be assessed combined with a set of exper-
imental data. This section presents a series of experiments which has been performed on
two kinds of brittle materials: the composite ceramic Alumina-7%Zirconia and the polymer
PMMA, both having a linear elastic constitutive law. The tests have been carried out on V-
notched specimens loaded by three-points and four-points bending. The determination of the
mechanical and physical properties of tested materials as well as the exact details of the
experimental procedures and characterization techniques utilized will be reported elsewhere.



Failure criteria for brittle elastic materials 317

Figure 4. Alumina-7%Zirconia specimens with various radii and notch angles; (a) 0.06 mm, 30◦ (b) 0.1 mm, 60◦
(c) 0.1 mm, 90◦ (d) 0.1 mm, 120◦.

3.1. EXPERIMENTS WITH ALUMINA-7%ZIRCONIA

First set of experiments is performed on V-notched specimens under a tight control of the
geometric dimensions (including the V-notch tip radius ρ). Over 70 specimens were manu-
factured with four V-notch opening angles ω = 30◦, 60◦, 90◦ and 120◦, each having three
different tip radii ρ = 0.03, 0.06 and 0.1 mm. The specimens were loaded so to produce
pure ‘symmetric mode’ stress field in the vicinity of the V-notch tip. The geometry and the
loading of the various Alumina-7%Zirconia specimens are presented in Figure 3. TPB (three
point bending) loading was also applied to some of the specimens where a single load was
applied opposite to the V-Notch tip. The notch depth a was approximately 5 mm, and varies
slightly from specimen to specimen, and ao ≈ 2.5 mm for the specimens with the double
opening angles ω = 30◦, 60◦. The precise dimensions for each specimen have been measured
and used later on for the computations. Some representative specimens with various V-notch
opening angles are shown in Figure 4.

Physical properties, Young modulus E, and Poisson ratio ν have been accurately measured
using ultra-sonic technique, while density has been determined by actual measurements of
mass and volume. Table 4 summarizes the values measured on a sample of the specimens
obtaining ν = 0.236 with minor changes in the third digit.

We used the values of 357 or 350 GPa as the Young modulus (the value of 350 GPa has been
assigned to the specimens for which we did not measured their material properties according
to the value reported in literature) with ν = 0.236 in our analysis in Section 4.

The specimens were subject to a quasi-static loading (crosshead velocity was 0.5 mm min−1)
using a computerized MTS servo-hydraulic machine, with sensitive load cell of 1-ton full
scale. V-notch opening displacement was measured by a crack opening displacement (COD)
gage (full scale of 0.25 mm), which was mounted at the V-notch intersection with the free
edge. In microscopic scale, acoustic emission (AE) technique was used in order to monitor
events during loading from undesired sources. It enables to point out on inhomogeneity in
the microstructure such as; high porosity/microcracks/impurities, thus provide the means in
excluding specimens with abnormal behavior (intense AE activity). The experimental set-up
including the AE sensor is illustrated in Figure 5.

Examples of load vis. displacement behavior obtained for typical specimens are shown in
Figure 6. Specimens which exhibited linear elastic response are illustrated by Figure 6a, while
specimens with non-linear load-displacement characterized by slow crack growth, smooth and
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Table 4. Measured E, density and ν for selected specimens

Specimen E (GPa) Density (g/cm3) ν

30-FPB-0.1-1 356.52 3.963 0.235

30-FPB-0.1-2 356.89 3.965 0.236

30-FPB-0.1-3 355.30 3.962 0.233

30-TPB-0.1-4 357.90 3.970 0.235

30-FPB-0.03-4 360.24 3.975 0.239

30-FPB-0.03-5 359.85 3.975 0.236

30-FPB-0.03-6 357.31 3.976 0.233

60-FPB-0.1-1 354.00 3.963 0.235

60-FPB-0.1-2 367.31 3.965 0.238

60-FPB-0.1-3 369.53 3.962 0.238

60-FPB-0.1-4 355.20 3.970 0.235

60-FPB-0.03-2 357.71 3.964 0.238

60-FPB-0.03-3 356.50 3.968 0.234

90-FPB-0.1-5 355.50 3.956 0.235

90-FPB-0.1-6 358.70 3.958 0.235

90-FPB-0.1-7 356.06 3.951 0.235

90-FPB-0.03-3 354.50 3.959 0.239

90-FPB-0.03-4 355.40 3.959 0.239

90-FPB-0.03-5 338.50 3.898 0.235

90-FPB-0.03-6 349.70 3.940 0.238

Average 356.63 3.960 0.236

non continuous one are depicted in Figures 6b and 6c respectively. A case where intense AE
activity is pronounced in the later stage of loading is shown in Figure 6d. Specimens which
exhibited nonlinear load-displacement behavior, also had large acoustic emission counts prior
to failure, evidently due to impurities and microcracks. These specimens were excluded.

Details of V-notch angle and tip radius were documented optically for each specimen
before and after fracture, as shown in Figure 7. This systematic procedure was done in order to
eliminate specimens with macroscopic defects due to manufacturing problems (irregularities
and non-symmetry at the notch radius). In addition, cracks, which were originated far away
from the notch root were also discarded from calculations, see such an example in Figure 8a.
In comparison, crack which initiated close to the notch root is shown in Figure 8b.

For the remaining specimens (‘good results’) the values of the notch tip radius ρ, the
fracture load P and Young modulus E are listed in Table 5. The last four columns in the
tables are computed values addressed in the next section. Specimens denoted by ‘TPB’ were
loaded in three point bending mode, at the middle of the span.

In Appendix B we provide the full list of all tested specimens.

3.2. EXPERIMENTS WITH PMMA

Dunn et al. (1997b) carried out a set of experiments on notched PMMA specimens loaded
by three-point bending, with notch angles of 60◦, 90◦ and 120◦ for various V-notched depths
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Table 5. Summary of the experiments for the ‘good Alumina-7%Zirconia specimens’, and GSIFs (kc)

Specimen ρ P E SED (0.062 mm) A1s
(1)
11 (90◦) A1s

(1)
11 (90◦) (A1)cr s

(1)
11 (90◦)

computed by (12) computed by (9) experiments

mm N GPa N
m2 MPa × m1−α1

ω = 30◦, α1 = 0.501453

AO30003-16 0.031 1815 350 173547 1.643 1.662 1.942

30-TPB-0.03-3 0.040 1436 350 164253 1.643 1.662 1.863

AO30003-11 0.041 1628 350 137811 1.643 1.662 1.732

AO30006-13 0.060 1628 350 140944 1.643 1.662 1.751

30-TPB-0.1-4 0.060 1439 356.7 127912 1.627 1.662 1.690

30-TPB-0.1-5 0.060 1413 350 103800 1.643 1.662 1.509

AO3001-12 0.100 1844 350 179506 1.643 1.662 1.976

ω = 60◦, α1 = 0.512221

15.4.02 - 11 0.060 1753 350 155625 1.859 1.870 2.010

15.4.02 - 12 0.060 1701 350 148996 1.859 1.870 1.967

15.4.02 - 15 0.060 1603 350 128253 1.859 1.870 1.826

15.4.02 - 18 0.060 1680 350 137102 1.859 1.870 1.888

A06001-12 0.100 1785 350 168763 1.859 1.870 2.095

A06001-13 0.100 1903 350 196644 1.859 1.870 2.262

ω = 90◦, α1 = 0.5444837

90-FPB-0.03-5 0.035 1853 338.5 164962 2.774 2.655 2.844

90-TPB-0.03-7 0.050 1292 350 132235 2.732 2.655 2.596

90-TPB-0.06-1 0.060 1523 350 158707 2.732 2.655 2.842

90-TPB-0.06-2 0.060 1642 350 184986 2.732 2.655 3.071

90-TPB-0.06-3 0.067 1461 350 145375 2.732 2.655 2.722

90-FPB-0.1-5 0.100 2167 356.7 183066 2.708 2.655 3.077

90-FPB-0.1-6 0.100 2244 356.7 198267 2.708 2.655 3.201

90-TPB-0.1-3 0.100 1724 350 197814 2.732 2.655 3.176

ω = 120◦, α1 = 0.6157311

120-TPB-0.03-5 0.062 1962 350 171724 6.087 5.688 6.329

120-TPB-0.06-1 0.080 1927 350 175779 6.087 5.688 6.403

120-TPB-0.06-2 0.080 1805 350 157698 6.087 5.688 6.065

120-TPB-0.06-3 0.080 1958 350 178687 6.087 5.688 6.456

120-FPB-0.1-3 0.100 2928 350 255128 6.087 5.688 7.705

120-FPB-0.1-5 0.100 2892 350 265188 6.087 5.688 7.853

120-TPB-0.1-6 0.100 2053 350 236806 6.087 5.688 7.435
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Figure 5. Four-point-bending test fixture with acoustic emission transducer and crack opening displacement gage
(PMMA specimen).

(a/h from 0.1 to 0.4), and V-notch tip radius of less than 0.0254 mm. The material properties
of the PMMA are E = 2.3 GPa and ν = 0.36, with the failure stress being σc = 124 MPa.
The failure load values are summarized in Tables 6 and 7 in the first column. These loads are
for different V-notch depths, but using the load at failure and specific geometrical dimensions,
the GSIF at failure is computed and reported in the last column of the tables. No results for
the angle of ω = 45◦ are reported by Dunn et al. (1997b). Here, similar specimens were
manufactured with a/h = 0.235, and V-notch tip radius of 0.03 mm, which were loaded up
to fracture in TPB. The results are reported in the first two rows of Table 6.

4. Verification and validation of the failure criteria

In order to validate the various failure criteria, we constructed finite element models of the
various specimens tested, and loaded these by the load that caused the fracture. The p-FEM
(Szabó and Babuška, 1991) commercial code StressCheck1 has been used in our compu-
tations. An example of the FE mesh for a ω = 90◦ case and the zoomed portion in the
neighborhood of the notch tip is shown in Figure 9.

The special optimal mesh design using geometric progression of the elements with a factor
of 0.17 towards the singular point ensures high accuracy and exponential convergence rates in
the pre-asymptotic range. The polynomial degree has been increased over each element from
1 to 8, and the numerical error measured in energy norm (see, e.g., Szabó and Babuška, 1991)
is monitored. As a post solution operation, we extract the eigen-pairs (α�, u(�)(θ)) associated
1StressCheck is trademark of Engineering Software Research and Development, Inc, St. Louis, MO, USA.
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Figure 6. Load-Displacement curves for linear-elastic behavior (a) and non-linear response (b, c). (d) shows load
and acoustic emission amplitude vs. time for the (c) case.

Figure 7. The 0.1 mm notch tip radius profile for different notch angles; (a) 30◦, (b) 60◦, (c) 90◦, (d) 120◦.
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Figure 8. Crack initiation at the edge (a), or at the notch root (b).

Table 6. Summary of the experimental results for PMMA. All results except the
two having ω = 45◦ are from Dunn et al. (1997b)

P SED (0.0158 mm) A1s
(1)
11 (90◦) A1s

(1)
11 (90◦) (A1)cr s

(1)
11 (90◦)

computed by (12) computed by (9) experiments

N N
m2 MPa × m1−α1

ω = 45◦, α1 = 0.5050

376 5286756 0.427 0.432 0.586

379 5382800 0.427 0.432 0.591

ω = 60◦, α1 = 0.5122

597 5390215 0.469 0.471 0.563

613 5683008 0.469 0.471 0.578

613 5683008 0.469 0.471 0.578

611 5645982 0.469 0.471 0.576

457 6164536 0.469 0.471 0.600

475 6659708 0.469 0.471 0.624

450 5977146 0.469 0.471 0.591

441 5740440 0.469 0.471 0.579

296 4311136 0.469 0.471 0.502

316 4913610 0.469 0.471 0.534

316 4913610 0.469 0.471 0.534

308 4667772 0.469 0.471 0.521

268 5919545 0.469 0.471 0.586

256 5401490 0.469 0.471 0.560

250 5151263 0.469 0.471 0.547

261 5614547 0.469 0.471 0.571

with the notch tip (see details by Yosibash and Szabó, 1995) and the generalized stress intens-
ity factors A�’s (see Szabó and Yosibash, 1996). In all cases the convergence of the solution
in energy norm as well as the convergence in the GSIF was monitored and guaranteed to be
within 2% relative error.
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Table 7. Summary of the experimental results for PMMA from Dunn et al.
(1997b)

P SED (0.0158 mm) A1s
(1)
11 (90◦) A1s

(1)
11 (90◦) (A1)cr s

(1)
11 (90◦)

computed by (12) computed by (9) experiments

N N
m2 MPa × m1−α1

ω = 90◦, α1 = 0.5445

691 6369229 0.713 0.693 0.877

691 6369229 0.713 0.693 0.877

680 6168060 0.713 0.693 0.863

495 6072337 0.713 0.693 0.853

490 5950282 0.713 0.693 0.845

488 5901807 0.713 0.693 0.841

397 6355569 0.713 0.693 0.873

406 6646931 0.713 0.693 0.893

410 6778549 0.713 0.693 0.901

310 6431300 0.713 0.693 0.878

319 6810633 0.713 0.693 0.904

319 6810633 0.713 0.693 0.904

ω = 120◦, α1 = 0.6157

875 6326762 1.717 1.604 2.011

886 6486834 1.717 1.604 2.036

886 6486834 1.717 1.604 2.036

880 6400874 1.717 1.604 2.022

652 5971698 1.717 1.604 1.951

660 6119142 1.717 1.604 1.975

646 5862296 1.717 1.604 1.933

671 6324814 1.717 1.604 2.008

468 4881352 1.717 1.604 1.764

521 6049561 1.717 1.604 1.964

521 6049561 1.717 1.604 1.964

519 6003203 1.717 1.604 1.956

321 3830550 1.717 1.604 1.564

340 4297431 1.717 1.604 1.656

339 4272189 1.717 1.604 1.651

345 4424756 1.717 1.604 1.681

4.1. ANALYSIS OF THE ALUMINA-7%ZIRCONIA TEST RESULTS

To check the validity of Novoshilov–Seweryn and Leguillon’s criteria the GSIF has been
computed at the failure point using KIc and σc, by Equations (9) and (12), respectively, and
the predicted results were compared to the GSIF at failure. The values for K(ω) used in
Leguillon’s law is taken from Table 3. For the Alumina-7% Zirconia, KIc

= 4.1 MPa
√

m (see
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Figure 9. FE mesh for a ω = 90◦ specimen. On the left the whole model, on the right the zoomed region around
the singular point.

Figure 10. Predicted GSIFs (kc) at failure by using Novoshilov and Leguillon’s criteria, and GSIFs in tested
Alumina-7%Zirconia specimens.

also Rosa et al., 1998) and σc = 290 MPa. The predicted values (independent of the V-notch
radius) and the GSIF at failure (computed as kc = A1 × s

(1)

11 (θ = 90◦)) are summarized in
the last three columns of Table 5. These results are also plotted in Figure 10, and show a good
correlation between the predicted values (by Leguillon and Novoshilov–Seweryn failure laws)
and experimental observations.

As noticed, the validity of both tested criteria is very good at small opening angles, and
deteriorates as the opening angle increases. Also both criteria assume a sharp V-notch tip
therefore as the V-notch radius ρ increases the prediction is less accurate. This trend is best
illustrated in Figure 11 where the GSIF at failure for the specimens having ω = 90◦ are plotted
as a function of ρ.

Using the eigen-pairs, the A1 and the integration radius computed by (21) Rmat = 0.062 mm,
we computed the SED at the instance of failure (denoted by SEDcr[0.062 mm]) and it is
summarized in the fourth column of Table 5. The chosen Rmat is four times larger com-
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Figure 11. GSIFs as a function of ρ for the ω = 90◦ at failure for Alumina-7%Zirconia.

Figure 12. SEDcr [0.062 mm] in tested Alumina-7%Zirconia specimens.

pared to the approximated plastic radius, which is rp = 1/π (KIc/σc)
2 = 0.0155 mm.

SEDcr[0.062 mm] has been computed by using A1 and the first eigen-pair, and once again
by using the stress and strain tensors in the circular region surrounding the V-notch tip. The
differences in the two results have been less than 3% in all cases, thus ensuring that the
first term in the asymptotic expansion suffices to describe the quantity of interest with good
accuracy. The SEDcr[0.062 mm] as a function of the V-notch opening angle ω is shown in
Figure 12.

Because the SED is proportional to the square of A1, the sensitivity of the results to changes
in this parameter is more pronounced. Computing SED[0.062 mm]crack = SED[0.062 mm]straight
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Figure 13. SEDcr[0.062 mm] for the ω = 90◦ Alumina-7%Zirconia specimens as a function of ρ.

Figure 14. Predicted GSIFs at failure by using Novoshilov and Leguillon’s criteria, and GSIFs in PMMA
specimens.

≈ 120, 100 N m−2], it is clear that values of obtained SED[0.062 mm]cr for all angles are
within the anticipated range. Of course that the V-notch radius causes a higher SEDcr as the
calculated SED (assuming ρ = 0). The SED[R]cr at any R can be easily computed from the
data presented herein by:

SED[R]cr =
(

R

0.062 mm

)2α1−2

SED[0.062 mm]cr .



Failure criteria for brittle elastic materials 327

Figure 15. SEDcr [0.0158 mm] in PMMA specimens.

Figure 16. The new integration domain for computing SED.

The influence of ρ on the critical SED was also examined and depicted for the case of
ω = 90◦ in Figure 13. Because the values of ρ are close to these of Rmat, its influence is
pronounced.

4.2. ANALYSIS OF THE PMMA TESTS

Similarly to the analysis described in previous subsection, the validity of Novoshilov–Seweryn
and Leguillon’s criteria was also evaluated for the PMMA specimens. The values for K(ω)

used in Leguillon’s law is taken from II. For the PMMA material, KIc
= 1.028 MPa

√
m,

σc = 124 MPa, E = 2.3 GPa, and ν = 0.36 (see Dunn et al., 1997b). The predicted values
and the GSIF at failure are summarized in the last three columns of Tables 6 and 7. These
results are also plotted in Figure 14, and also show a good correlation of the predicted values



328 Z. Yosibash et al.

Table 8. Values of �0, d0 and Rmat for PMMA and Al2O3 − 7%ZrO2 (and Duraluminum)

ω �0 from (11) [mm] d0 from (8) [mm] Rmat from (21) [mm]

PMMA Al2O3-7%ZrO2 PMMA Al2O3-7%ZrO2 Duraluminuma PMMA Al2O3-7%ZrO2

30◦ 0.0105 0.031 0.0431 0.127 3.89 0.0158 0.062

45◦ 0.0106 0.031 0.0431 0.127 3.89 0.0158 0.062

60◦ 0.0108 0.032 0.0431 0.127 3.89 0.0158 0.062

90◦ 0.121 0.036 0.0431 0.127 3.89 0.0158 0.062

120◦ 0.146 0.043 0.0431 0.127 3.89 0.0158 0.062

aThe value of σc = 705 MPa and KIc = 55.14 MPA
√

m were used for evaluation of d0, reported by Seweryn
(1994).

and experimental observations. Because several specimens with notch depth to hight ratio a/h

have been used by Dunn et al. (1997b), we list them all in Figures 14 and 15.
Again, the validity of both criteria tested is good at small opening angles, and deteriorates

as the opening angle increases.
SED in the vicinity of the singular points has been also computed, and summarized in the

second column of Tables 6 and 7. For the PMMA, the integration radius computed by (21)
and used in our computations is Rmat = 0.0158 mm. The plastic radius for the PMMA is
approximately rp = 0.0215 mm which is the same order of magnitude as Rmat = 0.0158 mm.
The SEDcr[0.0158 mm] as a function of the V-notch opening angle ω is shown in Figure 15.
The values of SED[0.0158 mm]crack = SED[0.0158 mm]straight ≈ 3, 340, 000 [N m−2], which
is a lower bound to the SED obtained in the experiments (again probably due to the V-Notch
radius).

5. Conclusions

The validity of three failure criteria proposed in the last decade for predicting failure initiation
at V-notch sharp tips has been examined and compared with experimental observations. The
experiments include; loading of specimens made of two kinds of elastic materials (PMMA –
a polymer, and Al2O3-7%ZrO2, a composite ceramic) in three and four-points, so to produce
mode I stress field in the vicinity of the notch tip. To quantify the influence of ρ on the
failure initiation, specimens having different tip radii have been selected. All failure criteria
assume a mathematical sharp tip, namely a small blunt tip (with a tip radius denoted by ρ)
showing a higher generalized stress intensity factor as compared to the predicted values.
Nevertheless, both the Novoshilov-Seweryn and Leguillon criteria seem to predict well the
observed failures, however, as the opening angle increases, their validity deteriorates. This
may be attributed to the non-exact measurement of σc, and the blunt tip radius. Leguillon
criterion outperforms the Novoshilov–Seweryn criterion, and it has been refined to include
ρ dependency so to match better the experimental observations - see Leguillon and Yosibash
(2003). The Novoshilov-Seweryn criterion has been also considered for hyperbolic and elliptic
notches with intrinsic blunted tips by Seweryn and Mróz (1995), but had not been compared
to experimental observations.

Table 8 summarizes the assumed crack length increment �0 of Leguillon criterion, the path
over which the stress is averaged d0 in case of the Novoshilov–Seweryn criterion for the two
elastic brittle materials considered, and Rmat used in our computations. The values show that
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indeed �0, d0 and Rmat are small and of comparative order of magnitude. Computing d0 for
Duraluminum (last column in Table 8), a material used in one of the experiments documented
by Seweryn (1994), shows that it is of a larger magnitude compared to PMMA and Al2O3-
7%ZrO2. This value may be at the limit of the assumption of small d0 thus for Duraluminum
the predictions using either one of the above criteria may be slightly off.

The proposed SED criterion is more similar to the Dunn criteria in terms of the needed
values of the critical SED for a large range of ω’s. However, it is not unit dependent, and does
not require the knowledge of KIc or σc for the material of interest. A practical application of
the SED criterion, for predicting failure initiation in electronic devices under thermo-elastic
loading is provided by Yosibash et al. (2003).

If chosen to be used, one can compute Rmat and obtain a SED which is independent of
the re-entrant opening angle. We have seen that the predicted SEDcr is a lower estimate of
the experimental observations, and the scattering in SEDcr is wide. These two effects can be
reduced by using the square root of the SED as the failure criterion, and taking into account
the V-notch radius tip ρ. The SED failure criterion may be improved by choosing a seemingly
better integration domain to be the shaded circle shown in Figure 16, having a radius of R/2,
and centered at R/2 away from the V-notch tip. Future investigations will assess the benefits
of integrating the strain energy in this domain, in respect with obtaining a smaller scatter and
a smaller variation in SED independent of the V-notch opening angle. Having the eigen-pairs
and GSIFs in terms of r, θ , all which is needed is to express these in terms of r∗, β by:

r = √
2r∗(1 + sin β), θ = arctan

(
1 + sin β

cos β

)
,

and perform an integration over R/2 ≥ r∗ ≥ 0 and 2π ≥ β ≥ 0. The applicability of the SED
criterion to cases of mixed mode loading is under investigation, and its validity (assessed by
experimental observations) will be documented in the future. Also, the explicit dependency of
the the V-notch tip radius ρ on the SED is a subject of further investigation.
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Appendix A. Computation of the critical SED[R]crack for a crack and SED[R]straight for
a straight edge, and a material characteristic integration radius Rmat

The two extreme values of the critical SED[R] are obtained for the case of a crack (ω = 0◦)
and a straight edge (ω = 180◦). We first derive these values for an isotropic material, under
mode I loading, and then use these equations to determine a material characteristic integration
radius denoted by Rmat.
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COMPUTATION OF THE CRITICAL SED[R]straight

For a specimen with a straight edge, failure occurs at the instance when the remote uniaxial
stress is equal to σc. In this case the state of stresses at any point will be σ11 = σc and other
stress components are zero. The strain energy can be expressed as:

U(u)[R] = 1
2b

∫ π

0

∫ R

0
σjkεjkr dθ dr = 1

2b

∫ π

0

∫ R

0
σc

σc

E
r dθ dr = b

4E
πR2σ 2

c , (23)

so that we finally obtain the upper limit to the SED:

SED[R]straight = σ 2
c

2E
. (24)

COMPUTATION OF THE CRITICAL SED[R]crack

Under mode I loading, for a specimen containing a crack, the stress tensor at the instance of
fracture in the vicinity of a crack tip is given by:

σ11 = KIc√
2πr

cos
θ∗

2

[
1 − sin

θ∗

2
sin

3θ∗

2

]
,

σ22 = KIc√
2πr

cos
θ∗

2

[
1 + sin

θ∗

2
sin

3θ∗

2

]
,

σ12 = KIc√
2πr

sin
θ∗

2
cos

θ∗

2
cos

3θ∗

2
,

(25)

where the coordinate system r, θ∗ is located so that θ∗ = 0 is along the x2 axis. Expressing
the strains in terms of stresses using the plane-strain constitutive law, (26) becomes:

U(u)[R] = 1
2

(1 + ν)b

E

∫ π

−π

∫ R

0

{
(1 + ν)

[
σ 2

11 + σ 2
22

] − 2νσ11σ22 + 2σ12
}
r dr dθ∗. (26)

Substitute (25) in the expression of the strain energy (26):

U(u)[R] = b(1 + ν)(5 − 8ν)

8E
K2

IcR, (27)

one finally obtains the lower limit to the SED:

SED[R]crack = (1 + ν)(5 − 8ν)

8πRE
K2

Ic. (28)

DETERMINATION OF THE MATERIAL CHARACTERISTIC INTEGRATION RADIUS Rmat

Following Lazzarin and Zambardi (2001), and requiring that the SED is independent of the
opening angle ω, then for ω = 0 and for ω = π one should obtain the same SED. Thus, by
equating (24) with (28), one obtains:

σ 2
c

2E
= (1 + ν)(5 − 8ν)

8πRE
K2

Ic. (29)

Equation (29) holds for a specific integration radius Rmat, which is given after trivial algebraic
manipulation:

Rmat = (1 + ν)(5 − 8ν)

4π

(
KIc

σc

)2

. (30)
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Appendix B. Summary of all tested Alumina-7% Zirconia specimens

In the Tables 9 and 10 we summarize all our experimental results for the Al2O3 - 7%ZrO2

specimens.

Table 9. Summary of the experiments for all tested Alumina-7%Zirconia specimens, and GSIFs (kc)

Specimen ρ P E SED A1s
(1)
11 A1s

(1)
11 (A1)cr s

(1)
11

mm N GPa [0.062 mm] (θ = 90◦) (θ = 90◦) (θ = 90◦)
N

m2 computed computed experiments
by (12) by (9)

MPa × m1−α1

ω = 30◦, α1 = 0.501453

AO30003-16 0.031 1815 350 173547 1.643 1.662 1.942
AO30003-15 0.034 1933 350 193343 1.643 1.662 2.050
30-FPB-0.03-6 0.040 1799 356.7 155653 1.627 1.662 1.858
30-TPB-0.03-1 0.040 1594 350 206743 1.643 1.662 2.126
30-TPB-0.03-3 0.040 1436 350 164253 1.643 1.662 1.863
AO30003-11 0.041 1628 350 137811 1.643 1.662 1.732
AO30003-12 0.041 1942 350 195107 1.643 1.662 2.059
AO30003-13 0.041 2060 350 219061 1.643 1.662 2.182
AO30003-14 0.041 1942 350 196070 1.643 1.662 2.064
30-FPB-0.03-5 0.043 1662 356.7 124459 1.627 1.662 1.661
AO30006-12 0.060 1628 350 144150 1.643 1.662 1.771
AO30006-13 0.060 1628 350 140944 1.643 1.662 1.751
AO30006-14 0.060 1560 350 129963 1.643 1.662 1.682
30-FPB-0.1-1 0.060 1717 356.7 111336 1.627 1.662 1.573
30-TPB-0.1-4 0.060 1439 356.7 127912 1.627 1.662 1.690
30-TPB-0.1-5 0.060 1413 350 103800 1.643 1.662 1.509
AO3001-12 0.100 1844 350 179506 1.643 1.662 1.976
AO3001-13 0.100 1805 350 162298 1.643 1.662 1.879
AO3001-14 0.100 1991 350 216510 1.643 1.662 2.170
AO3001-15 0.100 1962 350 208776 1.643 1.662 2.131

ω = 60◦, α1 = 0.512221

60-FPB-0.03-3 0.055 1874 356.7 160487 1.842 1.870 2.062
60-TPB-0.03-4 0.055 1736 350 230972 1.859 1.870 2.457
60-FPB-0.1-2 0.055 1962 356.7 164484 1.842 1.870 2.119
60-FPB-0.1-4 0.055 1953 356.7 167227 1.842 1.870 2.106
60-FPB-0.1-1 0.060 1972 356.7 175081 1.842 1.870 2.153
15.4.02 - 11 0.060 1753 350 155625 1.859 1.870 2.010
15.4.02 - 12 0.060 1701 350 148996 1.859 1.870 1.967
15.4.02 - 13 0.060 1721 350 150637 1.859 1.870 1.979
15.4.02 - 14 0.060 1658 350 140199 1.859 1.870 1.909
15.4.02 - 15 0.060 1603 350 128253 1.859 1.870 1.826
15.4.02 - 16 0.060 1526 350 120240 1.859 1.870 1.768
15.4.02 - 18 0.060 1680 350 137102 1.859 1.870 1.888
60-FPB-0.1-5 0.070 1895 350 161609 1.859 1.870 2.052
A06001-12 0.100 1785 350 168763 1.859 1.870 2.095
A06001-13 0.100 1903 350 196644 1.859 1.870 2.262
A06001-14 0.100 1913 350 199512 1.859 1.870 2.280
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Table 10. (Continued) Summary of the experiments for all tested Alumina-7%Zirconia specimens, and GSIFs (kc)

Specimen ρ P E SED[0.062 mm] A1s
(1)
11 A1s

(1)
11 (A1)cr s

(1)
11

mm N GPa N
m2 (θ = 90◦) (12) (θ = 90◦) (9) (θ = 90◦)

MPa × m1−α1

ω = 90◦, α1 = 0.5444837

AO90003-12 0.028 2080 350 178957 2.732 2.655 2.984

90-FPB-0.03-1 0.033 1810 350 148275 2.732 2.655 2.744

AO90003-13 0.034 1884 350 172346 2.732 2.655 2.955

AO90003-14 0.034 1785 350 154451 2.732 2.655 2.799

90-FPB-0.03-5 0.035 1853 338.5 164962 2.774 2.655 2.844

90-FPB-0.03-2 0.037 1821 350 148427 2.732 2.655 2.746

AO90003-11 0.041 1805 350 158736 2.732 2.655 2.837

90-FPB-0.03-3 0.042 1847 356.7 153300 2.708 2.655 2.815

90-FPB-0.03-4 0.042 1838 356.7 152188 2.708 2.655 2.804

90-TPB-0.03-7 0.050 1292 350 132235 2.732 2.655 2.596

90-FPB-0.03-6 0.060 1878 350 161330 2.732 2.655 2.862

90-FPB-0.06-4 0.060 1974 350 150037 2.732 2.655 2.761

90-FPB-0.06-5 0.060 2144 350 181154 2.732 2.655 3.033

90-TPB-0.06-1 0.060 1523 350 158707 2.732 2.655 2.842

90-TPB-0.06-2 0.060 1642 350 184986 2.732 2.655 3.071

90-TPB-0.06-3 0.067 1461 350 145375 2.732 2.655 2.722

90-FPB-0.1-5 0.100 2167 356.7 183066 2.708 2.655 3.077

90-FPB-0.1-6 0.100 2244 356.7 198267 2.708 2.655 3.201

90-FPB-0.1-7 0.100 2478 356.7 242519 2.708 2.655 3.540

90-TPB-0.1-3 0.100 1724 350 197814 2.732 2.655 3.176

ω = 120◦, α1 = 0.6157311

120-FPB-0.03-6 0.060 2551 350 219358 6.087 5.688 7.143

120-TPB-0.03-5 0.062 1962 350 171724 6.087 5.688 6.329

120-FPB-0.03-4 0.068 2580 350 191434 6.087 5.688 6.672

120-FPB-0.06-4 0.080 2442 350 162729 6.087 5.688 6.152

120-TPB-0.06-1 0.080 1927 350 175779 6.087 5.688 6.403

120-TPB-0.06-2 0.080 1805 350 157698 6.087 5.688 6.065

120-TPB-0.06-3 0.080 1958 350 178687 6.087 5.688 6.456

AO12006-12 0.083 2659 350 205967 6.087 5.688 6.923

AO12006-11 0.096 2266 350 154212 6.087 5.688 5.988

120-TPB-0.03-1 0.100 1893 350 177860 6.087 5.688 6.441

120-FPB-0.1-1 0.100 2931 350 270141 6.087 5.688 7.926

120-FPB-0.1-4 0.100 2655 350 222233 6.087 5.688 7.190

120-FPB-0.1-3 0.100 2928 350 255128 6.087 5.688 7.705

120-FPB-0.1-5 0.100 2892 350 265188 6.087 5.688 7.853

120-TPB-0.1-6 0.100 2053 350 236806 6.087 5.688 7.435


