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Abstract. The lowest eigenmode of thin axisymmetric shells is investigated
for two physical models (acoustics and elasticity) as the shell thickness (2ε)
tends to zero. Using a novel asymptotic expansion we determine the behavior
of the eigenvalue λ(ε) and the eigenvector angular frequency k(ε) for shells
with Dirichlet boundary conditions along the lateral boundary, and natural
boundary conditions on the other parts.

First, the scalar Laplace operator for acoustics is addressed, for which
k(ε) is always zero. In contrast to it, for the Lamé system of linear elasticity
several different types of shells are defined, characterized by their geometry,
for which k(ε) tends to infinity as ε tends to zero. For two families of shells:
cylinders and elliptical barrels we explicitly provide λ(ε) and k(ε) and demon-
strate by numerical examples the different behavior as ε tends to zero.
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1. Introduction

The lowest natural frequency of shell-like structures is of major importance in engi-
neering because it is one of the driving considerations in designing thin structures
(for example containers). It is associated with linear isotropic elasticity, governed
by the Lamé system. The elastic lowest eigenmode in axisymmetric homogeneous
isotropic shells was address by W. Soedel [14] in the Encyclopedia of Vibration:

[We observe] a phenomenon which is particular to many deep shells,
namely that the lowest natural frequency does not correspond to the sim-
plest natural mode, as is typically the case for rods, beams, and plates.
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This citation emphasizes that for shells these lowest natural frequencies may hide
some interesting “strange” behavior. The expression “deep shell” contrasts with
“shallow shells” for which the main curvatures are of same order as the thickness.
Typical examples of deep shells are cylindrical shells, spherical caps, or barrels
(curved cylinders).

In acoustics, driven by the scalar Laplace operator, it is well known that,
when Dirichlet conditions are applied on the whole boundary, the first eigenmode
is simple in both senses that it is not multiple and that it is invariant by rotation.
We will revisit this result, in order to extend it to mixed Dirichlet–Neumann
conditions. In contrast to the scalar Laplace operator, the simple behavior of the
first eigenmode does not carry over to the vector elliptic system – linear elasticity.
Relying on asymptotic formulas exhibited in our previous work [5], we analyze
two families of shells already investigated in [2]. Doing that, we can compare
numerical results provided by several different models: The exact Lamé model,
surfacic models (Love and Naghdi), and our 1D scalar reduction.

The first of these families are cylindrical shells. We show that the lowest eigen-
value1 decays proportionally to the thickness 2ε and that the angular frequency k
of its mode tends to infinity like ε−1/4.

The second family is a family of elliptic barrels which we call “Airy barrels”.
Elliptic means that the two main curvatures (meridian and azimuthal) of the
midsurface S are non-zero and of the same sign. Airy barrels are characterized by
the following relations:

• The meridian curvature is smaller (in modulus) than the azimuthal curvature
at any point of the midsurface S,

• The meridian curvature attains its minimum (in modulus) on the boundary
of S.

For general elliptic barrels, the first eigenvalue tends to a positive limit a0 as the
thickness tends to 0. This quantity is proportional to the minimum of the squared
meridian curvature. More specifically, for Airy barrels, the azimuthal frequency k
is asymptotically proportional to ε−3/7 as ε→ 0. Besides, for the particular family
of Airy barrels that we study here, a very interesting (and somewhat non-intuitive)
phenomenon occurs: For moderately thick barrels k stay equal to 0 and there is a
threshold for ε below which k has a jump and start growing to infinity.

We start by presenting the angular Fourier transformation in a coordinate-
independent setting in Section 2 followed by the introduction of the domains and
problems of interest in Section 3. Section 4 is devoted to cases when the angular
frequency k of the first mode is zero or converges to a finite value as ε→ 0. Cylin-
drical shells are investigated in Section 5 and barrels in Section 6. We conclude in
Section 7.

1With the natural frequency f , the pulsation ω and the eigenvalue λ, we have the relations

λ = ω2 = (2πf)2.
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2. Axisymmetric problems

Before particularizing every object with the help of cylindrical coordinates, we
present axisymmetric problems in an abstract setting that exhibits the intrinsic
nature of these objects, in particular the angular Fourier coefficients. This intrin-
sic definition allows one to prove that the Fourier coefficients of eigenvectors are
eigenvectors if the operator under examination has certain commutation proper-
ties.

2.1. An abstract setting

Let us consider an axisymmetric domain in R3. This means that Ω is invariant
by all rotations around a chosen axis A: For all θ ∈ T = R/2πZ, let Rθ be the
rotation of angle θ around A. So we assume

∀θ ∈ T, RθΩ = Ω.

Let t = (t1, t2, t3) be Cartesian coordinates in R3. The Laplace operator ∆ =
∂2
t1 + ∂2

t2 + ∂2
t3 is invariant by rotation. This means that for any function u

∀θ ∈ T, ∀t ∈ R3, ∆
(
u(Rθt)

)
= (∆u)(Rθt).

The Lamé system L of homogeneous isotropic elasticity acts on 3D displace-
ments u = u(t) that are functions with values in R3. The definition of rotation
invariance involves not only rotation of coordinates, but also rotations of displace-
ment vectors. Let us introduce the transformation Gθ : u $→ v between the two
displacement vectors u and v

Gθ(u) = v ⇐⇒ ∀t, v(t) = R−θ

(
u(Rθt)

)
.

Then the Lamé system L commutes with Gθ: For any displacement u

∀θ ∈ T, L(Gθu) = Gθ(Lu). (2.1)

Now, in the scalar case, if we define the transformation Gθ by (Gθu)(t) =
u(Rθt), we also have the commutation relation for the Laplacian

∀θ ∈ T, ∆(Gθu) = Gθ(∆u). (2.2)

The set of transformations
(
Gθ

)
θ∈T has a group structure, isomorphic to that of

the torus T:
Gθ ◦ Gθ′ = Gθ+θ′ , θ, θ′ ∈ T.

The rotation invariance relations (2.1) and (2.2) motivate the following angular
Fourier transformation T ( θ $→ k ∈ Z (here u is a scalar or vector function u or u)

ûk(t) =
1

2π

∫

T
(Gϕu)(t) e

−ikϕ dϕ, t ∈ Ω, k ∈ Z. (2.3)

Then each Fourier coefficient ûk enjoys the property:

(Gθû
k)(t) = eikθ ûk(t), t ∈ Ω, θ ∈ T , (2.4)
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and each pair of Fourier coefficients ûk and ûk′
with k )= k′ satisfies

∫

T
ûk(Rθt) · ûk′

(Rθt) dθ = 0, t ∈ Ω,

which implies that ûk and ûk′
are orthogonal along each orbit contained in Ω and

hence in L2(Ω).
The inverse Fourier transform is given by

u(t) =
∑

k∈Z
ûk(t), t ∈ Ω. (2.5)

The function u is said unimodal if there exists k0 ∈ Z such that for all k )= k0,
ûk = 0, and ûk0 )= 0. Such a function satisfies

(Gθu)(t) = eik0θ u(t), t ∈ Ω, θ ∈ T.

For an operator A that commutes with the transformations Gθ, i.e., GθA =
AGθ, as in (2.1) and (2.2), there holds for any k ∈ Z

Âuk =
1

2π

∫

T
(GϕAu) e

−ikϕ dϕ =
1

2π

∫

T
(AGϕu) e

−ikϕ dϕ = Aûk.

In particular, if Au = λu, then Âuk = λûk. We deduce from the latter equality
that

λûk = Aûk.

Therefore any nonzero Fourier coefficient of an eigenvector is itself an eigenvector.
We have proved

Lemma 2.1. Let λ be an eigenvalue of an operator A that commutes with the group
of transformations {Gθ}θ∈T. Then the associate eigenspace has a basis of unimodal
vectors.

Remark 2.2. If moreover the operator A is self-adjoint with real coefficients, the
eigenspaces are real. Since for any real function and k )= 0, the Fourier coefficient
û−k is the conjugate of ûk, the previous lemma yields that if there is an eigenvector
of angular eigenfrequency k, there is another one of angular eigenfrequency −k
associated with the same eigenvalue.

2.2. Cylindrical coordinates

Let us choose cylindrical coordinates (r,ϕ, τ) ∈ R+ × T × R associated with the
axis A. This means that r is the distance to A, τ an abscissa along A, and ϕ a
rotation angle around A. We write the change of variables as

t = T (r,ϕ, τ) with t1 = r cosϕ, t2 = r sinϕ, t3 = τ .

The cylindrical coordinates of the rotated point Rθt are (r,ϕ + θ, τ).
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2.2.1. Scalar case. The Laplace operator in cylindrical coordinates writes

∆ = ∂2
r +

1

r
∂r +

1

r2
∂2
ϕ + ∂2

τ .

The classical angular Fourier transform for scalar functions is now

uk(r, τ) =
1

2π

∫

T
u(T (r,ϕ, τ)

)
e−ikϕ dϕ, (r, τ) ∈ ω, k ∈ Z, (2.6)

where ω is the meridian domain of Ω. We have the relations

uk(r, τ) eikϕ = ûk
(
T (r,ϕ, τ)

)
, (r, τ) ∈ ω, ϕ ∈ T, k ∈ Z (2.7)

and the classical inverse Fourier formula (compare with (2.5))

u(T (r,ϕ, τ)
)
=

∑

k∈Z
uk(r, τ) eikϕ .

The Laplace operator at frequency k is

∆(k) = ∂2
r +

1

r
∂r −

k2

r2
+ ∂2

τ ,

and we have the following diagonalization of ∆

(∆u)k = ∆(k)uk, k ∈ Z.

2.2.2. Vector case. Now, an option to find a coordinate basis for the representation
of displacements is to consider the partial derivatives of the change of variables T

Er = ∂rT , Eϕ = ∂ϕT , and Eτ = ∂τT .

If we denote by Et1 , Et2 , and Et3 the orthonormal basis associated with Cartesian
coordinates t, we have

Er = Et1 cosϕ+ Et2 sinϕ, Eϕ = −rEt1 sinϕ+ rEt2 cosϕ, and Eτ = Et3 .

We note the effect of the rotations Rθ on these vectors (we omit the axial coordi-
nate τ)

Er(r,ϕ+ θ) = (RθEr)(r,ϕ) and Eϕ(r,ϕ+ θ) = (RθEϕ)(r,ϕ) (2.8)

and Eτ is constant and invariant.
The contravariant components of a displacement u in the Cartesian and cylin-

drical bases are defined such that

u = ut1Et1 + ut2Et2 + ut3Et3 = urEr + uϕEϕ + uτEτ .

Covariant components uj are the components of u in dual bases. Here we have

uti = uti , i = 1, 2, 3, and ur = ur, uϕ = r2uϕ, uτ = uτ .

Using relations (2.8), we find the representation of transformations Gθ

Gθu(t) = ur(r,ϕ+ θ, τ)Er(r,ϕ) + uϕ(r,ϕ+ θ, τ)Eϕ(r,ϕ) + uτ (r,ϕ+ θ, τ)Eτ ,

with t = T (r,ϕ, τ). Then the classical Fourier coefficient of a displacement u is:

uk(r,ϕ, τ) = (ur)k(r, τ)Er(r,ϕ) + (uϕ)k(r, τ)Eϕ(r,ϕ) + (uτ )k(r, τ)Eτ ,
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where (ua)k is the Fourier coefficient given by the classical formula (2.6) for u = ua

with a = r,ϕ, τ . We have a relation similar to (2.7), valid for displacements:

uk(r, τ) eikϕ = ûk
(
T (r,ϕ, τ)

)
, (r, τ) ∈ ω, ϕ ∈ T, k ∈ Z. (2.9)

Let L be the Lamé system. When written in cylindrical coordinates in the basis
(Er,Eϕ,Eτ ), L has its coefficients independent of the angle ϕ. Replacing the de-

rivative with respect to ϕ by ik we obtain the parameter-dependent system L(k)

that determines the diagonalization of L

(Lu)k = L(k)uk, k ∈ Z. (2.10)

3. Axisymmetric shells

We are interested in 3D axisymmetric domains Ω = Ωε that are thin in one direc-
tion, indexed by their thickness parameter ε. Such Ωε is defined by its midsurface
S: We assume that the surface S is a smooth bounded connected manifold with
boundary in R3 and that it is orientable, so that there exists a smooth unit normal
field P $→ N(P) on S. For ε > 0 small enough the following map is one to one and
smooth

Φ : S × (−ε, ε) → Ωε

(P, x3) $→ t = P+ x3 N(P).
(3.1)

The actual thickness h of Ω is 2ε (we keep this thickness h = 2ε in mind to bridging
with some results of the literature). Such bodies represent (thin) shells in elasticity,
whereas they can be called layer domains or thin domains in other contexts.

The boundary of Ωε has two parts:

1. Its lateral boundary ∂0Ωε := Φ
(
∂S × (−ε, ε)

)
,

2. The rest of its boundary (natural boundary) ∂1Ωε := ∂Ωε \ ∂0Ωε.

The boundary conditions that will be imposed are Dirichlet on ∂0Ωε and Neu-
mann on ∂1Ωε. We consider the two following eigenvalue problems on Ωε, posed
in variational form: Let

V∆(Ωε) := {u ∈ H1(Ωε) , u = 0 on ∂0Ω
ε},

and

VL(Ω
ε) := {u = (ut1 , ut2 , ut3) ∈ H1(Ωε)3 , u = 0 on ∂0Ω

ε}.
(i) For the Laplace operator: Find λ ∈ R and u ∈ V∆(Ωε), u )= 0 such that

∀u∗ ∈ V∆(Ωε),

∫

Ωε

∇u ·∇u∗ dt = λ

∫

Ωε

u u∗ dt. (3.2)

(ii) For the Lamé operator: Find λ ∈ R and u ∈ VL(Ωε), u )= 0 such that

∀u∗ ∈ VL(Ωε),

∫

Ωε

Aijlmeij(u) elm(u∗) dΩε = λ

∫

Ωε

utiu∗ti dΩ
ε. (3.3)
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Here we have used the convention of repeated indices, Aijlm is the material tensor
associated with the Young modulus E and the Poisson coefficient ν

Aijlm =
Eν

(1 + ν)(1− 2ν)
δijδlm +

E

2(1 + ν)
(δilδjm + δimδjl), (3.4)

and the covariant components of the strain tensor are given by

eij(u) =
1

2
(∂tiutj + ∂tjuti).

The associated 3× 3 system reads

L = − E

2(1 + ν)(1 − 2ν)

(
(1 − 2ν)∆+∇ div

)
.

Both problems (3.2) and (3.3) have discrete spectra and their first eigenval-
ues are positive. We denote by λ∆(ε) and λL(ε) the smallest eigenvalues of (3.2)
and (3.3), respectively. By Lemma 2.1, the associate eigenspaces have a basis of
unimodal vectors. By Remark 2.2, in each eigenspace some eigenvectors have a
nonnegative angular frequency k. We denote by k∆(ε) and kL(ε) the smallest non-
negative angular frequencies of eigenvectors associated with the first eigenvalues
λ∆(ε) and λL(ε), respectively.

In the next sections, we exhibit cases where the angular frequencies k(ε)
converge to a finite limit as ε → 0 (the quiet cases) and other cases where k(ε)
tends to infinity as ε→ 0 (the sensitive or excited cases).

4. Quiet cases

We know (or reasonably expect) convergence of k(ε) for the Laplace operator and
for plane shells.

4.1. Laplace operator

Let us start with an obvious case. Suppose that the shells are plane, i.e., S is an
open set in R2. Then Ωε is a plate. The axisymmetry then implies that S is a disc
or a ring. Let (x1, x2) be the coordinates in S and x3 be the normal coordinate.
In this system of coordinates

Ωε = S × (−ε, ε) (4.1)

and the Laplace operator separates variables. One can write

∆Ωε = ∆S ⊗ I(−ε,ε) + IS ⊗∆(−ε,ε) . (4.2)

Here ∆Ωε is the 3D Laplacian on Ωε with Dirichlet conditions on ∂0Ωε and Neu-
mann conditions on the rest of the boundary,∆S is the 2D Laplacian with Dirichlet
conditions on ∂S, and ∆(−ε,ε) is the 1D Laplacian on (−ε, ε) with Neumann con-
ditions in ±ε. Then the eigenvalues of ∆Ωε are all the sums of an eigenvalue of
∆S and of an eigenvalue of ∆(−ε,ε). The first eigenvalue λ∆(ε) of problem(3.2) is
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of course the first eigenvalue of −∆Ωε . Since the first eigenvalue of −∆(−ε,ε) is 0,
we have

λ∆(ε) = λS

and the corresponding eigenvector is u(x1, x2, x3) = v(x1, x2) where (λS , v) is the
first eigenpair of−∆S . Thus k∆(ε) is independent of ε, and is the angular frequency
of v.

In the case of a shell that is not a plate, the equality (4.2) is no more true.
However, if ∆S denotes now the Laplace–Beltrami on the surface S with Dirichlet
boundary condition, an extension of the result2 of [13] yields that the smallest
eigenvalue of the right-hand side of (4.2) should converge to the smallest eigenvalue
of ∆Ωε . An extension of [13, Th. 4] gives, more precisely, that

λ∆(ε) = λS + a1ε+O(ε2), as ε→ 0, (4.3)

for some coefficient a1 independent of ε. Concerning the angular frequency k∆(ε),
a direct argument leads to the following conclusion.

Lemma 4.1. Let Ωε be an axisymmetric shell. The first eigenvalue (3.2) of the
Laplace operator is simple and k∆(ε) = 0.

Proof. The simplicity of the first eigenvalue of the Laplace operator with Dirichlet
boundary conditions is a well-known result. Here we reproduce the main steps of
the arguments (see, e.g., [9, Sect. 7.2]) to check that this result extends to more
general boundary conditions.

Let u be an eigenvector associated with the first eigenvalue λ. A consequence
of the Kato equality

∇|u| = sgn(u)∇u almost everywhere3

is that |u| satisfies the same essential boundary conditions as u and has the same
minimum Rayleigh quotient as u. Therefore |u| is an eigenvector too and it satisfies
the same eigenequation −∆|u| = λ|u| as u. The latter equation implies that −∆|u|
is nonnegative, and hence |u| satisfies the mean value property

|u(t0)| ≥
1

meas(B(t0, ρ))

∫

B(t0,ρ)
|u(t)| dt

for all t0 ∈ Ωε and all ρ > 0 such that the ball B(t0, ρ) is contained in Ωε. Hence
|u| is positive everywhere in Ωε. Therefore u = ±|u| and we deduce that the first
eigenvalue is simple.

By Lemma 2.1, this eigenvector is unimodal. Let k be its angular frequency.
If k )= 0, by Remark 2.2 there would exist an independent eigenvector of angular
frequency −k for the same eigenvalue. Therefore k = 0. !

2In [13], the manifold S (denoted there by M) is without boundary. We are convinced that
all proofs can be extended to the Dirichlet lateral boundary conditions when S has a smooth
boundary.
3With the convention that sgn(u) = 0 when u = 0.
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4.2. Lamé system on plates

The domain Ωε is the product (4.1) of S by (−ε, ε). For the smallest eigenvalues
λL(ε) of the Lamé problem (3.3), we have the convergence result of [6, Th. 8.1]

λL(ε) = λB ε
2 +O(ε3), as ε→ 0. (4.4)

Here, λB is the first Dirichlet eigenvalue of the scalar bending operator B that, in
the case of plates, is simply a multiple of the bilaplacian (Kirchhoff model)

B =
1

3

E

1− ν2
∆2 on H2

0 (S). (4.5)

The reference [6, Th. 8.2] proves convergence also for eigenvectors. In particular the
normal component u3 of a suitably normalized eigenvector converges to a Dirichlet
eigenvector of B. This implies that the angular frequency kL(ε) converges to the
angular frequency kB of the first eigenvector of the bending operator B.

4.3. Lamé system on a spherical cap

A spherical cap Ωε can be easily defined in spherical coordinates (ρ, θ,ϕ) ∈ [0,∞)×
[−π

2 ,
π
2 ]× T (radius, meridian angle, azimuthal angle) as

Ωε =
{
t ∈ R3, ρ ∈ (R− ε, R+ ε), ϕ ∈ T, θ ∈ (Θ,

π

2
]
}
.

Here R > 0 is the radius of the midsurface S and Θ ∈ (−π
2 ,

π
2 ) is a given meridian

angle. Numerical experiments conducted in [7, Sect. 6.4.2] exhibited convergence
for the first eigenpair as ε→ 0 (when Θ = π

4 ), see Fig. 10 loc. cit.. We do not have
(yet) any theoretical proof for this.

5. Sensitive cases: Developable shells

Developable shells have one main curvature equal to 0. Excluding plates that are
considered above, we see that we are left with cylinders and cones4.

The case of cylinders was addressed in the literature with different levels of
precision. In cylindrical coordinates (r,ϕ, τ) ∈ [0,∞) × T × R (radius, azimuthal
angle, axial abscissa) a thin cylindrical shell is defined as

Ωε =
{
t ∈ R3, r ∈ (R− ε, R+ ε), ϕ ∈ T, τ ∈ (−L

2 ,
L
2 )
}
.

Here R > 0 is the radius of the midsurface S and L its length. The lateral boundary
of Ωε is

∂0Ω
ε =

{
t ∈ R3, r ∈ (R − ε, R+ ε), ϕ ∈ T, τ = ±L

2

}
.

One may find in [15, 14] an example of analytic calculation for a simply sup-
ported cylinder using a simplified shell model (called Donnel–Mushtari–Vlasov).
We note that simply supported conditions on the lateral boundary of a cylinder

4Since we consider here shells with a smooth midsurface, cones should be trimmed so that they
do not touch the rotation axis.
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allow reflection across this lateral boundary, so that separation of the three vari-
ables using trigonometric Ansatz functions is possible. This example shows that
for R = 1, L = 2 and h = 0.02 (i.e., ε = 0.01) the smallest eigenfrequency does
not correspond to a simple eigenmode, i.e., a mode for which k = 0, but to a mode
with k = 4.

In Figure 1 we plot numerical dispersion curves of the exact Lamé model
L for several values of the thickness h = 2ε (0.1, 0.01, and 0.001). This means
that we discretise the exact 2D Lamé model L(k) obtained after angular Fourier
transformation, see (2.10), on the meridian domain

ωε =
{
(r, τ) ∈ R+ × R, r ∈ (R − ε, R+ ε), τ ∈ (−L

2 ,
L
2 )
}
.

We compute by a finite element method for a collection of values of k ∈
{0, 1, . . . , kmax} so that for each ε, we have reached the minimum in k for the first
eigenvalue.
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Figure 1. Cylinders with R = 1 and L = 2: log10 of first eigenvalue of L(k)

depending on k for several values of the thickness h = 2ε. Material constants
E = 2.069 · 1011, ν = 0.3, and ρ = 7868 as in [2]

So we see that the minimum is attained for k = 3, k = 6, and k = 11 when
h = 0.1, 0.01, and 0.001, respectively. We have also performed direct 3D finite
element computations for the same values of the thickness and obtained coherent
results. In Figures 2–4 we represent the shell without deformation and the radial
component of the first eigenvector for the three values of the thickness.

In fact the first 3D eigenvalue λL(ε) and its associated angular frequency kL(ε)
follow precise power laws that can be determined. A first step in that direction is
the series of papers by Artioli, Beirão Da Veiga, Hakula and Lovadina [4, 1, 2]. In
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Figure 2. Cylinder with R = 1, L = 2 and h = 10−1: First eigenmode
(radial component).

Figure 3. Cylinder with R = 1, L = 2 and h = 10−2: First eigenmode
(radial component).

Figure 4. Cylinders with R = 1, L = 2 and h = 10−3: First eigenmode
(radial component).
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these papers the authors investigate the first eigenvalue of classical surface models
posed on the midsurface S. Such models have the form

K(ε) = M+ ε2B. (5.1)

The simplest models are 3 × 3 systems. The operator M is the membrane
operator and B the bending operator. These models are obtained using the as-
sumption that normals to the surface in Ωε are transformed in normals to the
deformed surfaces. In the mathematical literature the Koiter model [10, 11] seems
to be the most widely used, while in the mechanical engineering literature so-
called Love-type equations will be found [14]. These models differ from each other
by lower-order terms in the bending operator B. As we will specify later on, this
difference has no influence in our results.

Defining the order α of a positive function ε $→ λ(ε), continuous on (0, ε0],
by the conditions

∀η > 0, lim
ε→0+

λ(ε) ε−α+η = 0 and lim
ε→0+

λ(ε) ε−α−η =∞, (5.2)

[4, 1, 2] proved that α = 1 for the first eigenvalue of K(ε) in clamped cylindrical
shells. They also investigated by numerical simulations the azimuthal frequency
k(ε) of the first eigenvector of K(ε) and identified power laws of type ε−β for k(ε).
They found β = 1

4 for cylinders (see also [3] for some theoretical arguments based
on special Ansatz functions in the axial direction).

In [5], we constructed analytic formulas that are able to provide an asymptotic
expansion for k(ε) and λ(ε), and consequently for kL(ε) and λL(ε):

k(ε) 0 γε−1/4 and λ(ε) 0 a1ε , (5.3)

with explicit expressions of γ and a1 using the material parameters E, ρ and ν,
the sizes R and L of the cylinder, and the first eigenvalue µbilap 0 500.564 of the
bilaplacian η $→ ∂4

zη on the unit interval (0, 1) with Dirichlet boundary conditions
η(0) = η′(0) = η(1) = η′(1) = 0, cf [5, Sect. 5.2.2]:

γ =

(
R6

L4
3(1− ν2)µbilap

)1/8

and a1 =
2E

ρRL2

√
µbilap

3(1− ν2)
. (5.4)

We compare the asymptotics (5.3)–(5.4) with the computed values of kL(ε) by
2D and 3D FEM discretisations, see Figure 5. The values of kL(ε) are determined
for each value of the thickness:

• In 2D, by the abscissa of the minimum of the dispersion curve (see Figure 1)
• In 3D, by the number of angular oscillations of the first mode (see Figures
2–4)

Finally we compare the asymptotics (5.3)–(5.4) with the computed eigenval-
ues λL(ε) by four different methods, see Figure 6.

Problems considered in Figure 6:

a) Lamé system L(k) on the meridian domain ωε, computed for a collection of
values of k by 2D finite element method.
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Figure 5. Cylinders (R = 1, L = 2): Computed values of kL(ε) versus the
thickness h = 2ε. The asymptotics is h !→ 9.2417 · ε−1/4 # 11 · h−1/4 (with

ν = 0.3).

! "#$ " %#$ % &#$ &
!

!#$

$

$#$

'

'#$

(

)*+&,-./

)*
+ &
,-

/

0

0

123456*6782
%90:;<
&90=>+.?7
&90@*AB
"90:;<

Figure 6. Cylinders (R = 1, L = 2): Computed values of λL(ε) versus
the thickness h = 2ε. Material constants E = 2.069 · 1011, ν = 0.3, and
ρ = 7868. 1D Naghdi and Love models are computed in [2]. The asymptotics
is h !→ 6.770 · εE/ρ = 3.385 · hE/ρ.
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b) Naghdi model [12] on the meridian set C = (−1, 1) of the midsurface, com-
puted for a collection of values of k by 1D finite element method in [2].

c) Love-type model [14] on C, computed for a collection of values of k by collo-
cation in [2].

d) 3D finite element method on the full domain Ωε.

In methods a), b) and c),

λ(ε) = min
0≤k≤kmax

λ(k)(ε)

where λ(k)(ε) is the first eigenvalue of the problem with angular Fourier parameter
k (remind that λ(k)(ε) = λ(−k)(ε)). In method d), λ(ε) is the first eigenvalue.

We can observe that these four methods yield very similar results and that the
agreement with the asymptotics is quite good. In [5, Sect. 5] the case of trimmed
cones is handled in a similar way and yields goods results, too.

6. A sensitive family of elliptic shells, the Airy barrels

In this section we consider a family of shells defined by a parametrization with
respect to the axial coordinate, which is denoted by z when it plays the role of
a parametric variable: The meridian curve C of the surface S is defined in the
half-plane R+ × R by

C =
{
(r, z) ∈ R+ × R, z ∈ I, r = f(z)

}

where I is a chosen bounded interval and f is a smooth function on the closure
of I. We assume that f is positive on I. Then the midsurface is parametrized as
(with values in Cartesian variables)

I × T −→ S
(z,ϕ) $−→ (t1, t2, t3) = (f(z) cosϕ, f(z) sinϕ, z).

(6.1)

Finally, the transformation F : (z,ϕ, x3) $→ (t1, t2, t3) sends the product I × T×
(−ε, ε) onto the shell Ωε and is explicitly given by, see also [5, Sect. 1.3.1]

t1 =
(
f(z)+x3

1
s(z)

)
cosϕ, t2 =

(
f(z)+x3

1
s(z)

)
sinϕ, t3 = z−x3

f ′(z)
s(z) , (6.2)

where s is the curvilinear abscissa

s(z) =
√
1 + f ′2(z).

With shells parameterized in such a way, we are in the elliptic case (that
means a positive Gaussian curvature) if and only if f ′′ is negative on I. In this
same situation the references [4, 1, 2] proved that the order (5.2) of the first
eigenvalue of K(ε) is α = 0. In [2], numerical simulations are presented for the
case

f(z) = 1− z2

2
on I = (−0.892668, 0.892668), (6.3)
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Figure 7. Shell (6.2)–(6.3) with h = 10−1.

by solving the Naghdi and the Love models. A power law k(ε) ∼ ε−2/5 is suggested
for the angular frequency of the first mode. The shells defined by (6.2)–(6.3) have
the shape of barrels, Figure 7.

Before presenting the analytical formulas of the asymptotics [5], let us show
results of our 2D and 3D FEM computations. In Figure 8 we plot numerical dis-
persion curves of the exact Lamé model L for several values of the thickness h = 2ε
(0.01, 0.004, 0.002 and 0.001).

We can see that, in contrast with the cylinders, k = 0 is a local minimum
of all dispersion curves. This minimum is global when h ≥ 0.005. A second local
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Figure 8. Shell (6.2)–(6.3): log10 of first eigenvalue of L(k) depending on k
for several values of the thickness h = 2ε. Material constants as in [2]
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Figure 9. Shell (6.2)–(6.3) and h = 0.01, 0.004, 0.002, 0.001: First eigen-
mode (radial component).

minimum shows up, which becomes the global minimum when h ≤ 0.004 (k = 9,
12 and 16 for h = 0.004, 0.002, and 0.001, respectively. In Figure 9 we represent
the radial component of the first eigenvector for these four values of the thickness
obtained by direct 3D FEM.

Comparing with the cylindrical case, we observe a new phenomenon: the
eigenmodes also concentrate in the meridian direction, close to the ends of the
barrel, displaying a boundary layer structure as ε → 0. In [5] we have classified
elliptic shells according to behavior of the function (proportional to the square of
the meridian curvature bzz)

H0 =
E

ρ

f ′′2

(1 + f ′2)3
. (6.4)

If H0 is not constant, the classification depends on the localization of the minimum
of H0. If the minimum is attained at a point z0 that is at one end of I, we are in
what we called the Airy case. We observe that for the function f = 1− z2

2

H0 =
E

ρ

1

(1 + z2)3
.
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Its minimum is clearly attained at the two ends ±z0 of the symmetric interval I.
In the Airy case our asymptotic formulas take the form, see [5, Sect. 6.4],

k(ε) 0 γε−3/7 and λ(ε) 0 a0 + a1ε
2/7 with a0 = H0(±z0) . (6.5)

To give the values of γ and a1 we need to introduce the functions

g(z) = −2E

ρ

(ff ′′

s6
+

f2f ′′2

s8

)
(z) and B0(z) =

E

ρ

1

3(1− ν2)

1

f(z)4
. (6.6)

With
b = B0(z0) and c = z(1)Airy

(
g(z0)

)1/3 (
∂zH0(z0)

)2/3
, (6.7)

(here z(1)Airy 0 2.33810741 is the first zero of the reverse Airy function) we have

γ =
( c

6b

)3/14
and a1 = (6bc6)1/7

(
1 +

1

6

)
. (6.8)

We compare the asymptotics (6.5)–(6.8) with the computed values of kL(ε) by
2D and 3D FEM discretisations, see Figure 10. The values of kL(ε) are determined
for each value of the thickness by the same numerical methods as in the cylindric
case.

Finally we compare the asymptotics (6.5)–(6.8) with the computed eigenval-
ues λL(ε) by the same four different methods as in the cylinder case, see Figure 11.

Here we present 2D computations with two different meshes. The uniform
mesh has 2×8 curved elements of geometrical degree 3 (2 in the thickness direction,
8 in the meridian direction) and the interpolation degree is equal to 6. In the
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Figure 10. Shell (6.2)–(6.3): Computed values of kL(ε) versus the thickness
h = 2ε. The asymptotics is h !→ 0.51738·ε−3/7 # 0.6963·h−3/7 (with ν = 0.3).
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Figure 11. Shell (6.2)–(6.3): Computed values of λL(ε)−a0 versus thickness
h = 2ε. 1D Naghdi and Love models in [2]. Asymptotics h !→ a0 + a1 ε #
(0.1724 + 1.403 · ε)E/ρ.

refined mesh, we add 8 points in the meridian direction, at distance O(ε), O(ε3/4),
O(ε1/2), and O(ε1/4) from each lateral boundary, see Figure 12. So the mesh has
the size 2 × 16. The geometrical degree is still 3 and the interpolation degree, 6.
In this way we are able to capture those eigenmodes that concentrate at the scale
d/ε2/7, where d is the distance to the lateral boundaries. In fact eigenmodes also
contain terms at higher scales, namely d/ε3/7 (membrane boundary layers), d/ε1/2

(Koiter boundary layers), and d/ε (3D plate boundary layers).
A further, more precise comparison of the five families of computations with

the asymptotics is shown in Figure 13 where the ordinates represent now log10(λ−
a0 − a1ε2/7). These numerical results suggest that there is a further term in the
asymptotics of the form a2ε4/7. We observe a perfect match between the 1D Naghdi
model and the 2D Lamé model using refined mesh. The Love-type model seems
to be closer to the asymptotics. A reason could be the very construction of the
asymptotics: They are built from a Koiter model from which we keep

• the membrane operator M,
• the only term in ∂4

ϕ in the bending operator. Note that this term is common
to the Love and Koiter models. After angular Fourier transformation, the
corresponding operator becomes B0(z) k4, with B0 introduced in (6.6).

The exponent − 3
7 in (6.5) is an exact fraction arising from an asymptotic

analysis where the Airy equation −∂2
ZU + ZU = ΛU on R+ with U(0) = 0 shows

up. Thus, the exponent − 2
5 in [2] that is only an educated guess is probably
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Figure 12. Meshes for shell (6.2)–(6.3) and ε = 0.01:
Uniform (top row), refined (bottom row).
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Figure 14. Cylinders (top) and Airy barrels (bottom): First eigenvalues
of L(k) depending on k for several values of thickness compared with first
eigenvalues of M(k) (membrane).

incorrect. We found in [5, Sect. 6.3] this − 2
5 exponent for another class of elliptic

shells that we called Gaussian barrels, for which the function H0 (6.4) attains its
minimum inside the interval I (instead of on the boundary for Airy barrels).
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7. Conclusion: The leading role of the membrane operator
for the Lamé system

We presented two families of shells for which the first eigenmode has progressively
more oscillations as the thickness tends to 0. The question is “Can we predict such
a behavior for other families of shells? What are the determining properties?”

In [5] we presented several more families of shells with same characteristics
of the first mode. The common feature that controls such a behavior seems to be
strongly associated to the membrane operatorM. If we superpose to our dispersion
curves k $→ λ(k)(ε) of the Lamé system the dispersion curves k $→ µ(k) of the
membrane operator, we observe convergence to the membrane eigenvalues as ε→ 0
for each chosen value of k, see Figure 14. We also observe that for each chosen ε,
the sequence λ(k)(ε) tends to ∞ as k →∞. The appearance of a global minimum
of λ(k)(ε) for k that tends to∞ as ε→ 0 occurs if the sequence µ(k) has no global
minimum: its infimum is attained “at infinity”.

For cylinders and cones, the sequence µ(k) tends to 0 as k → ∞. Hence the
sensitivity. For elliptic shells, the sequence µ(k) tends to a limit that coincides
with the minimum of the function H0. Sensitivity depends on whether µ(k) has
a minimum lower than this value. From our previous study it appears that any
configuration is possible. For hyperbolic shells, µ(k) tends to 0 so sensitivity occurs,
cf. [4, 1, 2] but the analysis of the coefficients in asymptotics cannot be performed
by the method of [5].

A natural question that comes to mind is: Are there other types of axisym-
metric structures that behave similarly? Rings (curved beams) are conceivable –
the recent work [8] suggests that sensitivity does not occur for thin rings with
circular or square sections.
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