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Abstract 

The computation of the stress intensity factors for axially symmetric domains, in the vicinity of singular points in the 
framework of linear e]tastostatics, is presented. It is shown that the decomposition of the solution in the neighborhood of 
any singular point, in an axisymmetric domain, is identical to the decomposition corresponding to plane strain condition, 
and an extraction vector, to be used in conjunction with the contour integral method and the p-version of the finite element 
method, is developed for crack singularities. Although the contour integral is shown to be path dependent for axisymmetric 
2-D domains, in the limiting case it is valid for the computation of the crack stress intensity factors. Numerical examples 
support our analysis, extending the application of the superconvergent contour integral in conjunction with the p-version 
of the finite element method to the axisymmetric crack case. 

1. Introduction 

The axially symmetric elastostatic problem can be reduced to a system of  two partial differential 
equations and solved on a two-dimensional (2-D) domain which represents the generating section of 
the axially symmetric body. Although the reduced problem is formulated on a 2-D domain, special 
treatment is required to find its solution in the vicinity of  singular points. 

In the case of  a purely 2-D problem (plane strain or plane stress), we may use the zooming principle 
to examine the solution in the vicinity of  the singular point, such that no length parameter which 
characterizes the solution domain is apparent. In this case, the solution can be expanded in the form [ 1 ] 

1 M 

U = ~ ~ C i r n r  ai lnm(r ) f im(O)+u*(r ,O) ,  ( 1 )  
i=1 m=0 

where r and 0 are polar coordinates centered on the singular point, u* is a smoother function than 
the terms in the sum, f , , (0)  are piecewise analytic vector functions, and Cim are the generalized stress 
intensity factors (GSIFs).f , , (0)  and ~i are eigenpairs. The value of  8u/dr is unbounded as r approaches 
zero for ~i < 1. For a detailed discussion on the decomposition of the solution in the vicinity of  singular 
points we refer to 111-5]. 

* Corresponding author. 
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Reliable computation of the GSIFs is of great practical importance, because failure theories directly 
or indirectly involve these coefficients. However, computation of the GSIFs requires that the eigenpairs 
be known. These eigenpairs may be computed numerically. 

In the 2-D axisymmetric problems, a characteristic length, which is the distance of the singular point 
from the axisymmetric axis, denoted by Ps, appears in the formulation which determine the eigenpairs. 
As a result, we show in Section 2 that the decomposition of the solution in the form ofEq. ( 1 ) holds true 
only in the limit with respect to rips ~ O. This is shown by a method based on the Steklov formulation. 
Details on the Steklov formulation are available in [3, 4]. 

For isotropic axisymmetric problems, it has been shown in [6] that in the limit rips ~ O, the eigenpairs 
are similar to those corresponding to plane-strain situation. The analysis in [6] is based on Love's stress 
function. We use the Steklov formulation to generalize thi s theorem, proving that the solution associated 
with the 2-D axisymmetric problem, in the vicinity of any singular point, can be expanded in terms of 
eigenpairs identical to these associated with the plane strain condition over the same 2-D domain. 

Once the eigenpairs are found, the GSIFs may be extracted using various numerical methods. One 
of the most efficient methods to extract the GSIFs for cracked configurations is the contour integral 
method (CIM) first introduced in [7], and incorporated for 2-D elasticity in [8]. For detailed discussion 
on the CIM we refer to [7-9], where it has been shown that the method yield superconvergent results. 
We hereby demonstrate that the CIM becomes path dependent in the case of axisymmetric problems. It 
is also shown, however, that the CIM can be modified such that it becomes applicable to axisymmetric 
problems, and can be used for the extraction of the stress intensity factors from finite element solutions. 
An auxiliary function vector, called the extraction function vector, is constructed for use in conjunction 
with the CIM, and the p-version of the finite element method is utilized in the extraction of these crack 
GSIFs for axisymmetric problems. 

Numerical results, demonstrating the results of the analysis, are presented in Section 3. The GSIF 
is calculated for three axisymmetric domains and compared to the exact values obtained by analytical 
methods (when available). 

2. Decomposition of the solution in the vicinity of a singular point and extraction functions 

Consider the generating section f2 of an axially symmetric domain shown in Fig. 1, where z is the 
axisymmetric axis and p is the radial distance from it. Denote by F~ and F2 the boundaries ofa  reentrant 
corner in f2, such that F1 and F2 intersect in the singular point (ps, Zs). We define OR as the subdomain 
f2NSR, where SR =-- { (p,z ) l (p--ps )2 +(Z--Zs ) 2 <<. R2}.-F3 C Q is defined as { (p , z  ) l ( p -  ps )2--b(Z-Zs ) 2 = 
R 2 } fq 12. The polar coordinate system r, 0 is located in the singular point (ps,Zs). The displacements 

and traction vectors in the p and z directions will be denoted by u def {Up, Uz}T and T d~f {Tp, Tz} T, 
respectively. 

The generalized (weak) form of the axially symmetric problem of elasticity is formulated as follows 
(see Eq. (5.72) in [9]): 

Seeku E HI(OR) × Hi(On) such that ~#(u,v) = ~ ( v )  Vv E HI (QR)  × HI(QR),  (2) 
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Fig. 1. The domain and notation. 
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Assume that in OR u can be expanded in terms of  eigenpairs as follows (the In r terms may appear in 
some special cases which we do not address here): 

u = r ~ { f ( O ) }  " g ( O )  (6) 

On the boundaries FI and F 2 w e  assume the following homogeneous boundary conditions: 

Tz = - uzk~Uz)/kS ~) on Fi, i = 1,2, (7) 

where k~ u~), kS ~), k~ uz', and kS z) are constants. If k~r")= 0 or kS ' ) - -  0, we omit this boundary condition 

and restrict the space in which u and v lie to be the one given by /41(OR) × HI(f2R) dee {UlU C 
HI(OR) × HI(OR), U = 0 on Fi}. On the boundary F3 the following relationship holds: 

{ ) i o0O o sin0  T° = [B]{a} ---- [B][E][D]{u}, [B] ---- 
Tz 0 sin 0 cos 0 J 

(8) 

For the case where x' is the same direction as p we have 

P = Ps + r cos 0, z = Ps + r sin 0. (9) 

When x' is in the opposite direction to p such as, for example, when a crack is originating at the perimeter 
then, 

P = Ps - rcosO, z = Ps - rsinO. 

So that, in both cases 

~pp c o s 0  - 1  sin 0]  Or , 

L sin 0 I cos 0 J 
r S0 

(10) 

and [D] becomes 

cos 0 5r r sin 0 ~-0 0 

1/(ps -4- rcos  O) 0 

[O] = ~ 1 ~0 0 sin 0 ~r + -r cos 0 

t3 1 0 t~ 1 sin 0 ~0 
sin 0 Or + r cos 0 ~-0 cos 0 ~rr r 

(11) 
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therefore [D]{u} can be written as 

cz cos 0 - sin 0 ~30 

1 r/(ps + r cos 0) 

[D] {u} = r 0 

0~ sin 0 + cos 0 

0 

0 

a sin 0 + cos  0 ~0 

a cos  0 - s in 0 _ 0  
d0 

{u}. 

Substituting (7)-(9') and (12) into (4) we obtain 

,~{~} : --R ~ , {I))T uzk~Uz)/k~ Tz) (Psi R "4- (r/R)cosO)ds 

cos 0 0 ) 

0 0 

0 sin 0 

sin 0 cos 0 

0 
- s in 0 - -  

~0  

1/(pffR + cos O) 

0 

{ u } ( p s / R ±  cosO)dO 

0 

0 

cos 0 ~0 

- sin 0 _~_ 
d0 

+R j !  {v} T [B][E] 

0 
cos 0 - -  

~0 

(12) 

{u} (pffR + cos 0)d0. (13) 

To simplify our discussion let us assume Dirichlet boundary conditions on F1 and F2, such that the first 
term in (13) can be omitted. In this case, after multiplying left and right hand sides of (2)  by R/ps, the 
weak form o f  the Steklov problem is given as follows: 

Seek ~z • c~, and 0 =~ u • /QI (~R)  X /~l(~'2R) such that Vv • H1(f2R) x/~l(~C2R) , 

fo R fo ([D]{v})T [E][D]{u}(1 4- (rips) cos O)r dr dO 

- fo {v}T [B][E] 

O 
- sin 0 ~--0 0 

1/(ps/R -4- cos 0) 0 

0 cos 0 ~0 

cos 0 3 - s in 0 
~0 O0 

{u}( 1 + (n/p~) cos 0)d0 



120 Z. Yosibash, B. Szabr / Finite Elements in Analysis and Design 19 (1995) 115-129 

cos 0 0 } 

= O~ ~0 {I3)T [BI[E] 0 0 
0 sin 0 {u}( 

sin 0 cos 0 

1 + (R/ps) cos 0)d0. (14) 

This is an eigenvalue problem which can be solved by means of the finite element method. 

Remark 1. The decomposition of the solution in the vicinity of singular points into an asymptotic 
series of eigenpairs of the form (6) is valid only for R/ps ,~ 1, and as R/ps ~ 0 the fewer terms in the 
asymptotic expansion are needed for an accurate solution. 

where 

Notice that r < R, so that in the limit as (R/ps) -," 0 (14) takes the form 

- sin 0 ~---~ 

0 

f f~.([D]{v})T[E][D]{u}rdrdO- fo {v}T[B][E] 0 

cos 0 ~0 

0 / 
0 

cos 0 ~0 

- sin 0 ~0 

cos 0 0 } 

= fo {v}T [BI[E] 0 0 
0 sin 0 {u} 

sin 0 cos 0 

{u}dO 

dO, (15) 

cos 0 fir O r sin 0 ~-0 0 0 

t3 1 
[D] = 0 sin 0 ~r + r cos 0 

t3 1 8 t9 1 8 
sin 0 ~r + -r cos 0 ~-0 cos 0 ~rr r sin 0 

The Steklov formulation in the limiting case given by (15) is identical to the one corresponding to 
the plane-strain formulation problem presented in [3]. 

R e m a r k  2. The Steklov formulation (15) is applicable to any singular point resulting from reentrant 
comers, multimaterial interfaces, or abrupt changes in boundary condition. 

Therefore, we may conclude that the eigenpairs for the 2-D axisymmetric problem are identical to 
the ones corresponding to plane-strain problem over the same domain. This result is consistent with 
Sneddon's analysis for a loaded penny shaped crack in an infinite body presented in [10], and Zak's 
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analysis presented in [6]. Consequently, the extraction function vector, denoted by w = {w o, w~} T, is 
also identical to the one already given in [9, Ch. 12] for the plane-strain problem. 

Eq. (14) was numerically solved using a p-version finite element formulation as described in [4]. 
Numerical results support our analysis conclusions, and the eigenpairs converge to those associated with 
the plane-strain case as R/p~ ~ O. 

2.1. Application of the contour integral method to axisymmetric problems 

The contour integral It(u, w) along any path beginning at F~ and ending on F2: 

Ir(U'w) def fr  [(T"(Ulw" + T(u)wt) - (T~w)u" + Tt(W)ut)]ds' (16) 

presented in (12.23) in [9] is shown to be independent of F for purely 2-D problems. Here, T stands 
for normal or tangential traction computed from the displacement vector u or the extraction vector w, 
while n and t represent the normal and tangential components. 

To apply the contour integral for axisymmetric problems, the traction vectors corresponding to w 
and u have to be calculated. Therefore, the stress components o-p, trz and Zpz, have to be evaluated first. 
Note that ao is not of interest because the traction vector is independent of it. The stress-displacement 
relationships in the axisymmetric case (corresponding to w for example) are: 

~w~ Owz Wp 
a (w) = Ell-~p + Eaz--~z + E13--,p 

wp (17) 

OWz) 
"c~zW)=E44 \ 4tz + dp J " 

Substituting (6) into (8), then changing to normal-tangential coordinate system, we obtain the traction 
components corresponding to the ith eigenpair as 

{i) (O)+(r/p)v (0 , 

Tt(U, : i~i-1 [ }.) )~](u, )] (;) ~ (0) + (r/p (0 , 
(18) 

Tt(W, = r-~i-1 [ }w) )~(w) )] (i) ~ (0) + (r/p (0 , 

where Tff ), T} w), ~rt}u), ~p}w), o}.), o}w), Off) and ~k }w) are all smooth functions of 0 containing trigonometric 
functions and material constants. The functions o} ~), o} w), ~(~) and ~bff ') do not appear in the purely 2-D 
cases, but we shall show that they disappear as R/p~ --, O. 

Oncd we obtained all components required for evaluating the contour integral, we proceed by modi- 
fying it for the case of axisymmetric 2-D domain. Following the analysis presented in [9, Ch. 12], we 
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obtain the CIM integral to be formulated as in the 2-D case, except that ds must be replaced by (p/ps)ds, 
namely 

Ir(u 'w)= fr [(T(u)wn + T(tU)wt) - (T(~W)u" + T(tW)ut)](P/Ps)ds" (19) 

Clearly, It(u, w) is no longer path independent. In the following, however, we prove that on a circular 
path F, of  radius R, in the limit R/ps --~ 0 we obtain I r --+ It, and path independency is recovered for 
the axisymmetric case under the restrictive assumption that p~ >> R. 

Let us examine a typical term in the expression for I t ,  which will be denoted by Ir(o) and corresponds 
to the ith term of  T, and the j th  term of  wn: 

1;(ij) : jr T;(i)wn(j)(p/p )ds = frr~-~s-l [T(i")(O) + (r/p)ol")(O)] fj(O)(p/ps)ds. (20) 

On a circular path of radius R, this term becomes 

1;(iJ)-~-R°ti-°tJ [fo T~')(O)fj(O)(1-I-(R/ps)C°s(O))dOq-(R/ps) fol)Iu)(o)fj(O)dO]" (21) 

In the limit R/p~ ~ 0 we have (1 4- (R/ps)COs(O)) ~ 1 so (21) becomes 

l~(ij)=R~'-'J [fo T(i")(O)fj(O)dO+(R/P~) fo °l")(O)fj(O)dO] (22) 

and because fo T~")(O)fj(O) dO and fo vl")(0)J)(0) d0 are of the same order of magnitude the second 
integral term multiplied by R/ps is negligible so that (22) finally takes the form 

1;(iJ) = R"-'J fo T}")(O)f j(O)dO - Ir(ij), R/p~ --~ O. (23) 

Therefore, the orthogonality property of  the eigenfunctions with respect to the contour integral pre- 
sented in (19) still holds. For detailed explanation of  the significance of  the orthogonality property for 
the computation of  the GSIFs, the reader is referred to [9, Ch. 12]. 

3. Numerical examples 

The CIM can be implemented in any finite element computer program. However, the error in the 
computed GSIF is closely related to the error in energy norm, and therefore the choice of  the finite element 
space. The numerical problems discussed in the following were solved by means of  a new p-version 
finite element computer code, called PEGASYS. 1 The analysis presented in Section 2 is verified by the 
computation of  the stress intensity factors for two crack configurations in a cylindrical bar, for which 
analytical solutions are available, and one inclined crack configuration, for which numerical results from 
a previous work are reported. The trial space used in the finite element analysis was the trunk space. 
By definition, the trunk space of  degree p spans the set of  monomials lit//, i + j ~< p augmented by 

I pEGASYS is a trademark of Engineering Sottware Research and Development, Inc. 7750 Clayton Road, Suite 204, 
St. Louis, MO 63117. 
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the monomial ~r/fi)r p = 1 and by the monomials ~Prl, ~rlP for p >~ 2 on the standard quadrilateral 
element defined by -~st°(q) = {¢,r/[ Ill ~< 1, [r/[ ~< 1}. In the CIM, the integration was performed along 
a circle of  a radius greater than the radius of  the elements at the crack tip. This is because the finite 
element solution in the first group of  elements at the crack tip is not of  high accuracy [ 11 ]. 

3.1. Penny-shaped crack imbedded in a cylinder 

Consider the domain illustrated in Fig. 2 loaded by traction of  magnitude 1.0 in z direction. The 
solution for this geometry, for h/b ~ oo, which is claimed to be accurate to within one percent relative 
error, is given in [12]. 

The axisymmetric 2-D solution domain was defined in a parametric form, as illustrated in Fig. 3, such 
that the values for a, b and h may be easily changed. The finite element mesh surrounding the crack 
tip contains radial layers graded in a geometric progression in the vicinity of  the singular point with 
the grading factor 0.15. The mesh presented in Fig. 3, for example, has three radial layers. Isotropic 
material with Young's  modulus of  1.0 and Poisson's ratio of  0.3 was used. It is demonstrated in [8] 
that the stress intensity factors computed by the CIM converge strongly and obviously, and the relative 
error has the same order of magnitude as the error in the energy norm. 

We considered the case a/b = 1/2, and computed the normalized stress intensity factor (Ki / (av '~) )  
for several h/b ratios. For h/b >I 3 the normalized stress intensity factors remain almost unchanged, so 
that the values obtained could be correlated with the analytical value available for h/b = c~, which is 
0.6881. As the p-level is increased over the elements, the stress intensity factor converges quickly. As 
an example we show in Fig. 4 the convergence of  the stress intensity factor for the three-radial layer 

b 

! a  
Z • 

e .......................... 

1 

Fig. 2. Penny shaped crack of radius a in a cylinder. 
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Fig. 3. The 2-D mesh design for the penny shaped crack of radius a. 

Table 1 
Normalized stress intensity factors computed by the CIM at p-level 8 for various values R/a in a cylinder 
with a/b = 1/2 and h/b = 3 

R/a Four-radial layers Three-radial layers Two-radial layers 
Helle = 0.1% [[el[e = 0.13% Ilel[e ---- 0.28% 
N = 2849 N = 2353 N = 1857 

0.0006 0.6857(-0.35%) 
0.001 0.6852(-0.42%) 
0.005 0.6854(-0.39%) 0.6854(-0.39%) 
0.01 0.6851(-0.44%) 0.6850(-0.45%) 
0.05 0.6825( -0 .81% ) 0.6825( - 0.81% ) 
0.1 0.6801(-1.16%) 0.6801(-1.16%) 

0.6825(-0.81%) 
0.6801(- 1.16%) 

Note: The numbers in parentheses represent the relative error from the analytical solution which is 
0.6881. 
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Fig.  4. S t ress  In tens i ty  Fac tors  for: R/a = 0.005, a/b = 0.5, h/b = 3. 

9.0 

mesh model for R/a = 0.005. The computed values of  the normalized stress intensity factor at p = 8 for 
different values of  R/a are listed in Table 1. The number of  degrees of  freedom is denoted by N. For all 
cases the mode two stress intensity factor, which is the coefficient corresponding to the first asymptotic 
term of  Uz in (1), was zero as expected. 

We see from Table 1 that the stress intensity factors converge to the analytical value for R/a --~ O, as 
predicted by the analysis. Note that even the analytical value may have 1% error. 

To improve the quality of  the results one may use an extrapolation procedure based on several R/a 
values, to calculate the stress intensity factor as R/a ~ O. 

3.2. Outer crack in a cylinder 

As a second example we consider a cylinder which contains an outer crack propagating toward the 
axisymmetric axis. The cylinder is loaded by traction of  magnitude 1.0 in the z direction, see Fig. 5. The 
solution for this &,main, for h/b ~ oo, which is more accurate than 1% (for a/b < 0.2 or a/b > 0.8), 
is given in [12]. The axisymmetric finite element mesh is similar to the one shown in Fig. 3, except that 
the aspect ratio of the elements away from the crack tip is greater because the value a/b = 0.15 was 
chosen. However the elements surrounding the crack tip remain exactly as shown in Detail A in Fig. 3. 
The stress intensitq.¢ factor for h/b/> 5 remains almost unchanged, so that the values obtained could be 
correlated to the ~aalytical value available for h/b ~ oo which is 21.5325. We demonstrate that even 
though the error in energy norm is approximately 10% (because of  the large aspect ratio of  elements 
away from the crack tip), the values of  the stress intensity factor are highly accurate. The computed 
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i .  

Fig. 5. Outer crack in a cylinder. 

Table 2 
Stress intensity factors computed by the CIM at p-level = 8 for various values R/a in a cylinder with 
a/b = 0.15 and h/b = 5 

R/a Four-radial layers Three-radial layers Two-radial layers 
Helle = 16.85% IIe[le = 16.86% Ilelle = 16.89% 
N = 2849 N = 2353 N = 1857 

0.002 21.5504(0.07%) 
0.0033 21.5553(0.09%) 
0.0166 21.5963(0.28%) 21.5960(0.29%) 
0.033 21.6428(0.5%) 21.6425(0.5%) 21.6402(0.5 %) 
0.1333 21.9060( 1.7%) 21.9056(1.7%) 21.9031 ( 1.7%) 

Note: The numbers in parentheses represent the relative error from the analytical solution which is 
21.5325. 

values  for  the stress intensity factor  at p = 8 for  the different values o f  R/a are listed in Table  2. For  

all cases Kn = 0 as expected.  

3.3. Inclined crack in a cylinder 

The two example  p rob lems  just  d iscussed were  cons t ruc ted  so that on ly  the first symmet r i c  term in 

the asymptot ic  expans ion  was  nonzero .  This permit ted  us to examine  the pe r fo rmance  o f  the con tour  
integral me thod  in compar i son  with k n o w n  exact  solutions. In practical  p rob lems  no  such restrictions 
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t t t t 

Fig. 6. Inclined crack in a cylinder: finite element mesh. 
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apply and the exact solution is not known. The following test problem is more nearly representative of  
practical problems, and was discussed in [13]. 

In this problem the cylinder has a radius of  2 units and a length of 4 units. The crack mouth is located 
at the z = 0 axis at a radius of  0.5 units from the z-axis. The crack tip has the coordinates of  r = 1.25 
units, and z = 1.25 units (such that the crack inclination angle is 59.036°). The applied stress of  unit 
magnitude is acting on the cylinder's entire outer radius and is also applied to the portion of the end of  
the cylinder which is defined by 0 < r < 1.25 units. Note that a singular point also exists where the load 
at the end of the cylinder is interrupted. The Young modulus was taken to be 1 and Poisson's ratio 0.3. 

The finite element mesh used in our computations, having three refined radial layers around the crack 
tip, is shown in Fig. 6. The computed values for the stress intensity factors for different values of R are 
listed in Table 3. 

The results reported in [13] for the stress intensity factors are KI = 1.024597 and KIl  = -0.11470. 
The J-integral value computed by these stress intensity factors is 0.9673. The average value for the J -  
integral computed independently of  the stress intensity factors in [ 13] is 1.0277. To verify the results, we 
have computed the J-integral based on the stress intensity factors reported in Table 3, and independently, 
we computed the J-integral based on the energy release rate. All four values for the J-integral are 
summarised in Table 4. 

As noticed, our results are very close for both independent methods used to compute the J-integral, 
and correspond closely with the J-integral computed directly in [13]. 
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Table 3 
Stress intensity factors for the inclined crack 
problem, computed by the CIM for various 
values R 

R IlellE = 1.61% K[I 
N =  2264 
KI 

0.0035 1.053707 -0.151491 
0.0050 1.060002 -0 .152609 
0.0100 1.064110 -0 .155383 
0.0400 1.077022 -0 .166896 
0.0900 1.089741 -0 .184680 

Table 4 
J-integral  values for the inclined crack problem 

Based on SIFs Based on ERR Based on SIFs Direct 
for R = 0.0035 estimated at p = oe [13] [13] 

1.031 1.022 0.967 1.028 

Note: SIF = Stress intensity factor; ERR = Energy release rate. 

4. Summary and conclusions 

The understanding of the behaviour of the solution for a 2-D axisymmetric domain in the neighborhood 
of a singular point is an important requirement in the failure analysis of many important practical 
problems arising in connection with the analysis of pressure vessels and piping systems in nuclear and 
mechanical engineering. We have shown in this paper that the eigenpairs in the vicinity of any singular 
point of a 2-D axisymmetric body are identical to their plane strain counterparts in the framework and 
under the assumptions of linear elastic fracture mechanics theory. 

The Steklov weak formulation was used for finding the eigenpairs which characterize the solution in 
the vicinity of the singular boundary points, and an auxiliary function was developed for the extraction 
of the stress intensity factors for crack configurations. The CIM was then applied to extract these stress 
intensity factors, providing both K~ and Kn. The rate of convergence of K~ and KH is comparable to the 
rate of convergence of the strain energy. Therefore the method of extraction is superconvergent. 

The results of the numerical experiments were presented to support our analysis. The method of 
extraction for the computation of GSIFs in 2-D domains, presented in [8], has been extended for 
application to the axisymmetric case. 
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