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Abstract

A newly developed method, named the quasi-dual functiorhate{QDFM) is pro-
posed for extracting edge stress intensity functions (ESdfong circular crack fronts
from finite element solutions, in a general three-dimersialomain and boundary
conditions. The mathematical machinery developed in taméwork of the Laplace
operator in [17] is extended here to the elasticity systethapplied for the extraction
of ESIFs from high-order finite element solutions.

The QDFM has several important advantages: a) It allows tmeixthe ESIFs
away from the singular edge, thus avoiding the need for ag@fffE mesh, b) The
ESIFs are obtained as a function along the edge and not asvs®@rvalues, c) The
method is general in the sense that it is applicable to aryleir edge (be it a penny
shaped crack, a cylindrical crack or a circular externatkraNumerical examples are
provided that demonstrate the efficiency, robustness ajidddcuracy of the proposed
QDFM.
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1. Introduction

Solutions of the elasticity system in two dimensional damsan the vicinity of
crack tips in isotropic materials have been investigatedfer half a century. These
are described in terms of special singular functions deipgrah the geometry and the
boundary conditions on crack sides, and of unknown coefffisienown as stress inten-
sity factors (SIFs) depending on the boundary conditionsyainom the singularities,
see e.g. [20].

Although being much more realistic, three dimensional siagties have been
scarcely addressed because of their complexity. In threembional domains like
polyhedra, both vertex and edge singularities exist, seg#9p For cracks in 3-D do-
mains with a straight crack front explicit representatiéthe solution in the vicinity
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of edges is available as a series [8, 4, 15, 21]. The fundti@paesentation of the so-
lution was extended in [22] to circular singular edges (anfpeshaped crack” being a
special renown case) in 3-D domains. Explicit singulareseeixpansion was provided
for circular crack fronts, characterized by:

e anexponentw; which belongsto a discrete sef0,0,1/2,1/2,1/2,1,1,1,3/2...
which determine the level of non-smoothness of the singular

e eigenfunctionsand two families ofshadows¢y 1 ;(¢) computed by solving a
set of 1-D problems.

e afunctionalong the edge, denoted by, (6) (6 is a coordinate along the crack
front) and called “Edge Stress Intensity Function” ESIF ethdetermines the
“amount of energy” residing in each singularity.

Under axisymmetric boundary conditions and geometry we lsésown that our solu-
tion reduces to the one presented in [12].

From the engineering perspective the ESLEgs(f) when «; < 1 are of major
importance because these are correlated to failure initiaHaving the explicit repre-
sentation of the singular solution in the vicinity of a cilmuedge we aim at computing
these ESIFs. To this end we extended the quasidual funct&had (QDFM) pre-
sented in the framework of 3-D straight edges in [4, 15] toud&r edges in the frame-
work of the Laplace equation in [17]. This is because the depkquation is a simpler
elliptic operator that allows more transparent analytimpatations and invokes alll
necessary characteristics of the elasticity system. ThENDIas demonstrated to be
an accurate and efficient method that is capable of extgaatiiunctional approxima-
tion of EFIFs (edge flux intensity functions) along the clestedge and whose accu-
racy could be adaptively improved. It may be implemented@ssé-solution operation
in conjunction with thep -version of the finite element method. The mathematical ma-
chinery developed in the framework of the Laplace operaa@xiended here for the
elasticity system.

To the best of our knowledge no methods are available foaetitrg ESIFs as func-
tions along circular crack fronts in general domains unagregal loading conditions.
The only ones that are known to the authors are the one by hé&ltorlai [11] that
provides the machinery for the pointwise derivation of tbliSon up to second order
for a general curved crack. Other pointwise methods relyhen3:D J-integral and
connect its value to ESIFs using plane-strain assumptiwhgli are not in general
valid), see e.g. [14] and the references therein. The coitegral method has also
been used for the pointwise extraction of the ESIFs and is/stio predict accurate
values as the integration radius tends to zero [23]. Herg@resent a different approach
enabling the computation of any ESIF for any circular edgé bean axi-symmetric
or non-axisymmetric setting. Furthermore the ESIFs argigeal as functions along
circular crack fronts, and not only as pointwise values glthre edge.

The point of departure is the introduction of the QDFM for #lasticity system
in section 2 with a brief sketch of the mathematical analgsists theoretical perfor-
mance. The connection between the QDFM and the ESIFs foxigrametric case
is addressed in section 3. By analytical mathematical dBors we demonstrate the



Figure 1: 3-D domain of interesf2 and the (p, ¢, 6) coordinate system.

anticipated convergence rates of the ESIFs when extranted dinalytical solutions
in axisymmetric cases. Numerical examples employing ph&ersion of the finite
element method are provided to demonstrate the efficientlyeo@DFM in practical
applications. Penny-shaped, cylindrical shaped and eirteriar cracks are addressed.
We then extend the QDFM to non-axisymmetric cases in sedtids shall be demon-
strated, the QDFM allows one to extract the ESIFs away fraarsthgular edge, thus
enables the use of coarse meshes and alleviates the ngoéssimplex refined mesh
generationin the vicinity of 3-D singular edges. The obd¢diresults are both accurate,
efficient and robust. We summarize our results in section 5.

2. The areaintegral on the surface of a torus along a circulaedge in 3-D domains

Consider a three-dimensional domain made of an isotropgtielmaterial having
a circular singular edge (a penny-shaped crack front fomg@) of radiusR. The
domain may be subject to loads or displacements on its boyasiaay from the sin-
gular edge and free of body forces. We assign the coordiyatern (p, ¢, §) along
the circular edge shown in Fig 1. The vectar = (u,,u,,ug)” denotes the three
displacementsimp, ¢, 0 coordinates, and\, u denote the two Lamé coefficients.

For sake of simplicity we restrict our attention to tractivae boundary conditions
on the faces intersecting at the singular edge. The displewts in the vicinity of
the singular circular edge are given as an asymptotic sefipsmal eigenfunctions
®o.x0 (Which are the familiar 2-D eigenfunctions) and two fanslief shadow func-
tions ¢y, (one family is associated with the index and the other with the index
i), see details in [22]:
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One may observe that for a straight crack frdbt— oo, only the termi = 0 remains

in the summation ory in (1) that is equal to land 8 becomes the coordinate along
the crack front. Furthermorel(6) is constant in case of a 2-D assumption, thus the
sum on/{ vanishes, and one obtains the 2-D well known series expansio

(Zf,) _ ;Ak P {zgiig}o,k,o

We concentrate our attention to the case of a crack (alththgyhanalysis equally
holds for any other opening angle), so that the eigenvaloesagd, = 0,a0, =
0,0, = 0,00 = 1/2, 00 = 1/2,3 = 1/2,--- . In this case explicit expressions
for the eigenfunctionsp, , , and their shadowsp, , ; for a penny-shaped, a cylin-
drical and an outer circular cracks are too lengthy to beidexzin an appendix and
thus are provided in [16].

The stress tensor is easily obtained from (1) using the katenconnections and
Hooke’s law. To relate the GESIFd, s to the engineering common terminology of
edge stress intensity functions, we define:

- 1K[(Z) - 3K]](Z) - K[[[(Z)
Al(Z)——Zm,AQ(Z)— Z u\/ﬁ,Ag(Z)—Q u\/ﬁ



and with this terminology the stress vector is explicitlyag in [22, equation (95)]:
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Of particularly interest are the edge stress intensitytions (ESIFS) K (6), K;;(6), Kr11(0) .
To extract them we extend the QDFM derived for the Laplaceatign in [17] to the
elasticity system.

The mathematical derivation of the QDFM is sketched asfaloNe multiply the
equilibrium equations by a test functioK (p, ¢, 6) , (this is an arbitrary function that
will have to satisfy the equilibrium equation) then integréhe equations within the
torus denoted by2* in Fig 1 (note thatQ2* is a 3-D domain whose cross section is
shown in the figure). Finally wepply Green’sheorem to obtain:
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where 9Q* is thetorus’s 2-D surface|T]u and [T|K are the tractions od’ asso-
ciated with » and the test vectoi :

[T]u = (aé’;),aé’;),agg)):r, [TIK = (agﬁ(),agg),a,gf)):r 4)
and ¢ and %) denote the stresses associated with either the displatéieldn
u or K using (B.1).

Formally, the expansion (1) is the solution to the elastisitstem whethery, is
positive or negative. However, the negative eigenvalued {he corresponding dual
eigenfunctions and shadows) result in an infinite displaa@nat the crack edge, so
are inadmissible from the “physical” viewpoint (and fronetmathematical viewpoint
because the solution should lie in theace H' ). Nevertheless, we may construct us-
ing these negative eigenvalues and the corresponding idesifenctions and shadows
a test function K . This way, K also satisfies identically the equilibrium equation
which is written in a condensed manner Qi(/ﬂ = 0. Of course we cannot construct

K by adual eigenpair and its infinite number of shadows, so iaelthequasi-dual
function Kﬁlagl) (p,p,0) thatis based on one dual eigenfunctign, ; ,(¢) and a
finite series of dual shadowg,, ; () :

) def " —a " P h+f
K&%Z = Z 94 Bj(0)p~ Z (E) Yy 5.5 (0) (5)
h=0,1,2,--- =0

B;(#) in an arbitrarily chosen function to be specified in the séqUée explicit
recursive equations for the determination®f, ; () are provided in Appendix A.

Remark 1. Because the Navier-Lasystem (the elasticity system) without body forces
(aj)
is nothing more than dig(*) = 0, then div:Z(K"’i”) is zero only forn, m — oo .
(ej)

For finite n and m , din<K"*m) # 0, thus the last term if3) is not zero.

On the two flat surface§’; and I'; (faces that intersect at the crack edge) traction
free boundary conditions are considered, g% = o{% = o,(:g) =0 and oSK) =

aéff) = af()ff) =0, thus (3) reduces to (note that on the crack surfaces ejifier = 0

because of the traction-free condition on crack surfaces7¢K = 0 since the K
is constructed using the dual solutions):

2m Y2
| [ = ) wl,, (R + pocos p)pndeds ®)
0 ¥

2w ppa (a)
= / / (KT - u — [T]K') ~u)|, (R+ picos tp)pldcpdt?—i—/ div o Knm - wdQ.
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Definition 1. We define the surface-integra),[u, K )] over the torus of minor
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radius p and major radiusR that surrounds the circular edge:

2
Q u,K;“,gg def/ / K<%> u—[T]K;?;Q.u) (R + pcos @)pdedo.
©»1 P
(7)

Remark 2. In our previous publications we used the notationbf, however this no-
tation is easily confused with the J-integral which is coatgly different so we changed
the notation toQ, to reduce any confusion.

With this notation, (6) may be restated as:

.

Qpo [u Kno‘ )} Qp, [u K(O‘J)} + div g:KS"]m) -~ d. (8)
Q R

By substituting (5) in the equilibrium equation one obtains
. () i n+1 m m—+1
divo K 0 {p 52 [Bj(e) (}%) + OB, (0) (%) ] } 9)

oferers ()™}

Multiplying (9) by (1) and integrating ove2* with dQ2 = Rp (1 + £ cos cp) dpdpd? -

(o) 14+min(n,m)
/ div X . udQ = o{pao% (%) }
o &

Substituting (10) in (8) one observes that in contrast t@thecase,(, {u, K 5{’;72 }
is surface-dependent:

@on [u,K;‘fgﬂ = Qo {“vKﬁz‘fﬂ +0 {po“’%‘ (%)”mm(mm)}

PO

(10)

P1

PO

(11)

P1

Remark 3. The choicem = n optimizes the number of shadow functions with respect
to m and n, and furthermore we take the limit g5 — 0 then(11)becomes

Qo [u KG] = @y [u K] +0 ( (%) ””) (12)

Evaluating Q,, |u, K'%))| as p; — 0 one notices tha{T]K'?;) and [T]u
tend to infinity whereasu and p; tend to zero. Since the left hand side of (12) is
evaluated at a finiteyy then Q),,, |u, Kﬁ{ffl) has to go at the limitp; — 0 to a given
limit which is a constant. This implies that:

Qpo [u,st‘jl)} Const-i—(?( ol (p—}g)Hn) (13)




Finally we conclude that),, [u, Kﬁffg)} is pseudo-path-independent, i.e. the dif-
ference in the integral value between two paths tends toa®tbe number of shadow
functionsn is increased, or the ratip/ R decreases.

One notices that the integra),,, [u,Kﬁffgl)] over a torus of minor radiug, and
major radiusR that surrounds the circular edge is mildly path dependeittt, such a
dependency vanishing as — 0 andn — oo .

3. Connecting the path integral Q,, [u, Kslo,‘;‘l)} and an ESIF - The axisymmetric
case

Consider first for simplicity thexisymmetric case (4 s are § independent), for
which the solutionu in (1) is simplified to (¢ = 0) :

oo
=0

ulp.9) =Y Aep™ Y (%) boxil®) (14)
k=0 7
In this case K"y’ coincides with K(%) for any n. For extractingA; we
computer[u,Kffg)] by (5), and then takep — 0, with B; being 6 independent,
and we chose the QDIK%) in (7) for the axisymmetric casenf = 0):

K (p,¢) 2 Bjp~ ; (%)i Yo;.4(0) (15)

Because there is n@ -dependency, the integration ovér results in 27 and
Qp[u,Kfffg)] reduces to:

Q, {u, Kfffé)] def o /W {Kiffg) [Tlu - [T]K) -u} R (1 + 2 cos cp) pde
p

P1 R (16)
Inserting (14) in (16) one obtains
32m2 o u(M+2u) R n. . L
A e B e et/

47T2()éj/LRAij j = 3,9,15
Remark 4. The ESIFs associated with the integer eigenvalues are rareaded here.

Thus we choose:

aZ-1 (A p) .
B.s%%, j=1,2,7,813,14--- (18)
Bj = oo j=3,9,15--- (19)

Remark 5. To extract the ESIFs associated with mode | and modeél A;, Ay, A7, Ag, A13, A14- -+

we chooseB; according to(18), whereas for the ESIFs associated with mode |l
(i.e. As, Ag, A5 - --) , we chooseB; according to(19).



Remark 6. For example, for a circular crack with traction-free BCH; is:

3(A+p)
Bi=————¢ 20
! 64m2uR(A + 2p) (20)
In conclusion, using® ,, [u K(%)} with the extraction constangiven by either
(18) or (19) one obtains the required ESIF:

Qe [u K )} A; +O( 200y (P—};)"“) 1)

3.1. A penny-shaped crack with traction-free BCs
For a penny-shaped crack with homogenous Neumann BCs; 2, (gol =

—m,p2 = ) the eigenvalues are;; = 0,0,0, 3, 3,3,1,1,1,3,3,2,2,2.2,.

The solution » in the vicinity of the crack front is (see [22] Wlth the explic
expressions fokp, ;. ; provided in [16]):

1
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NgE
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2

Extracting A;
To extract Ay, the extraction functionB; in (20) is used and we construct the
QDF K{=? ... K{{* . For example the QDAK}” is

2 2
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We substitute (22) andc 'y, ..., K5} in (16)with A = 15/26, = 5/13, (E =
1, v =10.3) to obtain:
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Observing (24)-(27) one notices that:
(a1=1/2) “1y2 (PN
@ Kl = a0 (57 (2)
This is exactly the expected result sinag — oy = —1/2.

Extracting A,
We compute@,, [u,K;fg:””] for ap = 1/2,with By = B; =

For example, forn = 3 the QDF K%z) is:

11

(28)

_ 3(A+p)
6472 Ru(A-2p) *
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A, is computed by substituting (22) anﬂ’é}om, Ceey Ké}({?) in (16) with A =
15/26, p=5/13, (E=1, v =0.3) :

15p 14p3/2 33p2
KY2 — (1222 )4 _ ) A . )A
@ {“ 0,0 } Tart 2" 3ar T " \Teor T 8
11./p 1/2
—%AOQ =A+0 (%) Ao, (30)
a2 1763 p> 913p°/2 7p3
@ {“’Kl-ﬂ } - (1+128()R2+"' A\ a0 T )M G0 T )
61p3/2 p3/2
T e Ao = A2+ O\ T | Ao (1)
a2 230167 19807p7/2
@ {“’KQ-O } - (1 T 80000 ) A2 T\ T sso0Rme T )b (32)
666699* 19527433p5/2 p°/?
i T T f, = A+ 0 () A
( 1280000 R3 ) 8~ goa0000mRE 02 T 2O R ) Ao
Q {u K(I/Q)} _ (1 Aom69" Yy, _ 521137547, +.- ) A (33)
PO T 1440000 R* ? 1544400007 R ¥
220603473 p° 233573881p7/2 p’/?
) Ag g 2200 A v 0P A
(64OOOOOOOR4 ) 8 G55200000n 202 ~ 2T O\ R ) Aos

Again, one notices that:
n+1
@ [u kU] = v 0 (502 (8)) (34
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Extracting As

_ _ 1 _
For as = 1/2, Bs = ey e (see (19)). For example, fon = 3 the QDF
(a3=1/2) 4
K;,
0 0
K=Y = pgp1/2 0 + Bsp /2 (ﬁ> 0 (35)
’ sin & R }Lsm 3¢
2 0 3 0
+Bsp~ /2 (£> 0 +Bsp™'/? (£> 0
R %sin%Jr%—zsms—‘P R }Lsmgfgsm?’ijr 12851n72‘P

Substituting (22) and(é}()/g) K310/2) in (16) with A = 15/26, u = 5/13, (E
1, v = 0.3) one obtains:

Qp _uvK(lJ,/OQ_ = ( +2—RQ+ )A3+< )Ag A3+O< )A3, (36)
QP ’l.LaI{i,/O2 = (1-1—2—]%24' )A3+(_4—R3+ )A92A3+O( )A?n (37)

[ 1/2] p
QP _’LL,KQ,/O_ = (1+2—Rg+ )A3+(—@+ ')AQZAS"FO(ﬁ) A3a (38)

[ 12] 15p 5p p
Qp _uaKg,o_ = (1+16R4 ">A3+(W+“')Ag 3+O(R— Az (39)
Following (36)-(39):

Q [’LL K(aa:l/Q)] :A3+O(£)n+l (40)
P ’ n,0 R

Remark 7. In the case of mode IIl the remainder ¢, [u,K;‘fgzl/”] is (£)""

instead of p~1/2 (£)"*" as for mode 1 & 1.

Remark 8. If a rigid body motion of the crack edge is absent (the coefficidg; = 0)
then the remainder when extracting; and A, is of order (9<( )”H) . Thisis

p'/? faster compared to the case when there are rigid body motidheocrack edge
present. In [17] the same is true for the Laplace equatioth@lgh this observation
was not highlighted in that paper.

As an example we consider (22) withy, = Ay, = Ag, = A1 = As = ... =1
and extractA; by the QDFM with QDFs of orders: = 0,1, 2,3 and for different
po S for a penny-shaped crack of radilis= 1 . The relative error as percentage of the
“extracted A; " is defined as:

Exact
Al _ Alxac

ea, % = 100 x Eact
1

(41)
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Figure 2: Convergence of the extracted; with different QDFs. The numbers above the lines are the
asymptotic rates of convergence that are very close to gmétical estimates.

In Figure 2 we present the relative error of the extractedESla function ofpq and

n and the asymptotic rate of convergence (these are the nsrmlbse to the left axis).
Figure 2 demonstrates that the theoretical asymptotiofatenvergence is attained as
po — 0, and asn increases.

3.2. Extracting ESIFs from p-FE solutions

In general the exact solutiom is unknown but only a numerical approximation
upg is available. Thus we apply the QDFM in conjunction with thegrsion of the FE
method. Several 3-D FE models with a circular crack are damed. Here the finite
element solutionurg and o are extracted on a torus surface which surrounds the
circular singular edge (see Figure 3), a@q, [ure, KE%‘)] is computed numerically.

K E;jg> is computed analytically.

3.2.1. Atorus with a circular crack and traction-free BCs.

The efficiency and accuracy of the QDFM is first checked byasting the ES-
IFs for a simple problem of a torus with an inner crack. Coesid torus with an
axis (which is a circle) of a radiu®? = 1, and a small radius ofl /2, i.e. =
{(p,9,0)10 < p<1/2, —1 < ¢ <7, 0<80 < 2r}. The radial coordinate: is
bounded byl/2 = r; < r < r9 < 3/2. Acrack is inserted in the torus defined by
r < R=1,z3 =0 (see Figure 4, Left).

On the crack surfaces traction free boundary conditionpi@scribed, whereas on
the outer surface of the torug, = 1/2,0 < 6 < 27 the trace of the exact solution
(22) up to O(p*) is prescribed as Dirichlet BCs, withly, = Ag, = Ag, = Ay =

14



Figure 3: Domain with a circular singular edge and the irdegurface.

Figure 4: A torus with a circular crack and the axisymmetmitéi element model.

As = Ag=A; =---=0,and A; = A, = A3 = 1. The analytic formula for the
boundary conditions coincides with the exact solution uprt@rder of (p/R)* due
to the truncation of the series with respect to the index

Q,, 1s computed using a quadrature of ord#l(= ncp) and ure is extracted
from a FE solution afp = 8 having an error 0f0.32% in energy norm. The first three
ESIFs A, A5, A3 are computed for different values ¢f, and different number of
dual shadow functions of QDF K 5:‘5’) . These relative errors foA;, As, As in %
are summarized in Tables 1-3.

One notices the excellent results obtainedamcreases ofpy /R tends to zero.

15



Table 1: % Relative error inA; for different numbers of shadow functions and differentreal of po /R

for a circular crack with traction-free BCs.

po/R=041| po/R=0.3 | po/R=0.2
n=>0 3.861 2.682 1.600
n=1 4.763 2.868 1.276
n =2 3.540 1.641 0.645
n=3 1.238 0.310 0.085

Table 2: % Relative error inAy for different numbers of shadow functions and differentureal of po /R

for a circular crack with traction-free BCs.

po/R=0.4 | po/R=0.3 | po/R=0.2
n=0 30.970 17.545 8.338
n=1 26.559 13.184 4.827
n=2 11.806 3.600 0.102
n=3 7.914 1.460 0.665

3.2.2. A penny shaped crack in an infinite domain under an axidorm stress
Sneddon was the first to analyze a penny shaped crack of &r&diunder an axial
uniform stressog in aninfinitedomain [18]. For this case the stress intensity function

is constant along the crack edge

IR
K]:20'0 -
™

Remark 9. In engineering terminology the stress intensity functodefined as:

p1/2 o .
Kr

(42)

(43)

glg}) Opp
Therefore, the connection betwedii; and A; is obtained by inserting43) into
(Bl) K =—4uv 2mAq

We construct a FE model of a cylinder with a radiusnd heightH = 2b contain-
ing a penny-shaped crack of a radiis= 1/2 at its mid-height. An illustration of the
problemis shownin Fig. 5 and the FE mesh in Fig. 6. The cylirml®aded by an axial
uniform stressoy = 1 MPa,with the material propertied’ = 20000 MPa, v = 0.3

16



Table 3: % Relative error inA3 for different numbers of shadow functions and differentreal of po /R
for a circular crack with traction-free BCs.

po/R=04| po/R=0.3 | po/R=0.2
n=20 9.646 4.726 1.633
n=1 9.878 4.792 1.643
n=2 3.996 1.123 0.122
n=3 2.401 0.266 0.427
4o,

' To
A A A A A A A

b=D/2

>

Y Y YY YVYYY
. Ty

Figure 5: A cylinder with a penny-shaped crack under an axigbrm tension.

(p = 7692.31 MPa, A = 11538.46 MPa). In all example problems in this section
same material properties will be used and the integ€3), is computed by using a

quadrature of order90(= ngp) . Ki,, is extracted byQ,,—o1[urz, Kff‘ol:l/z)]
for different radii b of the cylinder. The FE solution gt = 8 has an error 0f0.04%
in energy norm. In Table 4 we compare the extractégd., by @Q,,—=o0.1[u, K%m]
to the exact SIF. Fob — oo, H — oo, the SIF should tend to the value computed by

SneddonKjyg, ... = 0.797885 .

17



h

Figure 6: The FE model and mesh for a cylinder with a pennypsti@rack.

Table 4: The extracted<;,., by Qpy=o0.1[urg, KS({”}

b=25 b=5 b=10 b=15 b=20 b=25
Krpp 0.804678| 0.798714| 0.797928| 0.797786| 0.797574| 0.797204
% relative error || 0.851319| 0.103892| 0.005331| 0.012452| 0.039020| 0.085314

3.2.3. Afinite cylinder with a penny-shaped crack under dalamiform stress.
Benthem and Koiter analyzed a penny shaped crack in a fimigedglinder using

an asymptotic method (see [2]). The stress interfaityoris given by:

=

K[:O'()V?TR

b2

b2 — R2

2
m

R 5R?
b 4rmb?

R3
+ 0.268b—3)

(44)

For cylinder of finite radius no analytic results are avd@alseveral FE and bound-
ary element methods were used to extract the ESIFs for suohfagaration, for ex-
ample by [3, 12, 10, 6]. We solueesame problem for a cylinder of radius= 1 and
height H = 2.8 loaded by an axial uniform stressy = 1 containing a penny-shaped
crack of a radiusk = 1/2 at the mid-height (FE mesh as in Figs. 6 is used).

K., is computed byQ, —o0.1(urg, Kfﬁ‘ézm)] from a FE solution atp = 8
having an error 0f0.24% in energy norm. Because an exact ESIF is unavailable

18




we compute a "benchmarl; ” using the Q,,—0.001[urE,

4,0

K(a1:1/2)

], obtaining

K; = 0.861594. The relative error between th&’;,., and the benchmark value
is reported in Table 5. The(;,, computed byQp[uFE,Kfl{éz)] is compared to

Table 5: K., computed byQ,,=0.1[urE,

n,0

K(l/z)] and the % of estimated relative error

n=>0 n=1 n=2 n=3 n=4
Kr,.p 0.857349| 0.864749| 0.859087| 0.863598| 0.861725
% estimatedrelative error in K, || 0.492647| 0.366198| 0.290935| 0.232632| 0.015219

[2, 3, 10, 12, 6], and to the value computed by a pointwiseiorrsf the contour
integral method in StressChédk Table 6. The ESIF may be extracted accurately by

Table 6: K; according to past publications

Benthem | Chenetal.| Kuo | LeungSu| De Lacerda| StressCheck Qo.ifurs, K]
&Koiter [2] [3] [10] [12] &Wrobel [6] | atp = 0.001
[ K;]] 08624 | 08773 [ 0.8557] 0.8585 | 0.8598 | 0.8657 | 0.8617
the QDFM away from the singularities, without the need of gamaesh refinement.
3.2.4. ComputingK;;s : Afinite cylinder with a penny shaped crack under torsion.
Inthe previous examples we only addresgégd. Here we consider a penny-shaped
crack in a finite long cylinder under torsion for which Benth@nd Koiter have an
approximate ESIF computed by asymptotic methods [2]):
43R b—R 1R 3R> 5 R® 93 R* R

K =o0oVTR l4=—+-—+—=—% — —— +0.0038—

HE=O0oNTR i — R\ " p < Ty TR 6 i T b

Krrr =0.3763

UoR

1StressCheck is a trademark of ESRD, St. Louis, USA
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(45)
For the same problem Kuo used thg integral combined with the finite element
method [10] obtaining

(46)

Consider a cylinder of radiu$ = 1 and height H = 2.8 containing a penny-
shaped crack at the mid-height. The cylinder is loaded tsidarT = (oo7b3)/2 =

w/2, (0o = 1). The problem of interest and the BCs are shown in Fig.7 anérEhe
mesh is shown in Fig. 6.




A=

T=(oynb%)/2=n/2

R=1/2

8'2=H

T=(ogb®)2=1/2 |
4

Figure 7: A cylinder with a penny-shaped crack under torsion

Kir1,, is computed byQ,, [uFE,Kffg:l/Q)] (Kirrpp = pr/m/2A3,., ) US-
ing a FE solution ap = 8 having an error 00.11% in energy norm. The “benchmark

Krr1, " is computed by@ . —0.001 [urs, Kflf‘(?:l/z)] obtaining K777 = 0.268159.

Table 7: ExtractedK 77, ,, by Qpo=o.1[u, KfL]_’éQ)} and the % estimated relative error

n=20 n=1 n=2 n=3 n=4 Benthem Kuo
&Kaoiter [2] [10]
Kiirpg 0.278360| 0.274324| 0.269480| 0.268880| 0.268540| 0.268488 | 0.268276
% estimated rel. error || 3.714362| 2.210723| 0.405942| 0.182345| 0.055586

3.2.5. Acylinder with a cylindrical crack

Here we address a cylindrical crack in a cylinder of radius- 10 and height
H = 20 under radial uniform pressur® = 1 that invokes mixed mode | and I
ESIFs. The geometry and FE mesh are presented in Figures 8.aiftle circular
crack inclination in this case-7/2 < ¢ < 37 /2 requires dual and shadow functions
that are different compared to the penny shaped crack. Tdreg@ovided in [16].

K., and K;r,.,, are computed by byp,,, [uFE,Kff‘(}'Flm] using K, =
—4pV2r Ay, and Kq,, = $uv/2m Az, and the FE solution ap = 8 having an

error of 0.15% in energy norm. In Table 8, we compa¥té;,. ., K1, to[7] and [3]
and to the values computed by StressCheck.
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Figure 8: A cylinder with a cylindrical crack under radialifamm pressure.
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Figure 9: The FE mesh for a cylinder with a cylindrical crack.

3.2.6. A cylinder with an external circular crack

The determination of the angle interval in this caséis. ¢ < 27 and the crack
faces arep; = 0, w2 = 27 . Therefore, the primal, dual and shadow functions are
different compared to the cracks considered herein andravéded in [16].

Consider a cylinder of aradius= 1 and hight H = 2.8 with an external circular
crack. The domain geometry and the mesh for this exampldgroare shown in Fig.
10. The cylinder is loaded by an axial uniform stress = 1 and we extractK7y,,,
by the QDFM using a FE solution g¢ = 8 having an error 0f0.71% in energy
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Table 8: ExtractedK; ., & Krr., by Qpqlu, Kf:f)} and the references values.

po/R = Demir etal. | Chen& Farris | StressCheck

2 |y | e | 120 | 140 7] [3] atp = 0.0125
| k: | 08723] 0.9568| 0.9609 | 0.9606| 0.9605]  0.95 0.95 0.9391
| Kir | 01397 01484 0.1480 ] 0.1489] 0.1489] 015 | 015 | o0.1486

norm. We summarize in Table &, extracted byQ,,=o.1[u, K%z)] for different

gZ=H

; t‘ﬁl

Figure 10: Domain and FE mesh for a cylinder with an exteriratar crack.

values of n. The estimated relative error is computed using the bendhestimate
Kr,., = 2.438603 extracted byQ,—o.001[u, K147 .

Note that K., in Table 9 is computed at a radius @ = 0.1. The value
extracted byn = 4 is compared to reference values presented in [2, 13, 9, Jari®]
to the values computed by a pointwise algorithnpat 0.001 in an axisymmetric FE
model with a0.3% error in energy norm in Table 10.

3.2.7. Influence of rigid body motion

We have noticed that the eigenfunctions associated witimteger eigenvalues are
no longer orthogonal to the dual eigenfunctions associatttdthe halves eigenvalues
(see Appendix C). This is especially important due to thieltigpdydisplacements and
rotations (associated with, a1, s = 0 and some ofag, a7,as = 1 eigenvalues
that the crack edge almost always experiences). To denadastie influence of a rigid
body motion on the ESIFs extracted by the QDFM we considerdases that differ
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Table 9: The extracted<;,.,, by Q,,=o.1[u, Kﬁ}ém] and the % estimated relative error.

H n=20 ‘ n=1 ‘ n=2 ‘ n=3 ‘ n=4 ‘

Krpp 2.4755 | 2.4263 | 2.4367 | 2.4394 | 2.4387
% estimated rel. error || 1.51388| 0.50436| 0.07809| 0.03292| 0.00263

Table 10: Ky, ,, extracted byQ,,=o0.1[u, Kf;f)] compared to reference values.

2] [13] 9] [ [12] atpo = 0.001

Benthemd& Koiter | Oglesby& Lomacky | Hellen | Bakr | Leung& Su StressCheck Qg_l[u,KSéQ)]

| &: | 2.382 | 2.352 | 2433 | 2423 2383 | 2439 | 2.439

only by a single rigid body motion, see Fig. 11. On the cylinidethe left of Fig. 11
the BCs are such that the penny-shaped crack does not uraleigid body motion,
whereas the right cylinder is identical to the left one, Imddudes a rigid body motion
in the 2z direction. The FE meshes for this example problem are aging-i

X
%4 s
u=1 ! u,=r Sin(0)-5
u,=u, =0 1 u,=r Cos(6)+5

% -

LU L9
LU0 | U= Sin(0)-5
U =r Cos(0)+5

a b

=2.8
3
i

=2.8

Figure 11: A cylinder with a penny shaped crack and the BOsWthout a rigid body motion, (b) with a
rigid body motion.

Kipp  Kir., and Ky, extracted by@,, [uFE,K%*Z*Flm] for the two

(011,2,3)

cases compared to the benchmark values compute@byo: [urg, K, ,*%'] are
summarized in Table 11. '

The example demonstrates that the rigid body motion idirection and rotation
along thex — y plane has only an influence on the computation/6f; but as the
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Table 11: Kr,. ., K11 & K117, and the reference values

without a rigid body motion

H n=20 ‘ n=1 ‘ n=2 ‘ n=3 ‘ n=4 H benchmark value
Kinp 12002.38 | 12106.93| 12024.88| 12089.18| 12062.61 12060.83
Krrpp 0.32 0.37 0.54 0.56 0.57 1.27
Kirrpp -0.01 -0.01 -0.01 -0.01 -0.01 1.54

with a rigid body motion

H n=20 ‘ n=1 ‘ n=2 ‘ n=3 ‘ n=4 H benchmark values
Kripp 12002.38 | 12106.93| 12024.88| 12089.18| 12062.61 12060.83
Krrpp -40665.55| 5262.29 | -4374.66| 148.17 -150.25 1.27
Kiirpg -0.01 -0.01 -0.01 -0.01 -0.01 1.54

order of the QDF increases, the influence decreasesnFer4 one notices that the
value of K; (although not zero) is 2 orders of magnitude smaller contptares’; .
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4. Non-axisymmetric case

For a general non-axisymmetric case, the solutioms given by (1), and the QDF
depends orf through the extraction functions; (9) :

n

aj def o
K .0 Y 958,000 Y (£
h=0,2,4: =0

h+f
) wnirle) @)

For a circularclosededge (6 € [0, 27]) the ESIF A, (#) and their derivatives are
continuous along the edge so they may be expaadad-ourier series

P P
App () = ag, + Z Ay, cOS(pO) + Z Ay, Sin(ph). (48)

p=1 p=1

In analogy to [21], for extracting each of the coefficients, we need to choose a
specific B, (#) such that:

o 00 s(n,m)
Qo K3 (Bj,)] = a;, +0 (22) 7 (49)
Therefore it is desired that an orthogonality relation bedsed between3; (6)
and sin(pf) or cos(pf) . These are chosen as
B; 0)="b

2 ( g1 COS(q0) OF  Bj, (0) = bj,, sin(qh). (50)

To obtain precisely:;, alone,one mustchoodg, suchthatlim,, gz .o {Q,,O [u, K(()f’({)(qu)} } =

aj, - This b;, is be obtained by evaluatingm,,, /z o {on [u, Kﬁf‘;n)} } = lim,,/r~0 {Q,,O [u, Ké‘f‘({)} } .
Inserting (1) and (47) withA4, (6) represented by (48) ané;_(#) in (50) to (7),
one obtains the following expressions fby, . For ESIFs associated with mode | and

mode Il (le Al,AQ, A7, Ag, Alg, A14 cee ), qu is:

1) (A +
bjo = (a; ) ( N) , q=0 (51)
' 32m2a (A + 2p)R
(@2 —1) (A +p)
b, = ? 0 (52
Y 16m2a (N + 2u) R ¢70 (52)

For ESIFs associated with mode Il (i.el3, Ag, A15--- ), b;, Is:

1
b, = —— = 53
Jo 47T2aj/iR’ q 0 ( )
1
b, = ——— 0 (54
Jq 277206j,uR’ q # ( )
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For a penny-shaped crack, for example, with homogenous EearBCs, w =
21, (¢1 = —m,p2 = 1) We computeQ,,, [u, K ™) (B;,)] analytically for different
n and m . We represents up to order of p°/2 (the explicit expressions foty 1. i
and 1, x,; are provided in [16]). The Fourier coefficients, are obtained by (13) as
follows:

Qulu K35 =a v 0 |(B) T4 (7)) 9

4.1. Numerical examples

4.1.1. A cylinder with a penny-shaped crack in bending
Benthem and Koiter analyzed a penny shaped crack in a loimpeylunder bend-
ing using an asymptotic method [2]. They report the maximtress intensity factor

400 VR [b—R)R 1R 3/R\> 5 (R\® 93 (R\' R\’
Kr=srzmm—rmV 5 (!"25 7s\%) Tw%6\5) "12s\p) "0 (%

(56)
Kuo used theJ;, integral in combination with the finite element method tarast
the stress intensity function for a penny-shaped crack init ftylinder under bending
(see [10]):

K1(0) = (0.3762 UOR) sin @ (57)

We consider a cylinder with a radius = 1 and height H = 2.8 containing a
penny-shaped crack of radiug = 1/2 at the mid-height loaded by a bending moment
M = o¢mb?/4 = w/4 as shown in Fig. 12. The FE mesh is the same one presented in
Fig 6.

b=1

»|||= 0.085
dRY
[ VRN
R=1/2\\—/ 0.01445
| Y -
M=conbd/4=r/4 M=o b /a=r/4
a / \\\ A
N N
70-d " 0‘»5 P
H=2.8

Figure 12: A cylinder with a penny-shaped crack under benéi@s.

We extractK ., (0) by Qp,[urs, K3712(B;,)] with Kr,,(0) = —4uy/271A,, (0)
and the FE solution ap = 8 having an error 0f0.15% in energy norm.

The amplitude ofK7,.,,(§) computed byQ,,—o.1[urrp, K'*:=/?(B,,)] is com-
pared to the reference values in [2, 10] in Table 12. '

We also obtain that:;, ~ 0 for all p # 2, demonstrating the the ESIF functional

representation isin(¢) as expected. The ESIK;(6) for the differentn s are shown
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Table 12: Maximum value ofK; (the sin6 coefficient) computed byQo.1[ur g, K,&%Q) (B1,)]

n=20 n=1 n=2 n=3 Benthemé&Koiter [2] | Kuo [10]

0.296589| 0.274168| 0.266477| 0.271342 0.271317 0.266013

StressCheck gt=0.001

-0.3 ! ;
0 g b

6
Figure 13: Extractedf(;(@) by Qpo=0.1[u, K%{ﬁ):n[qu}} at po = 0.1 and the pointwise values at
po = 0.001 .

in Fig. 13 compared to the point-wise values computed@at 0.001 . This example
demonstrates that a very accurate functional represent@tihe ESIF can be obtained
as n increases using an extraction radius which is 20% of thekaadius - therefore,
the FE mesh does not need to be refined considerably towardsigular edge.
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4.1.2. Aninclined penny-shaped crack in a cube under a géfwad

The last example is an inclined penny-shaped crack in a thiiegxcites all ESIFs.
Consider av/12.5 x v/12.5 x v/12.5 cube with a penny-shaped crack of radifs=
1/2 atits center inclined at an angle d6° with respect to they axis (the normal to
the crack plane is along direction), see Fig. 14. The left upper face of the cube is
loaded by a unit traction in the and y directions and three other faces are subject to
symmetric BCs.

/44
i,l//

JE NN
TV RS

4
A WAN
SO
VS
Y

N

VAN

Figure 14: FE model of the cube with an inclined penny-shapadk including the loading BCs.

We extract KIFE (9)’ KUFE (9)’ KIUFE (9) by on [uFE7 nga,crlz’lg:lm) (qu )] :
The integral Q.1 is computed by using a quadrature of ord¥(= ngp) and ure
is extracted from a FE solution at = 8 having an error 0f1.34% in energy norm.
The FE model contains 720 elements and 181000 degrees dbfrewith three layers
around the circular crack of dimensiof25,0.25 % 0.15,0.25 = 0.152 . We used nine
extraction functionsB;, to compute the nines;, ,--- , a;, (their values are provided
in Appendix D). To estimate the relative error, the extrdd&SIFs atp = 0.001 and
n = 3 were used as benchmarks. We also used the pointwise eatractithod avail-
able in the FE code StressCheck to compute at specific pdartg the edgeK; and
Krr (the algorithm in StressCheck cannot compuife;; ) at p = 0.001 to double
verify the benchmark data. In Figures 15-17 we present thetional representation
of the first three stress intensity functions along the crfaskt (computed using the
extracteda;, ) and the estimated relative error in percentageragcreases. The
convergence of the extracted ESIFs to the benchmark furcisoclearly visible as:
increases, although the extraction radius is relativetyda
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5. Summary and Conclusions

The QDFM introduced in [17] for circular singular edges ie finamework of the
Laplace equation has been extended to the elasticity syst#endemonstrated that
one may compute the edge stress intensity functions with aaguracy from p-FE
models for axisymmetric as well as non axisymmetric caseg dthe most important
advantages of the present method is that the required datadrFE model can be
retrieved away from the singular edge therefore one does\@ed to considerably
refine the mesh in the vicinity of the crack front. Any ESIF d¢snextracted having
a functional representation (and not only pointwise vaklesg the edge). Although
we considered in this paper only circular cracks, the methatjually applicable to
any singular circular edge (V-notches for example), and estricted our attention to
cracks due to their special engineering importance.

For the extraction of ESIFs of higher indexds, A;4,..., with j <7, associated
with eigenvalues for whichoy; = «; + ¢, ¢ € N, the case of resonance illustrated
in [17] may occur. For these situations one needs to modéyQIDF so to include
another shadow functiom),, ; ; . This case is not addressed here due to being only a
technical procedure.

Several numerical example problems have been presenteth whimonstrate the
robustness, accuracy and efficiency of the QDFM when appliednjunction with the
p-version of the FE method.

One of the topics which is still under investigation is thenputation of dual eigen-
functions associated with the integer eigenvalges € N). The algorithm in Ap-
pendix A is inappropriate for the integer eigenvalues arrth&r research is neces-
sary for their determination. Also, the new QDFM may be usedektracting ESIFs
for more realistic and intrigue problems of planar cracksarious shapes (elliptical
cracks for example, and cracks that terminate at the freflac)t These topics are
under research and will be reported in future publications.
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Appendix A. The dual-eigenfunctions ¥, ;, ¢
Eigenfunctions and their shadows are obtained by a re@ssivof equations given

T
in[22]. The dual eigenfunctions and their shadows ; () = (w,’j_’jyf, VF s w,’;,lﬁf)

are obtained by the same recursive set of equations as fprithal eigenfunctions and
shadows with—«; instead ofa; :

[molepy; ; = —(2cos@[mo] + [mo1]) ¥, ;.51 — (cos” p[mo] + cos g[mor] + [moz]) ¥y ; o
_[mlo]’l’hﬂ,j,f — (cos p[mio] + [m11]) ’/’hﬂ,j,fﬂ - [m2]¢h72,j,f7 h>0,f>0
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1 s having negative indices are set to zero. Thé s are differential operators given

by (we denote = —a; + h + f):

(A +2p) (B% = 1) + pdpp (A4 1B — (A +3u)) 0, 0
[moly, ;.5 = (A+mB+A+31) 0 p(B%—1)+ (A+21)dpp 0 Y g5
0 0 1 (8% + 0,y)

(A +2p) cospB — psin pdy, sinp (1 — (A4 p)B)
moilYy ;0 = | —(A+2u)sine + (A +p)cospdy  cosy (u(B—1) —A) — (A +2p)sinpd,
0 0

—(A 4+ 2p) cos® @ (XA + 2p) cos psin ¢ 0
[moz2]y, ;5 = (A4 2u) sin p cos —(\+2u)sin? ¢ 0 Y i f
0 0 —

0 0 A+ p)B
[miol¥y, 5,5 = 0 0 A+ w)de | by
A+wB+1) A+, 0
0 0 —(A+3p)cosp
(muly, ; r = 0 0 (A+3p)sing Phj s
(A+3pu)cosp  —(A+3u)sing 0

n 0 0
[ma]py, ;p =1 0 & 0 Vhis
0 0 (A+2p)

For clamped or traction-free BCs:

0

1 (B cos  — sin pd,,)

V== Yo =0 onI’; UT,  Clamped BCs
[tol ¥y, ;.0 = — ([t1] +cosp [to]) Py, 4 p—1 — [t2]Pp_1 ;5 onl'; UT, Traction-free BCs

¥y, ; ¢ S With negative index are zero, and

e w(B—1) 0
[to]l¥n,;r = 2u+A(B+1) (A+2p)0, 0 PYhj ¢
0 0 10y,
0 0 0
il p = Acosp —Asing 0 Yy f

0 0 psin

o 0 0
[t2)¥njr = 0 0 A |y ;¢

0O un O
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Appendix B. The stress-displacements connections ip, ¢, z coordinates

Having the displacement vector ip, ¢, z coordinates, then the corresponding

stress vector (under the assumption of an isotropic materigiven by:

AS+ (A +20)0, 220,
A(L+0,) Ao,
- A +2p) 7 + 20, (A +2p)70,
0 0
o, u(-i+o,
0 0
Acos @
(A +2u) cosg
+l 1 Acos
R14 £cosp 0
0
0
0 0 A
0 0 A+2u
R 00 A
R1+ Zcosp | p 0 0
0 0 0
0 u 0

0
0
0 U
Up
KO, ug
0
M%asa
—Asing 0
—(A+2u)sing 0
—Asinp 0
0 — L COS
0 0
0 psing
Up
Op | U
Ug

Appendix C. The non-orthogonality between the primal eigefunctions ¢ ¢ o

We demonstrate that no orthogonality exists between thegbreigenfunctions
that correspond to the zero eigenvalpg , , and the primal dual eigenfunctions that

and the primal dual eigenfunctions

correspondtor; = 1/2: v 105 Y020, Yoz -
For a penny-shaped crack with traction-free BCs, the fiigtg@ireigenfunctions
®0.0,.00 P0,0,,00 Po,0,,0 associated with the eigenvalues, = ag, = ap, = 0 are

¢0,01,0 =

cos ¢ sin
—sing |, Do.0,0 = | cosep
0 0

1,0

0

) ¢0,03,0 =
1

(C.1)

The first singular dual eigenfunctions which belong to thaldigenvaluesy; =
ag =ag=—1/2 are

1/’0,1.,0 =

§ 8 _ BMTH oo 30
cos % 300 €os 3
—gin & 4 Addu_ i 3¢ =
SIS+ 50 ST | Yo.2,0

0

34

e 3T s
sin 5 )?\Jr# sin
P Atdp
cos 3 penn coSs

0

3¢

2
30

2

(C.2)

(B.1)

Up
Uyp
Up



¢0,3,0 =

Therefore the QDF§<(%*1/2) are:

Taking

Ky =B

—1/2
40,0

sin

SIS

j=1,2,3.

u = A, PO¢0,01,0 + Ao, PO¢0,02,0 + Ao, PO¢0,03,0

Substituting (C.4)and (C.3)i),, |u [ Ko=) } with B, = B, =
and Bz =

71'2 Ru

Qpo { K(al—l/Q)} — Ay,

one obtains

Qo [, K57 = g, 22

(ON+2u) VP
4272y R
mVP
1472y R

-o(%)
°(%)

(C.3)

(C.4)

3(A+p)

Appendix D. The values of the extracteda;, for the inclined penny-shaped crack

ina

cube

Table D.13: The extracted coefficients &f ;, K77, K711

by Qpo=0.1[u, K§i)]

T 64Am2 Ru(0+2p)

| || const cos 0 sin 0 cos 260 | sin 260 | cos 360 | sin 30 cos 460 sin 40
K 4.2663E-01 | -2.3802E-01| 8.8985E-02 | -3.8707E-02 | 2.8649E-02| 6.2349E-03 | 5.7747E-03 | 9.2071E-04 | 2.9970E-03
K -2.7674E-01| 3.7675E-01 | -6.5232E-02| -2.0040E-02 | 1.0162E-02| 6.7109E-04 | -5.8252E-03 | -2.0649E-04 | -1.0945E-03
Krrr -4,1192E-02 | 1.1710E-01 | -2.0549E-01| 3.2200E-02 | 3.2410E-02| -4.0250E-03| -1.6510E-03| -9.6340E-04 | 2.1308E-04

Table D.14: The extracted coefficients &7, K17, Krrr by Qpo=o.1[u, K&/Q)]

| || const cos sin 0 cos 260 | sin 260 | cos 360 | sin 30 cos 460 sin 40
K 4.2737E-01 | -1.1500E-01| 8.1358E-02 | -1.7252E-02 | 1.1115E-02| 5.0005E-03 | 4.5736E-03 | 1.1285E-03 | 4.1211E-03
K 5.7558E-03 | 3.6916E-01 | 7.5537E-03 | -2.0185E-02 | 1.0635E-02 | 3.2045E-04 | -5.1922E-03| -1.4654E-04 | -7.1171E-04
Krrr -4,0593E-02 | 2.0074E-02 | -2.5049E-01| 1.3255E-02 | 2.0369E-02| -5.1733E-03 | -7.8239E-04 | -8.7454E-04 | 1.9579E-04
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Table D.15: The extracted coefficients &7, K17, Krrr by Qpo=o.1[u, K§12/2)]

|| const cos 6 sin 6 cos 260 | sin 260 | cos 36 sin 360 cos 46 sin 460
Kr 4.3633E-01 | -2.5474E-02| 7.8526E-02 | -1.0070E-02 | 3.7861E-03| 4.5394E-03 | 4.0790E-03 | 1.1749E-03 | 4.3054E-03
Kir -5.3593E-02| 3.5138E-01 | 9.8270E-03 | -2.3582E-02| 1.6069E-02| 7.4543E-04 | -5.0210E-03| -1.6173E-04 | -8.8043E-04
Krrr -3.9880E-02 | 1.9934E-02 | -2.3347E-01| 1.8186E-02 | 2.1701E-02| -3.2168E-03| -1.3137E-03| -7.9688E-04 | 1.0223E-04
Table D.16: The extracted coefficients &, K7, Krr1r by Qpp=o0.1[u, Kéff)]
|| const cos 6 sin 6 cos 260 | sin 260 | cos 36 sin 30 cos 46 sin 40
Kr 4.3358E-01 | -4.9469E-02| 7.8258E-02 | -3.8914E-03 | -2.1030E-03| 8.7098E-04 | 3.5500E-04 | 5.6592E-04 | 1.2567E-03
Krr -2.5526E-02 | 3.4930E-01 | 1.8877E-02 | -2.3950E-02| 1.6576E-02 | 7.0836E-04 | -4.9799E-03| -1.5220E-04| -8.1467E-04
Krrr -3.9792E-02| 1.1110E-02 | -2.3896E-01| 1.1571E-02 | 1.7480E-02 | -3.8102E-03| -6.7686E-04| -6.4577E-04| 9.1637E-05
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