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Abstract

The elastic solution in a vicinity of a re-entrant wedge can be described by a Williams like expansion in terms of powers of
the distance to a point on the edge. This expansion has a particular structure due to the invariance of the problem by translation
parallel to the edge. We show here that some terms, so-called primary solutions, derive directly from solutions to the 2-D corner
problem posed in the orthogonal cross section of the domain. The others, baptized shadow functions, derive of the primary solutions
by integration along the axis parallel to the edge. This 3-D Williams expansion is shown to be equivalent to the edge expansion
proposed by Costabel et al. [M. Costabel, M. Dauge, Z. Yosibash, A quasidual function method for extracting edge stress intensity
functions, SIAM J. Math. Anal. 35 (5) (2004) 1177–1202]. To cite this article: T. Apel et al., C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Singularités d’arête et structure du développement de Williams tridimensionnel. Les solutions élastiques au voisinage d’un
dièdre rentrant peuvent être décrites par un développement de type Williams composé de termes en puissance de la distance à un
point de l’arête du dièdre. Ce développement a une structure particulière due à l’invariance du problème par translation parallèle
à l’arête. Certains termes, appelés solutions particulières, viennent directement des solutions du problème bidimensionnel autour
d’un coin entrant, posé sur la section droite du dièdre. Les autres, baptisés ombres, sont déduits des solutions particulières par
intégration le long de l’axe parallèle à l’arête du dièdre. Nous montrons que le développement de Williams tridimensionnel est
alors équivalent au développement le long de l’arête proposé par Costabel et al. [M. Costabel, M. Dauge, Z. Yosibash, A quasidual
function method for extracting edge stress intensity functions, SIAM J. Math. Anal. 35 (5) (2004) 1177–1202)]. Pour citer cet
article : T. Apel et al., C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The behaviour of linear elastic solutions near an interior point of a re-entrant straight edge with opening ω and
traction-free or clamped faces is usually described by expansions in power terms of the distance either to the edge
r or to a point on the edge R (Fig. 1). They are 3-D expansions that make use of 2-D solutions associated with the
re-entrant corner (same opening ω) in the orthogonal cross section of the domain (throughout this paper 2-D holds for
generalized plane strain linear elasticity).

1.1. The 2-D modes and shadow functions

In [1,2] an expansion of the elastic 3-D solution U in terms of 2-D solutions with additional terms so-called
“shadow functions” was proposed in the form

U(r,ϕ, z) =
∑
i�1

∑
j�0

∂
j
z Ai(z)Φ

i
j (r, ϕ) (1)

The space variables r , ϕ and z are the cylindrical coordinates (Fig. 1). The expansion (1) is derived from the splitting
of the partial differential Navier operator in derivatives with respect to z on the one hand and with respect to r and ϕ

on the other, allowing a separation of variables. The function Φi
0 is the i-th mode of the 2-D corner problem, so-called

primary mode of the actual 3-D problem

Φi
0(r, ϕ) = rαi φi

0
(ϕ) (2)

Here αi � 0 and φi
0
(ϕ) are respectively the eigenvalues and eigenfunctions of the elastic operator defined on the 2-D

domain with a re-entrant corner with opening ω [3,4].
In Eq. (1), the Φi

j ’s (j � 1) are the shadow functions to Φi
0, following the terminology employed in [1,2]. They

depend on the 2-D space variable r and ϕ only and are solutions to a partial differential system with a right hand side
member depending on Φi

j−1. They write

Φi
j (r, ϕ) = rαi+jφi

j
(ϕ) (3)

However, they are not solutions to the Navier operator neither in 2-D nor in 3-D.
The terms ∂

j
z Ai(z) denote the weights of the corresponding primary or shadow functions (∂j

z is the j -th derivative
with respect to z). They depend on z and derive from a single edge stress intensity function (ESIF) Ai(z). Expansion
(1) holds at any interior point of the edge, i.e. at any point except the ends.

1.2. The 3-D Williams expansion

On the other hand, the 3-D solution in the vicinity of any given point O on the edge can be represented by a
Williams like expansion [5]

U(R,ϕ, θ) =
∑
i�0

KiR
βi vi(ϕ, θ) (4)

where R, ϕ and θ are the spherical coordinates with origin at O (Fig. 1). The constant coefficients Ki are the general-
ized stress intensity factors (GSIF) associated with the different modes characterized by an eigenvalue βi � 0 and an
eigenfunction vi(ϕ, θ) [6]. The expansion (4) holds true for any selected origin O along the edge (Fig. 1), the β ′

is and
vi ’s are independent of the choice of O if it is an interior point but differ at the two ends [7].

It is worth noting that the 3-D terms and the GSIF’s involved in (4) are generally numerically known using algo-
rithms dedicated to general 3-D edges and corners situations [6–9].

2. The structure of the 3-D Williams expansion

The three following properties allow us to define a structure in the Williams expansion (4) in the vicinity of interior
points of the edge:
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Fig. 1. The Cartesian, cylindrical and spherical coordinates along the edge and the polar coordinates in the cross section.

Fig. 1. Les coordonnées cartésiennes, cylindriques et sphériques le long de l’arête et les coordonnées polaires dans la section droite.

Property 1. If αi is an eigenvalue of the 2-D problem, then −αi is also an eigenvalue with its own eigenfunction
ξ i

0
(ϕ). If βi is an eigenvalue of the 3-D problem, then −βi − 1 is also an eigenvalue with its own eigenfunction

wi(ϕ, θ). These pairs are baptized dual modes. In both cases, it is a consequence of the operators involved in the
eigenvalue problems [3,6,10]. Moreover, the strip ]−1,0[ is free of 3-D eigenvalues [11].

Property 2. The 2-D eigenfunctions (2) are also 3-D eigenfunctions. From Fig. 1, it is clear that:

rαi φi

0
(ϕ) = Rαi sinαi θφi

0
(ϕ) = Rαi vi(ϕ, θ) with vi(ϕ, θ) = sinαi θφi

0
(ϕ) (5)

On the contrary, it must be pointed out that a dual 2-D mode (involving a negative exponent αi) is not, since sin θ

vanishes at some points, which is contrary to the H 1 smoothness of vi if αi � −1.

Property 3. Let V (x, y, z) be any solution to the 3-D problem in the infinite domain of Fig. 1 (unbounded in r and z,
i.e. in R), then ∂k

z V is also a solution for any k � 0. The problem is invariant under a translation parallel to z.

Let us start from a pure 3-D eigenfunction Rαj vj (ϕ, θ) (there is at least one otherwise the 3-D solutions would
be described by a Williams expansion in terms of 2-D eigenfunctions only, which makes no sense). According to
Property 3, its derivatives are eigenfunctions too and since the strip ]−1,0[ is free of eigenvalues, it exists p � 1 such
that the p + 1-th derivative with respect to z vanishes and then the p-th one is a 2-D eigenfunction

∂
p
z

(
Rαj vj (ϕ, θ)

) = Rαi vi(ϕ, θ) = rαi φi

0
(ϕ) with αj = αi + p (6)

According to Property 1, the dual mode R−αi−1wi(ϕ, θ) and its derivatives with respect to z,

∂k
z

(
R−αi−1wi(ϕ, θ)

) = R−αi−1−kwi
k(ϕ, θ),

are 3-D eigenfunctions for any k > 0. Using again Property 1, they are the dual functions to the Rαi+kvi
k(ϕ, θ)’s

which coincide in particular with the derivatives of the above mentioned eigenfunction Rαj vj (ϕ, θ) we started from.
Then by integration it comes for any k > 0
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rαi+1vi
1(ϕ, θ) = zRαi vi(ϕ, θ) + ci

1(r, ϕ)

Rαi+2vi
2(ϕ, θ) = z2

2
Rαi vi(ϕ, θ) + zci

1(r, ϕ) + ci
2(r, ϕ)

· · ·
Rαi+kvi

k(ϕ, θ) = zk

k! R
αi vi(ϕ, θ) + zk−1

(k − 1)!c
i
1(r, ϕ) + · · · + ci

k(r, ϕ)

· · ·

(7)

Notice that each of the expressions in (7) is solution to the 3-D problem. The arbitrary additive functions ci
k are

independent of z, thus they are functions of r and ϕ only. To be consistent with the Williams expansion (4), they can
be written as

ci
k(r, ϕ) = rαi+kψi

k
(ϕ) (8)

Since each term in (7) is an eigensolution to the 3-D problem, they are multiplied each by a GSIF and added to provide
the Williams series (with a slight modification of the numbering of the GSIF’s)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

U(R,ϕ, θ) = Kir
αi φi

0
(ϕ) + K1

i rαi
(
zφi

0
(ϕ) + rψi

1
(ϕ)

)

+ K2
i rαi

(
z2

2
φi

0
(ϕ) + zrψi

1
(ϕ) + r2ψi

2
(ϕ)

)
+ · · ·

+ Kk
i rαi

(
zk

k! φ
i

0
(ϕ) + zk−1

(k − 1)! rψ
i

1
(ϕ) + · · · + rkψi

k
(ϕ)

)
+ · · ·

(9)

The same reasoning can be carried out with the other primary solutions (2) to complete the expansion. To summa-
rize, the exponents involved in the Williams series are the exponents of the 2-D corner problem and these exponents
plus integers.

3. The 3-D vs. 2-D analysis

To make the identification easier, (9) is rearranged to yield
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(R,ϕ, θ) =
(

Ki + zK1
i + z2

2
K2

i + · · · + zk

k! K
k
i + · · ·

)
rαi φi

0
(ϕ)

+
(

K1
i + zK2

i + · · · + zk−1

(k − 1)!K
k
i + · · ·

)
rαi+1ψi

1
(ϕ)

+ (K2
i + · · · + zk−2

(k − 2)!K
k
i + · · ·)rαi+2ψi

2
(ϕ) + · · · + Kk

i rαi+kψi

k
(ϕ) + · · ·

(10)

From (1), (2) and (10), the ESIF Ai(z), i.e. the term that multiplies rαi φi
0
(ϕ), can be expressed in terms of the

GSIF’s

Ai(z) = Ki + zK1
i + z2

2
K2

i + · · · + zk

k! K
k
i + · · · (11)

A truncation of this series leads to a polynomial approximation of the ESIF comparable to that employed in [2].
Continuing the identification shows that the shadow functions are

Φi
1(r, ϕ) = rαi+1ψi

1
(ϕ); . . .Φi

k(r, ϕ) = rαi+kψi

k
(ϕ) . . . i.e. ψi

k
(ϕ) = φi

k
(ϕ) for k � 1 (12)

Also it is clear from (10) that the corresponding weights are successive derivatives of Ai(z). The shadow functions
are solution to the following system
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Table 1
3-D exponents of the Williams expansion for ω = π/2, bold-face numbers are the primary eigenvalues

Tableau 1
Exposants du développement de Williams 3-D pour ω = π/2, les nombres en gras sont les valeurs propres particulières

n◦ αi mult. n◦ αi mult. n◦ αi mult.

1 0. 3 9 1.629 ± 0.23 i 2 17 2.629 ± 0.231 i 2
2 0.545 1 10 1.667 1 18 2.667 1
3 0.667 1 11 1.909 1 19 2.667 1
4 0.909 1 12 2. 4 20 2.909 1
5 1. 3 13 2. 1 21 2.972 ± 0.374 i 2
6 1. 1 14 2.301 ± 0.316 i 2 22 3. 5
7 1.333 1 15 2.333 1 23 3.301 ± 0.316 i 2
8 1.545 1 16 2.546 1 24 3.333 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vi
1(ϕ, θ) = sinαi θ

(
sin θφi

1
(ϕ) + cos θφi

0
(ϕ)

)

vi
2(ϕ, θ) = sinαi θ

(
sin2 θφi

2
(ϕ) + cos θ sin θφi

1
(ϕ) + 1

2
cos2 θφi

0
(ϕ)

)

...

vi
k(ϕ, θ) = sinαi θ

(
sink θφi

k
(ϕ) + · · · + 1

(k − 1)! cosk−1 θ sin θφi

1
(ϕ) + 1

k! cosk θφi

0
(ϕ)

)
(13)

If the primary eigenfunctions and their shadow functions, both 2-D functions, are analytically known (see [1,2]),
Eq. (13) offers a method to determine the 3-D terms of the Williams series. Once the eigenfunctions are known, the
GSIF’s can be computed using a FE approximation UFE of U and a path independent integral making use of the
already mentioned dual modes [3,12] (using the notations of Eq. (4) in Section 1)

Ki = H(UFE,R−αi−1wi(ϕ, θ))

H(Rαi vi(ϕ, θ),R−αi−1wi(ϕ, θ))
with H(X,Y ) =

∫
Γ

(
T (X ) · Y − T (Y ) · X )

ds (14)

The integral H is independent of the surface Γ surrounding the point of interest and T (X) denotes the traction vector,
derived from the displacement field X and acting on this surface. It is a straightforward extension of the 2-D case.

4. A numerical example

Table 1 gives the 40 smaller exponents of the 3-D problem with their multiplicity for an isotropic body with an
opening ω = π/2 and traction-free faces. They are obtained solving the eigenvalue problem using a p-version FEM
and an algorithm based on a structured eigenvalue method [13]. Complex values are counted twice for the value and
its conjugate. The bold-face numbers are the primary eigenvalues, solution to the 2-D problem. Due to the isotropic
material the set of 2-D solutions is twofold: the in-plane (Ux,Uy,0) and the out-of-plane vectors (0,0,Uz). N◦ 2 and
4 in Table 1 enter the first class whereas n◦ 3 enters the second one for instance, but this plays no role in the present
reasoning.

The multiplicity 3 associated with αi = 0 corresponds to 3 rigid translations, i.e. 3 constants in the directions
x, y and z. The integration with respect to z (see (7)) gives 3 terms associated with αi = 1: a rigid rotation around
Ox(Ux = 0,Uy = z,Uz = −y = −r sinϕ), another one around Oy(Ux = z,Uy = 0,Uz = −x = −r cosϕ), and the
uniform tension in the direction z(Ux = −νx = −νr cosϕ,Uy = −νy = −νr sinϕ,Uz = z), where ν holds for the
Poisson’s ratio of the material. The fourth term associated with αi = 1 is a primary eigenfunction: the in-plane rotation
(Ux = −y = −r sinϕ,Uy = x = r cosϕ,Uz = 0).

More generally, one can point out the particular cases αi = 1, αi = 2 and αi = 2.667. The set of eigenfunctions
splits into two parts: the primary eigenfunctions and the others resulting of an integration operation.

The property reported in Section 2 (primary eigenvalues plus integers) can be ascertained for n◦ 1-5-12-22, 2-8-16,
3-10-18 etc., for real eigenvalues. It holds also true in the complex case, with 9-17 and 14-23.
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5. Application to fracture mechanics

The knowledge of the Williams expansion terms is of a very high interest when studying local perturbations of
the edge like the nucleation of small lens-shaped cracks under mode I + III loading for instance [14,15]. A matched
asymptotic expansions procedure, carried out using the diameter d of the new lens-shaped crack as a small parameter,
allows writing the leading terms of an expansion of the change in potential energy δW between an initial state prior
to the small crack onset and following the onset (up to the sign)

−δW = K2
1 B11d

2α1+1 + K1K2B12d
α1+α2+1 + · · · (15)

The coefficients B11 and B12 depend on the local geometry of the structure (the opening ω) and on the shape of the
perturbation (the newly created crack). Their computation makes use of the 3-D modes involved in the Williams series
and can be computed using the path integral (14) as well [16].

Eq. (15) can be used in the Griffith criterion

−δW � GcδS (16)

where Gc is the toughness of the material and δS the surface of the newly created crack. It is worth noting that (14)
differs slightly from the 2-D case, the exponents are increased by 1, but the energy release rate G = −δW/δS must
now be taken with respect to the surface of the new crack which is proportional to d2(δS = πd2/4 for a circular crack)
leading to the classical exponents: 2α1 − 1, α1 + α2 − 1 . . . [16].

6. Conclusion

The analysis extends to non-isotropic materials [17], provided some quite entangled calculations are performed
to get an explicit form of expansion (1). The 3-D Williams expansion keeps the same form for non-homogeneous
structures, composite laminates for instance, if the interfaces fulfil the cylindrical geometry of Fig. 1 (i.e. the interfaces
are vertical planes emanating at the edge) [8,9]. The present results are valid at any interior point of the edge. Of
course, it is a completely different situation at the two ends where the problem is a full 3-D problem [6–9], no local
2-D solutions exist.
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