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Abstract

The elastic solution in the vicinity of a traction free edge and an interface crack in cross-ply anisotropic laminates is provided in details
for three problems. Complex eigen-pairs and edge stress intensity functions are computed with high accuracy, aimed to serve as bench-
mark problems against which other numerical methods can be checked.
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1. Introduction

Delamination starting at a traction free edge or interface
cracks between plies lead most frequently to catastrophic
failures in cross-ply laminates. Many of these laminates
are made of brittle anisotropic materials and occupy
three-dimensional (3-D) domains, therefore the 3-D elastic
solution in the vicinity of these edges (a crack front is a par-
ticular case of a general edge) is of major engineering inter-
est. The mathematical complexity of the 3-D anisotropic
elasticity system in the vicinity of an edge makes it intrac-
table by analytical methods and very complex even for
numerical treatment. Therefore most of past studies
reduced the problem to two-dimensions addressing the
solution in the vicinity of singular points, see, e.g. [4,6].
Only very limited studies considered restricted classes of
3-D edge singularity problems, as [2] for instance which
investigates the specific through interface crack between a
+45° transversely isotropic pair of materials.

Recently, the explicit mathematical representation of the
3-D elastic solution in the vicinity of a straight edge has
been provided and the quasi-dual function method was
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proposed for the extraction of edge stress intensity function
(ESIF) [1]. This enabled the development of highly accu-
rate numerical methods [8,7,3] for the computation of elas-
tic solutions for three benchmark problems including the
full expansion in the vicinity of a traction free edge and
interface crack. The problems are suggested to be used as
benchmarks against which methods for the computation
of edge stress intensity functions can be compared.

2. The elastic solution in the vicinity of an edge

Consider a 3-D domain in which a straight edge is of
interest (see Fig. 1 for example). A cylindrical coordinate
system (r,0,x3) is located at a point on the edge so that
the x3 axis is along the edge. The two flat planes that inter-
sect at the edge are denoted by I'y and I',. The displace-
ment vector and strain and stress tensors are represented
in cylindrical coordinates: u = {u,,uo,ux3}T, e={& 00,
€33,703, Vr3syr(')}T and o= {61'1'5066,6339693sar3aar(9}T- The
linear elasticity problem is being solved by means of sepa-
ration of variables, yielding in an elastic solution that can
be presented in the vicinity of an edge by the series [1,8]:

u=>" A (x) 0 (r,0),  ®F(r,0) =g (0)

i>1 j>0
(1)
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Fig. 1. Bi-material cracked domain.

or in a more explicit form:

u = A, (x3)r" @ (0) + 034, (x3)r* o (0)
+ 034, (x3) Mpé '(0) + -+
+ Ax(x3)r2 i) (0) + B34 (x3)r @) (0)
+ 03 () 2 9 (0) + - -
+ A3 (3)r 0 @ (0) + 0345 (x3)r ) (0)
+ 0343 (3 ) 2y (0) + -
4. (2)

where A{x3) is the Edge Stress Intensity Function (ESIF)
associated w1th the ith eigen-pair, the singular function
CI)(()”) r“‘(p( (6) being the well known two-dimensional ei-
gen-function, whereas (I)j —r“"“(pj(-“')(E)), j =1 are the
shadow functions of the primal singular function. The angu-
lar part of eigen-functions and their shadows have three
components denoted by:

0(0) = (¢(0). 053 (0), 0 ()", j=0,1,...

Herein any eigen-function ((p}f”(@), (pj.g”(e), (pj(-'f;)(f)))T or

any shadow function are expressed by sin, cos series. For
e (o) :

example, if ¢, (0) is to be evaluated then

o) = Cysin(0,0) + Casin((e + 1)0) + Cysin((o; — 1)0)
+ Cysin((o; +2)0) + Cssin((o;; — 2)0) + Cg sin((o;; + 3)0)
+ Cysin((o; — 3)0) + Cs cos(o;0) + Co cos((o; + 1)0)

+ Cypcos(( 1)0) + Cyy cos((o; +2)0)

+ Cacos((o; — 2)0) + Cyz cos((a; + 3)0)

+ Ciacos((o; — 3)0) (3)

Remark 1. For traction free boundary conditions in the
vicinity of an edge, the first three non-negative eigen-values
are zero. These zero eigen-values correspond to three rigid
body displacements in the xj, x,, x3 directions having
constant eigen-vectors and zero stress tensor. The shadows
are associated therfore with integers (« + i = i), resulting in
polynomials in x;, x, thus do not contribute to singularities
but only to the “Taylor-expansion” of the regular part of
the solution.

In general, primal and shadows associated with non-
negative integers are polynomials, which do not contribute
to the singularities and are of limited engineering interest.

o —

=)

% —

For these, instead of (3) a polynomial expression in xi, x» is
more appropriate for the representation of displacements
in xi, x, directions.

Remark 2. We have determined that 14 terms in (3) are
sufficient to represent accurately the eigen-functions and
shadows for the three example problems in Section 3. All
data presented herein have a L relative error of less than
107% when (3) with 14 terms is compared to the eigen-
pairs and shadows computed by very high order finite-ele-
ment methods documented in [3].

There are cases for which an eigen-value is complex, i.e.
o; = oy, + 1045 and so are its corresponding eigen-function
and shadows ¢\ (0) = (pﬁ?(@) + z(pE?(H), therefore the
corresponding ESIF is complex also, A4;(x;) = Ax(x3)+
14;5(x3). In this case (p%;) ((9)7 (pj.i'i{) (0) are obtained by substi-
tuting o with o and o5 in (3) respectively.

For com lex eigen-pairs, o1 = tw — %3, @; '*‘)(9) =
(pj‘R — l(p/x‘ and A1+1(X3) A,g{(X3) lA,:g(X3) For a
crack 1n a bi- material interface for example, the first
eigen-value is complex o i £ 10415, so that (2) is

= (Ax(x;) + lAlS(M))’”WHm(‘P(()?{)(H) + l‘P(()g)(Q))
+ (@31 (x3) + 103415 (x5) )t (3 ()
+ 193 (0)) + (0341 (xs)
+ 103415 (x3) )3 (@5 (0) + 1938 (0)) + - -
+ (Ain(x3) — 113(63))r 03 () (0) — 1963 (6))
+ (0341 (x3) — 103415 (x3))r T3 (1) (0)
— 19{2)(0)) + (@341 (x3)
— 10 A15(x3)) 23 (@) (0) — 1952 (0)) + -+
+ A3 (x3)r o) (0) + 0345 (x3)r o) (0)
+ 03 (x5 ) 25 (0) + - 4)

A straightforward algebraic manipulation allows to repre-
sent (4) without complex numbers:

u = 2" cos (o5 In r) (A (x3) @) ()
— Ai3(x3)0 “3 (0)) — 2" sin(oy5 Inr)
X (A1:§(X3) (() ) ) +A1«)g(x3)¢g§)(0)) + 2r1+1m

(0
X cos(ocl\,lnr)(63Am()c3)(plm (6)
— 03415(x3) @2 (0))
X (013 (x3) 1% (0) + O3 (x3) i (0)

+ 217719 cos (o5 In ) (2410 (x3) @5 (0)

— 024,5(x3) @32 (0)) — 27 sin (a5 In 7)

X (03415(x3) e (0) + 0341 (x3) 32 (0)) + - -

+ A3 (x3) g (0) + D345 (x3)r " (0)

+ 033 (x3)r 2l (0) + - ()

— 27 sin (o5 In 7)
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3. Benchmark problems

p-Finite-element methods have been utilized for the
solution of three benchmark problems: The first is a crack
at a bi-material interface between two isotropic materials,
the second is a crack in a compact test specimen at an inter-
face of two anisotropic materials, and the third is an edge
at the intersection of two anisotropic materials and traction
free face. These solutions, including the eigen-pairs, sha-
dow functions and ESIFs are provided in this section.

3.1. Benchmark problem A — crack at the interface of two
isotropic materials

A bi-material interface is composed of two homoge-
neous materials, as shown in Fig. 1. The two materials
are isotropic, both having Poisson ratio of v =0.3, with
Young’s modulus E = 10 of the upper material (material
#1) and E =1 of the lower material (material #2). This
example was chosen to present a slightly simplified situa-
tion having an entire series expansion available. The first
three eigen-values for this example problem are [5]:

o2 = 0.5+10.07581177769, o3 =0.5 (6)

The eigen-functions and first two shadow functions for this
benchmark problem are given by (3) when using the con-
stants C; provided in Tables 1 and 2. The eigen-function
and the first two shadow functions associated with the first
two eigen-values are presented in Fig. 2.

The eigen-pairs and shadows of example A are obtained
numerically (see [3]) and therefore (8) represents an
approximation of the exact functions. This approximation
however is of very high accuracy (assured by inspecting the

Table 1

convergence as the polynomial degree is increased to high
values).
The chosen ESIFs are polynomials of degree 2:

Ai2(x3) = (3 +4x; + 5x§) +i(2 4 3x; + 4x§),

A3 (x3) = 54 4x3 + 23 (7)

therefore the solution in the vicinity of the edge is:

= ((3 + 43 + 52) + (2 + 303 + 4xd) ) +3 (o110 ()
+100(0)) + (4 + 10x3 + 1(3 + 8x3) )Tt (1)
+1013(0)) + (104 8)r 553 (93 (0) + 1983 (0))
+ (34 4x3 + 5x2) — 1(2 + 3x3 + 4x2) )93 (1) (0)
— 193 (0)) + (4 + 10x; — 1(3 + 8x3))r #9137 (0)
—1913'(0)) + (10 - z8> P (gl (0) — 193 (0))
+ (54 4xs + 22 @ (0) 4+ 4(1 + x3)r o™ (0)

+ 4200 (0) 8)

0)

For the domain in Fig. 1 defined by {(r,0,x3)|0 <
r<1,0<0<2n, —1<x3<1} on which traction free
boundary conditions on the crack faces and Dirichlet
boundary conditions on r =1 and x3 = +1 are prescribed
according to (7),(8), one obtains the exact solution (7),(8)
at each r, 0, x3. The crack faces are traction free.

To examine the accuracy of series (8) we computed two
error measures. First, we constructed a very refined finite-
element mesh of the domain in Fig. 1 and applied bound-
ary conditions according to (8) on its boundary. After
increasing the polynomial order over all elements up to

p =8 and obtaining a FE solution with high accuracy we

extracted numerically the pointwise displacements at 10

Cy of real part of the eigen-function, and first two shadow functions associated with «; , = 0.5 £0.075812 — example A

0<0<180 180<0 < 360

®o ?1 ?2 Po ?1 @2

?r Po Dyy Pr Po ?r Po Dy ?r Po

Real part
C, 0 0 0 0 0 —0.008296 0.284280 —0.005842 —0.028608 —0.075810
C, 0 0 0 0 0 0 0 0 0 0
() 0.001340 —0.044575 0.001865 —0.003996 0.008624 0 0 0 0 0
Cy —0.000091 —0.000072 0.000430 —0.001656 0.000036 —0.003046 —0.000825 0.001219 0.016147 0.004843
Cs 0.001398 —0.021071 0.000732 —0.001924 0.005854 0.010789 —0.259810 0.004349 0.010160 0.068870
Cy —0.022086 0.000175 0.020100 —0.005694 0.002366 —0.184330 —0.000335 0.128240 —0.036658 —0.030244
Co —0.021644 —0.000034 —0.050039 0.016421 —0.000913 —0.258360 0.002935 —0.415450 0.146510 0.011816
Ci —0.000215 —0.000166 0.000803 0.000509 —0.001307 0.003889 —0.002810 —0.005295 0.003218 0.016573

Imaginary part
C, 0 0 0 0 0 —0.137680 0.019182 0.183620 —0.034211 —0.027624
C, 0 0 0 0 0 0 0 0 0 0
Cs 0.027840 —0.002089 —0.013019 —0.001744 0.000338 0 0 0 0 0
Cy —0.000381 —0.000461 —0.001204 —0.000522 —0.000182 0.004935 —0.003912 0.010488 0.002167 0.010478
Cs 0.004731 —0.001732 —0.027566 0.004913 0.000644 0.109710 —0.016178 —0.208420 0.035949 0.016541
Cy 0.003406 —0.040553 0.002676 —0.003072 0.007558 0.028426 —0.316950 0.027023 —0.006660 0.026137
Co —0.003448 —0.002680 —0.000873 0.001912 —0.001576 —0.028265 —0.129140 —0.008292 0.008246 0.019970
Ci 0.000039 —0.000763 —0.000399 0.000716 —0.000460 —0.000320 0.007610 —0.004628 —0.004693 0.007187

., associated with @o, ¢ ,, g associated with ¢, and ¢,, associated with ¢, are zero. The constants Cs, C7, Cyo, C12, C13, Ci4 are zero.
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Table 2

1219

C;. of eigen-functions and first two shadow functions associated with a3 = 0.5 — example A

0<0<180 180 < 6 < 360
Po (9 @2 ®o ?1 ®2
Dyy [ Po Py, Pry ?r (] Dy,
C 0 0 0 0 —0.000006 —0.000061 —0.240940 0.000042
C, 0 0 0 0 0 0 0 0
Cs 0 —0.000005 0.024094 0.000001 0 0 0 0
Cy 0 —0.000002 0.024096 —0.000002 0 0.000018 0.240960 —0.000023
Cs 0 —0.000005 —0.000002 0.000002 0.000001 0.000047 —0.000017 —0.000017
Cy 0.072294 —0.024104 0.000004 —0.012046 0.722940 —0.241040 0.000073 —0.120460
Cy 0 0.000003 0.000003 —0.000002 0 0.000033 —0.000028 —0.000017
Cn 0 —0.024096 —0.000001 0.000802 0 —0.240960 0.000004 0.008026
@y, Qo associated with @, ¢, associated with ¢, and ¢,, @y associated with ¢, are zero. The constants Cs, C;, Cio, C12, C13, Cy4 are zero.
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Fig. 2. The real and complex (top & bottom, respectively) part of the eigen-functions ¢, @1, @, associated with o , = 0.5 +0.075812: example A.

randomly selected points in the domain. These were within
less than 0.1% relative error compared to (8). Thereafter we
computed the traction at the two traction free crack sur-
faces, using (8) (having o3 only) where 43 = 5 + 4x3 + 2x3
and the C; coefficients in Table 2. Although the traction
should be zero (traction free boundary conditions on the
two surfaces) the calculated traction is of an order of
10~ due to small numerical errors.

3.2. Example G-CTS: crack at the interface of two
anisotropic materials

Consider the classical compact tension specimen (CTS)
of a constant thickness 2 (—1 <x3 < 1), shown in Fig. 3.
The CTS’s faces are traction free and it is loaded by bear-

ing loads at the tearing holes having an equivalent force of
100 in the x, direction as seen in Fig. 4. Although the load-
ing is independent of x3, because of the vertex singularities
at x3 =41 the ESIFs changes as the vertices are
approached.

The CTS is made of two orthotropic materials made of
the same high-modulus graphite-epoxy composite with dif-
ferent fiber orientation. The material properties are:

E;, =138x10°MPa E;=E.=145x10*MPa

Gir = G = G, =0.586 x 10 MPa  v;7 = v, = vz, =0.21
(9)

The subscripts L, T, z refer to fiber, transverse and thick-

ness direction of the composite. The fibers orientation in
the upper material is +45° and in the lower material —45°.
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Fig. 3. Example G: Dimensions of the CTS (thickness is 2, —1 <x3 <1).

The first three eigen-values for this example problem
are:

o5 = 0.5+i0.034328, o3 =0.5 (10)

Unlike Example A, herein an infinite number of shadow
functions in (3) exist because the ESIFs are not necessary
polynomials. The first three eigen-functions of engineering
importance (associated with eigen-values smaller than 1
resulting in singular stresses) and first two shadow func-
tions (for each eigen-function) in the solution (3) are given
by the C;’s provided in Tables 3 and 4. The first three
ESIFs were computed by the quasi-dual function method
in conjunction with the p-version of the finite-element
method (see FE mesh in Fig. 4) according to [3] and pre-
sented in Fig. 5.

3.3. Example M-CTS: two cross-ply anisotropic materials
Consider a bi-material interface structure of constant

thickness 2 (—1 < x3 <1), shown in Fig. 6. This structure
is similar to the CTS in previous section, having traction

free boundary conditions on all faces except the bearing
loads of a magnitude of 100 in the x, direction at the
holes, see Fig. 7. Because of the vertex singularities at
x3==1 the first ESIF tends to infinity as the vertices
are approached.

This structure is made of two orthotropic materials
made of the same high-modulus graphite-epoxy system
with different fiber orientation. Material properties are
given in (9) with fiber orientation in the upper material at
x; direction whereas the orientation in the lower material
is at x5 direction.

Only the first eigen-value for this example problem
results in a singular stress (and is of very mild singularity):

o = 0.966629 (11)

other eigen-values are larger or equal to 1 and therefore are
of no engineering importance. As for Example G, in this
example there is an infinite number of shadow functions
in (3) also. Only the first eigen-function and its shadows
in the solution (3), are given by the coefficients C;’s in
Table 5.

Fig. 4. Example G: The p-finite-element mesh used for ESIF extraction.



Table 3

C;. of real and imaginary parts of eigen-function and first two shadow functions associated with o > = 0.5 £ 1 0.034328 — example G

Real part

0<0<180 180 < 0 < 360

®o 1 (%5 @0 (41 (%]

Pr Po Py Pr Po Py Pr Po Py Pr Po Py Pr Po Py Pr Po (2%
G, 1.348e—1  —2.10le—3  —1.537e-2 9.382¢—2 5.842¢—2 —1.87le—1 8.655¢—2 —8.067e—2 —1.443e—1 1.348¢e—1 2.098¢—3 1.537e—2  —9.382e—2 5.842¢—-2 —1.87le—1 8.655¢—2 8.067e—2 1.443¢e—1
Cs —5.574e-2 4.129¢—3 1.088e—2  —4.735e—2  —3.793e—2 1.755e—1 —1.843e—2 1.035e—1 6.544e—2 —5.574e—2 —4.126e—3 —1.088e—2 4.735e—2  —3.792e-2 1.755e—1  —1.843e—2 —1.036e—1 —6.545¢—2
Cs 6.193e—4 2.370e—3 9.856e—4 5.734e—3  —3.980e—3 —1.578e-3 1.060e—1 3.18% -2  —1.271e-3 6.190e—4  —2.370e—3 —9.857e—4 —5.734e—3 —3.979%¢-3 —1.577e-3 1.060e—1  —3.190e—2 1.271e-3
C; 6.762¢—3  —3.574e—4  —5.865¢—3 4.158¢—2 2.830e—2  —3.522e-2 3.592¢—2  —9.591e—3  —7.835e—2 6.762¢—3 3.57le—4 5.864e—3  —4.158e—2 2.830e—2  —3.522e-2 3.592¢-2 9.590e—3 7.834e—-2
Cs 5.452¢-3 2.214e—1 2.508¢—2 —9.70le-2  —3.337e-3  —1.337e-2 —1.045¢-2 1.490e—2 2.108e—1  —5.450e—3 2.214e—1 2.508e—2  —9.70le—2 3.338e-3 1.336e—2 1.045¢-2 1.490e—2 2.108e—1
Cy 8.285¢—4 5.948¢e—2  —1.598e—2 4.255e—2  —2.555¢-2 3.310e-3 8.399¢—2 —3.4l6e—1 —6.766e—2 —8.263¢e—4 5.948¢—2  —1.598¢—-2 4.255¢-2 2.555e—2 —3.317¢—3 —8.39%9¢—2 —3.4l6e—1 —6.766e—2
Cn —2.399¢-3 —4.623e—3  —1.014e—2 4.866e—2  —1.079¢—2 8.030e—3 2.003e—3 —1.504e—2 22151 2.399e—-3  —4.623e—3 —1.014e—2 4.866e—2 1.079¢e—-2  —8.028¢—3  —2.006e—3 —1.504e—2 —2.215e—1
C3  —3.913¢-3 3.353e-5 1.189¢—3  —2.576e—3 8.312¢-3 6.760e—3  —3.875¢—2 1.078e—1 3.570e—3 3.913e-3 3.332¢-5 1.189¢e—3  —2.577e—-3 —8.313e—3 —6.760e—3 3.876e—2 1.078e—1 3.571e-3

Imaginary part

0<0<180 180 < 0 < 360

Po P P2 Po P P2

Pr Po Py Pr Po Py Pr Po Pxy Pr Po Py Pr Po Py Pr Po Pxy
G, —1.169¢e-2  —3.952e-2 3.267e—-2  —1.549e—1 —7.552¢e—1 —7.400e—3 6.075¢e—-2  —1.522e—1 5.267e-2  —1.169¢—2 3.952¢e-2 —3.267e-2 1.549¢e—1  —-7.552¢e—1 —7.396e—-3 6.074e—2 1.522e—1 —5.267e-2
Cs 6.104e—3 5.206e—2  —1.698e—2 8.418e—2 1.324e—1 2.415¢e-2  —3.733¢-2 1.599e—1 —3.313e—2 6.102e—3  —5.206e—2 1.698¢e—2  —8.418e—2 1.324e—1 2416e—2 —3.733e—2  —1.599e—1 3.312e-2
Ce —3.088e—3 3.705e—4  —1.464e-3 8.604e—3 1.185e—2 1.699e—2 3.574e-2 8.235e—2  —8.55le-3  —3.088¢—3 —3.704e—4 1.464e—3  —8.604e—3 1.185e—2 1.699e—2 3.574e-2 —8.235¢—2 8.550e—3
C; —2.610e—3 1.238¢—2 1.679¢—2  —7.667e—2 —4.27le—1 2.701e—4 1.567e—2  —7.525¢-2 2.449e-2 —2.61le-3 —1.238e—2 —1.679%¢—2 7.663¢—2 —4.27le—1 2.759¢—4 1.568¢—2 7.525¢e—-2  —2.448e-2
Cg 5.694e—2 2.019e—-3 —3.062e—1 1.61le—1  —6.773e—-2 3.256e—1 —1.188¢—1 —7.371e-3 3.130e—1  —5.694e—2 2.019e—-3  —3.062e—1 1.611e—1 6.772e—2  —3.256e—1 1.188e—1  —7.369e—3 3.130e—1
Co 4.235¢-2 1.573e-3 6.167e—2  —1.842¢-2 3.56le—2  —3.269e-2 9.114e—2  —1.437e—1 —1.669e—1 —4.235¢-2 1.575¢-3 6.167e—2  —1.84le—2 —3.562e-2 3.269¢—2 —9.114e—2 —1.437e—1 —1.669e—1
Ciy 1.586e—2  —1.977e-3 6.917¢—3  —4.780e—1 3.487e—2 —8.955¢—2 —2.767e-2 5.743e-3 1.33le—1 —1.586e—2 —1.976e—3 6.918¢e—3 —4.780e—1 —3.484e-2 8.955¢—2 2.767e—2 5.738e—3 1.331e—1
Ci3 8.287e—4 —1.629e—-3  —2.902e-3 —6.410e—3 —2.833e—-3 —6.556e—4 —8.647e—2 4.131e-2 1.205e—-2 —8.289%¢e—4 —1.629¢—-3 —-2.902e—3 —6.41le-3 2.834e-3 6.571e—4 8.647e—-2 4.131e—2 1.205e—2
Table 4
Cy of eigen-function and first two shadow functions associated with o3 = 0.5 — example G

0<0<180 180 < 0 < 360

Po P P> Po P P2

Pr Po Py (23 Po Py @r Po (2N Pr Po Py (23 Po Dry Pr Po Py
C, —8.481e—3 2.835¢e—1 5.307e—-2  —1.600e—2 5.635¢—2 1.406e—2  —4.022e—2 2.63le—2  —2.032e-2 8.483e—3 2.835¢e—1 5.307e—-2  —1.600e—2 —5.635e—2  —1.406e—2 4.021e-2 2.63le—2  —2.032¢-2
Cs —2947e-3  —1.51le—1 —2.749e-2 7.425¢—3  —8.398e—2  —9.236e—3 4.666e—2 4.702e—2 1.171e-2 2.94le-3 —1.51le—1 —2.749e-2 7.429¢—3 8.398¢—2 9.260e—3  —4.666e—2 4.702¢—2 1.171e-2
Cs —7.449¢—3 1.231e—4  —2.476e-3 5.865e—4 —2.15le-3 5.374e—4 1.550e—2 8.627e—2 1.169¢—3 7.448¢-3 1.227e—4  —2.476e—-3 5.869¢e—4 2.15le-3  —5.373e—4 —1.549%¢-2 8.628e—2 1.168e—3
C; —4.162e—3 1.253¢—2 2.747e-2  —9.21le—3  —2.545¢-2 4.509¢e—3  —9.553¢-3 1.597e—2  —9.236e—3 4.163¢—3 1.253¢—2 2.747e-2  —9.209¢—3 2.545¢—2  —4.509¢—3 9.553¢—3 1.598¢—2  —9.24le-3
Cg —1.667e—1 —1.480e—3 7.436e—2 —7.950e—2 —3.087e—5 —1.286e—1 6.227e—2 3.843e—2 —1.380e—1 —1.667e—1 1.483e—3  —7.435e-2 7.950e—2 —3.16le—5 —1.286e—1 6.227e—2  —3.843e—2 1.380e—1
Co —1.588e—1 5.709¢e—3 6.206e—2 —8.422¢e—2 —3.830e—4 6.182¢e—1 —1.790e—1 —4.282e-2 8.877e—2 —1.588e—1 —5.703e—3  —6.206e—2 8.422¢—2 —3.863¢e—4 6.182¢e—1  —1.790e—1 4.282¢-2 —8.877e-2
Cy 1.997e—2  —2.793¢—4 1.130e—2  —2.807e—2 3.932¢—4 4.124e-3 1.505e—3  —9.447¢-3 7.642¢—2 1.997e—-2 2.785e—4  —1.130e—2 2.807e—2 3.915¢—4 4.125¢-3 1.504e—3 9.445¢—3  —7.642¢-2
C3 1.138e-3 —3.937e—3 —3.822¢-3 4.263e-3 7.969e—5 —1.105e—3 —8.213e—2 1.366e—2  —5.840e—3 1.138e—-3 3.937e-3 3.822e—3 —4.263e-3 7.98%—5 —1.105e—3 —8.213e—2 —1.365¢e—2 5.840e—-3

The constants C,, Cs,

Cy, Cio, Cra, Cyy4 are zero.
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Fig. 5. ESIFs for example G: A} (x3) £ 147 (x3) and 43(x3).
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Fig. 6. Example M: Dimensions (thickness is 2, —1 < x3 <1).

The first ESIF (the only one of engineering relevance) is 4. Summary
extracted and plotted in Fig. 8. The influence of the vertex
singularities at x3 = £1 is visible, resulting in strong gradi- The elastic solution in the vicinity of edges in anisotropic
ents in ESIF (which tends to oo at the vertices). multi-material interfaces representative of composite mate-
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Fig. 7. Example M: The p-finite-element mesh used for ESIF extraction.

Table 5

C;. of first eigen-function and first two shadow functions associated with o; = 0.966629 — example M

0<0<180 180 < 0 < 360
9o (4] (75 @0 (41 (%)
Pr Po Dxy Pr Po Pr Po Dy Pr Po
C —0.057525 0.009735 0.006953 —2.467100  —0.328100 0.002383  —0.000050  —0.000347 1.810700  —0.638130
C, 0.008685 0.016553  —0.167350 0.075265 0.240510 0.009705 0.058856  —0.168960 —0.006105  —0.216040
Cs —1.434800 0.705620 0.244180  —67.207000 5.058700  —0.194930  —0.147380 0.113370  —56.949000 4.699900
Cg 0.039866 —0.035057  —0.003761 2.227400  —0.720650 0.002422 0.000958  —0.000354 2.168900 0.243620
Cy —0.023477 0.010291 —0.026977 —0.520830 0.101050  —0.058518 0.009767 0.009697 0.449220  —0.004979
Cio —0.031351 0.355330 0.007513 —1.706100 0.619140  —0.059358 0.315730 0.044530 —4.468700 0.777580
] I Acknowledgement
A
0.4} : 1

ESIF

-1 -08 -06 -04 -02 0 02 04 06 08 1

X3

Fig. 8. Example M: First ESIF.

rials was provided for three different problems. These solu-
tions, although being computed by numerical methods pre-
sented in [3] are of very high accuracy, therefore suggested
as benchmarks for the verification of various methods
aimed at computing edge stress intensity functions in com-
posite-like structures.
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