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SUMMARY

The convergence of stress maxima, computed directly from finite element solutions, is investigated with
respect to a family of exact solutions characterized by varying degrees of smoothness. The performances
of h- and p-extensions and the product and trunk spaces are evaluated and documented with respect to
a family of benchmark problems. In uniform p-extensions a characteristic pattern in the convergence of
stress maxima was observed. There does not appear to be a clear-cut advantage of the product space over
the trunk space in this respect. The much faster convergence of stress maxima in the case of p-extensions,
as compared with h-extensions, is evident from the results.

INTRODUCTION

The problem of quality control in finite element computations has been the subject of many
investigations. Most of the available work has been concerned with estimation and control of
error in energy norm. It is known that for reasonable Poisson ratios the energy norm measure
of the error is closely related to the root-mean-square measure of error in stresses. These are
average measures, however. In most cases engineers are interested in determining the location
and magnitude of the largest principal stress, or, equivalently, the stress concentration factor.
Typically, this is done by direct computations. Therefore the accuracy of stress data computed
by direct methods is of considerable practical interest.

Indirect computation of stresses have been shown to be superior to direct methods (see, for
example, References 1-3). Computer implementation of indirect methods is difficult, however,
because different procedures are required at and near boundaries from the interior. In
searching for stress maxima, the stress values are computed in many points, which makes it
necessary to perform computations efficiently. None of the generally available finite element
programs offer superconvergent extraction procedures for stresses at present.

In this paper the convergence of the largest stress computed directly from the finite element
solution, that is, by differentiating the displacement function to obtain the strain components,
then using the stress—strain law for computing the stresses, is examined with reference to a
family of model problems. The model problems are constructed in such a way that the
corresponding exact solutions are known and the smoothness of the exact solutions can be
varied by changing one parameter. The construction of model problems and the results of
numerical studies are presented in the following.
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THE MODEL PROBLEMS

Consider an infinite plate containing an elliptic hole of major axis ¢ and minor axis b. The
plate is loaded in its plane by uniform tension at infinity. Firstly, the exact solution is obtained
by classical methods. A subdomain containing the elliptic hole is then selected and the tractions
corresponding to the exact solution are imposed on the boundaries of the subdomain. In this
way a family of problems is defined. The smoothness of the solutions depends on the ratio b/a.

The exact solutions are constructed using the complex representation of the Airy stress
functions (see Reference 4). It is known that every Airy stress function can be represented in
terms of two analytic complex functions ¢(z) and ¥/(z) in the domain describing the body. The
stress components can be related to ¢(z) and {(z) as shown in the following.

If ¢(z) and y(z) are the solution to a 2-D problem in a domain 2(z), we may transform
2(z) < 2'(¢) (¢ =pe'®, z=re'’) using conformal mapping. By this method it is possible to
obtain solutions on a variety of domains, provided that the mapping z = @ ({) is known and
conformal, and the solution in 2'({) is known. In the following a circular hole in an infinite
plate is used as the geometry in Q'({), for which a well known solution exists, and this domain
is transformed to €2(z) such that an ellipse in an infinite plate is obtained. Defining
$(z) = ¢ '(z), and ¥(z) = ¢'(z), we obtain:

Tpp'*‘TEﬁ:‘q'ER@(;} (l]
(100 = Top) + 2076 = —— (@(D)2'() + @' () ¥ () @)
prw'($)

The maximum stress at the edge of an elliptic hole in an infinite plate, loaded by tension at
infinity, is a function of the ratio b/a only. For the case bfa = 1, the ellipse is a circle and the
stress concentration factor is known to be 3. For the case bfa — 0, the ellipse becomes a crack
and the stress concentration becomes infinity.

The transformation of a circular hole of radius R in an infinite plate into an elliptic hole
in an infinite plate, located at the origin, with major axis (¢ = R(1 4+ m)) and minor axis
(b= R(1 —m)) is given by

z=w(§')=R(§‘+?) (R>0,0<m<1) 3)

By a suitable choice of R and m, one may obtain ellipses of any dimension and shape.
Let the state of stress at infinity be tension of magnitude P in a direction forming an angle
a with the x-axis. For this loading (see Reference 4 p. 338):

() =28 (§+33—;J) )
_ _PR[ _gia, €™ (A+m*)e®-m) ¢
V(6 =-33 [e £+ m¢ m — m] ©)
and
$'(§) v'(§)
a)=28)  yi)=¥5) 6
) = (0) ) o(0) (6)

A solution to this problem was found by a different method by C. E. Inglis in 1913 (see
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Reference 5). For R =1 the stresses corresponding to ®({) and ¥({) are as follows:

B
S o, 0)

Top + To0 = (p* — m? + 2m cos(a) — 2p* cos 2(a — 0)}

Too — r;,Fﬁ (cos 2(0 — a) [20° — p® — 3m?p* = 3p* —m?] — 2m?p? cos 2(a +6)

+mp2(1 + p*)cos 2a — 20) + mp*(3 + p* + 2m*)cos 2a

+(p* —m2)[—2mp? cos 20+ p*(1 + m?)] } 7
o = —2E— (o sin 2(e — 0) — m?p® sin 2a +0) + (mp®+ m*p?)sin 20)
S (0, 0)
_f___'Z{P 0) [Siﬂ 2(6— a}[ps + 2m2_04 - 3p4 = m? - .'??2.04] + sin 2« [3-"?’?,06 = 3m,02]
a,

—2m?%p* sin 2(0 + ) + sin 2(c — 260) [mp® — mp?]

+2mp*(1 + m*)sin 26}

where f(p,0) =p* — 2mp? cos 20 + m>.

Curves of constant p in the ¢-plane (which are circles of radius p) are mapped into ellipses
with major axis @ = (p + m/p) and minor axis b= (p — m[p). We may choose as the outer
curved edge of the ellipse p = const. > 1.

The finite dimensional subdomain selected for this investigation is shown in Figure 1. It is
bounded by two ellipses corresponding to p=1and p =4 and the x- and y-axes. The loading
is uniform tension at infinity in the direction of the y-axis (i.e. a = n/2). Therefore the x- and
y-axes are axes of symmetry. The inner elliptical boundary (p = 1) is stress-free. The normal
traction component Tn and the tangential traction component Tt on the outer elliptical

A v=0,T, =0 B

Figure 1. Solution domain and boundary conditions
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boundary are:

IN(r, 1) = 1p5(r(p, ), t(p, 0)), Tr(r, 1) = 700(r(p,0),t(p,0))

where 7,5 and 7,, are obtained from (7)

Tod = (sin 20[20%(p* = 1)(1 + m) (0> — m?) + (p* = (> + p*)]

2f2 ,0)
+sin 49(1 — p*)p2m)

_ 2 TN SR 0 LIS 1 S, O

=5y (7 = 2m = m) e —m?)(p? - 1) ®)

+c0s 20[(p* + m*)(dp* — p* = 1) = 20*(m* + 1)] + 2mp2(1 — p?)?
cos? 26)

Note that the mapping z = w({) is conformal, so that, if 7,, is perpendicular to 7, in the
{-plane, then the corresponding stresses in the z-plane are also perpendicular.
The maximum stress is obtained for 744 at point A:

£ 3~2m= m? 2a
max — 9
=0 i P( b) &

Remark. Since the exact solution is known, it would have been possible to impose
displacement rather than tractions on the boundary. This would have required, however,
enforcement of the boundary conditions by restriction on the space of admissible functions.
Approximation of the exact displacement functions by polynomials would have introduced an
error and convergence of the potential energy with respect to increasing polynomial degrees
would not have been necessarily monotonic.

Remark. In order to specify the normal and tangential tractions on the outer boundaries,

we need to obtain the relationship between cylindrical co-ordinates (r,¢) and (p,6). On
boundary BC, p = p; = const., and therefore the needed relationship is

2
0|Bc:tan"][c;+m)tan(t)] (10)
11— m

Computation of potential energy

The finite element method based on displacement formulation selects that displacement
vector (uxrE, Uyre) from the finite element space which minimizes the energy norm of the error.
A well developed theoretical basis exists for the estimation of error in energy norm for the h-,
p- and hp-extensions (see Reference 6). In the following the error in maximal stress is
correlated with the error in energy norm, which can be estimated with good accuracy from
finite element solutions. However, in this case the exact solution is known, and therefore we
are in a position to compute the exact potential energy. In this way the error in energy norm
of the finite element solution can be computed without resorting to estimation.

The displacements in Q'({") plane can be computed from ¢(¢) and ¥ (¢) presented in (4) and
(5) as follows (see Reference 4, p. 183):

Uy + iug =

W—w'm{mm—“’(“ ©) - @"&"}] (1)

@'({)
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where p is the shar modulus, v is Poissons’ ratio and

1 —3» for plane strain

Sy for plane stress
1460
After some algebraic manipulations the displacements #, and ug for R =1 are found to be:

PR L
P 8uplf(p,0)
+2[1—p*—=p%(1 + x)(1 + m)]cos 26}

(O = 1)(p* + 2m + m?) + 202 (m + 1)?

R
4upf(p,0)

For a solution domain loaded by tractions only without body forces the potential energy IT is

Uy = [p2(1 = x) —p* - 1]sin 260 (12)

Il = —A\J(TNMN + TTLJ'I') ds (13)

where the contour integral is over the boundary of the solution domain and (T, T7r), (un, ur)
are the tractions and displacements in the normal—tangential reference frame with respect to
the boundaries. On the solution domain presented in Figure 1, (13) is simplified to

C
n=—§(nmnmmn+ﬂmnmmmds (14)
J B

For the ellipse BC, ds can be shown to be
A 172
{l == (1——4)13052 (}
e dt  0<r<nf2 (15)

7 73
[1 - (1 —b—z)cosz r]
a

The mapping z = w({) is conformal, which guarantees that in the {-plane Tn L T1 = 7pp L Tp6
and un L ur — u, L ug. BC is the portion of a circle with radius p = const., and 0 < 6 < /2.
Using (10) we have the relationships:

ds=20b

2 2 2
5 (p? +m)? cos? 6
€03 (p% — m)* + 4mp? cos* 6 (16)
2 2
o (p m)(p-+m) _de a7

(0% — m)? + 4mp? cos* 0
and substituting into (15), ds becomes

ds =10 4 (18)
p

Substituting (8), (12) and (18) into (14) one obtains
_PZ RS 1
 16pp* !0 fi(p,0)

{(Az 4+ Az cos 26)(Bs + Bs cos 20 + Bs cos? 260) — 24, sin? 20(B, + 2B cos 26)} d0 (19)
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where
Ar=p*(1—x)-p*-1
Az=(x =1 (p*+2m+m?*) + 20 (m + 1)?
As=2[1-p*—p*(1 + x)(1 + m)]
Bi=20%(p* = 1)(1 + m)(p> = m?) + (p* = 1)(p* + m?)
By=(1-p*)p*m
By=(p*=2m—-m*)(p*-m*)(p*-1)
Bi=(p*+m?)(4p> - p* = 1) = 20%(m* + 1)
Bs=2mp*(1 - p?*)?

(20)

and p = const. = 4.
For an isotropic material under the assumption of plane stress, Young’s modulus 1-0 and
Poisson’s ratio 0-3, the following values for different ms are obtained:

IMex(m =0) = —16-33892955, Iex(m =0-25) = —26-70957359
IMex(m =0-05) = —27-08611104, Iex(m=0-75) = —27-45638123
Iex (m = 0-85) = —27-59927711, Hex(m=0-9) = —27-66902911

The exact error in energy norm can now be computed from

Mex — e
(He”E)Ex:J —EX — FE

IMex
NUMERICAL EXPERIMENTS

Numerical experiments were performed with the objective to evaluate the convergence
characteristics of various extension procedures. The computer code PEGASYS® was used for
this purpose. PEGASYS has h- and p-extension capabilities and allows the choices of product
and trunk spaces for quadrilateral elements. By definition, the trunk space of degree p spans
the set of monomials 9/, i+ j < p augmented by the monomial &, for p=1 and by the
monomials £y, &” for p >2 on the standard quadrilateral element defined by Q) =
{&n| | €] <1, |n| < 1). The product space spans the set of monomials ¢'97, i,/ =0,1,2,...,p
on Q7). Elements are mapped by the blending function method. Therefore the boundaries are
represented exactly in the stiffness matrix and load vector computations. The load vectors were
computed by evaluating the applied tractions in 14 Gauss points along the loaded edge of each
element and integrated numerically, using double precision operations. Isotropic material and
Poisson’s ratio of 0-3 was used, under the assumption of plane stress.

The direct method of extraction procedure is described in detail in Reference 7, Section
11.4.1. The strains were computed from the displacement components and the stresses from
the appropriate stress—strain relationship. The trial functions over each element are
polynomials of degree 1< p <8, and the integration scheme uses (p+3)(p+3) Gauss
integration points over each quadrilateral.

The potential energy corresponding to the finite element solution (ITrg ) for a domain loaded
by tractions only is computed from the product of the load vector and the solution vector.,

21

*Engineering Software Research and Development, Inc., 7750 Clayton Road, Suite 204, St. Louis, MO 63117.
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The point-wise stresses extracted by direct computations from the finite element solution do
not in general converge monotonically even though the error in energy norm does, and their
rate of convergence is dependent on the smoothness of the exact solution.

By varying m from 0 to 0:9, we can obtain stress concentration factors® at point A (see
Figure 1), which range from 3 (corresponding to the circular hole in the infinite plate) to 39,
respectively.

The first step in this study was to ensure that PEGASYS handles the complicated expressions
for the normal and tangential tractions properly and the errors introduced by numerical
integration are small. To verify this, the circular hole in an infinite plate problem was tested
(m =0). The stress at infinity was taken to be P=2. Using the trunk space, the solution
converged to 005 per cent error in energy norm and to 0-03 per cent error in the stress at point
A at p = 8. This indicates that no significant errors were induced by numerical integration.

As the parameter m is increased, ellipses are obtained which have increasing stress
concentration factors at point A. The four levels of mesh refinement used in conjunction with
p-extensions are presented in Figure 2. These meshes are referred to as ‘regular meshes’, in
contrast with ‘graded meshes’ introduced in the following. (At p = 8 and the trunk space, for
the 6-element mesh there are 408 degrees of freedom (DOF), for the 9-element mesh 588 DOF,
for the 12-element mesh 768 DOF, and for the 15-element mesh 948 DOF).

We have observed that the errors both in the strain energy and in the calculated stresses were
comparatively high for the models for which m > 0-75. Therefore the domains were remeshed
using meshes which are graded in a geometric progression in the vicinity of point A with the
factor 0-17. This is the optimal grading for p-extension in the vicinity of singular points.’
Summaries of the results are presented in Tables I-III. Tables I and II present the results
obtained using the regular and graded meshes, respectively, while in Table III the comparison

4 (5

Figure 2. Finite element meshes with four levels of refinement

®The stress concentration factor is defined as the ratio 7g¢(A)/P.
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between them is summarized. In Tables 1-I1I the estimated error in energy norm is defined by
|le|le, and the estimated asymptotic rate of convergence in energy norm by B. The error
estimates are obtained by extrapolation. For detailed discussion on the estimation of || e||g and
3 we refer to Chapter 4 in Reference 7.

We plotted the stress as a function of number of degrees of freedom to better understand
their convergence behaviour. A typical convergence plot for the case when m = 0-75, using
both the product space and the trunk space and for a regular mesh with 12 elements, is
presented in Figure 3. This plot shows the typical behaviour of the stresses which we have
observed in almost all cases, namely, the stresses tend to ‘overshoot’ the exact value and they

Table I. Trunk space — regular mesh

riF — 7B
* * EX FE # L e (%)
DOF m a b | e|le(%) it THd THE THo
408 0 1 1 0-05 3-61 6-0 6-0018 0-03
408 0-25 1:25 0-75 0-12 2-73 8-666 8-6744 0-09
408 0-5 1-5 0-5 0-8 1-78 14 14-1849 1-32
588 0-13 2-36 14-1174 0-83
408 0-75 195 0-25 3-24 0-78 30 29-4923 -1-69
588 1-01 1-55 30-6617 2-20
768 0-28 1-90 30-8285 2-76
588 0-85 1-85 0-15 4-06 0-52 51-333 47-9188 —6-65
768 1-13 1-18 51-6373 0-59
588 0-90 1-9 0-1 5-75 0-44 78 64-0595 -17-8
768 215 0-81 71-0440 -8-92
Table II. Trunk space — graded mesh
FE _ _EX
* # =X FE* WB—T:'E; (%)
DOF m a b || e || E(%0) 8 h Tog Td8
408 0-75 1-75 0-25 2-73 0-86 30 29-733 -0-89
588 0-33 2:05 30-819 2-73
768 0-19 2:45 30-256 0-85
588 0-85 1-85 0-15 1-32 1-19 517333 51-423 0-17
768 0-79 1-44 52-734 2-72
Table I1I. Regular against graded mesh, trunk space
DOF m [l e]| &% (%) llel|l £92% (%) g gu e.M*m) e, 9% )
408 0-75 3-24 273 0-78 0-86 -1-69 —0-89
588 1-01 0-33 1-55 2-05 2-20 2:73
768 0-28 0-19 1:90 2-45 2-76 0-85
588 0-85 4-00 1-32 0-52 1-19 —6-65 0-17
768 1-13 0-79 1-18 1-44 0-59 2-72

*AtLp=38
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converge to the exact value at a rate which depends on the smoothness. We observed a
monotonic convergence of the stress to the exact value only for one case (m=0-75, six
elements). The confidence in the results is much higher when monotonic convergence occurs,
provided that the convergence curve approaches the zero slope. However, from experience
gained so far this monotonic convergence of the maximal stress is rare. The ‘knee’ at p=2,3,
clearly visible, was observed in many cases.

The ‘overshoot’ may be large for smooth solutions (when m =0, for example), but the
convergence thereafter is fast. As m — 1 the exact solution becomes less and less smooth, and
the convergence after the ‘overshoot’ occurs slowly. Simply observing the convergence curve
one may erroneously think that ‘The curve is almost flat, so convergence was probably
achieved’. Figure 3 illustrates this phenomenon for m =0-75.

In Figure 3 the case ‘combined trunk and product space’ represents a discretization where
product space is used on the element at the tip of the ellipse, and trunk space is used for all
other elements. The results show that at the higher p-levels (p = 6,7,8) the error is virtually
the same as if the product space had been used on all elements. This indicates that (a) the
product space generally yields better results than the trunk space for the same p-levels and (b)
the error in the maximal stress can be reduced by local refinement.

In Figure 4 we show the absolute value of the relative error in maximum stress as compared
to the relative error in energy norm on a log—log scale for m =0-85. In Figure 5 the same
information is shown for m =0-75, where the maximum stress CONverges monotonically.
When the solution is smooth, and Poisson’s ratio is not close to 1/2, then the maximal stress
converges at about the same rate as the finite element solution in energy norm. However, when
the solution is not smooth, and the convergence in the maximal stress is not monotonic, then
there is no close correlation between the error in energy norm and the error in maximal stress.
In Figure 4, for example, at low p-levels the error decreases and then increases due to the
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Figure 3. p-convergence curve for m= 0-75, 12 elements, regular mesh
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Figure 6. Convergence curves for the regular 6-element mesh and trunk space for various m values

‘knee’, thereafter the error decreases as the maximal stress approaches the exact value from
below, but then the maximal stress overshoots the exact value so the error increases again.

The behaviour of the point-wise stress as the exact solution becomes less and less smooth
(m increases) is best illustrated by Figure 6, where we show the convergence of the stress using
the trunk space over the regular 6-element mesh for m =0, 0-25, 0-5, 0-75. The deterioration
of the stress accuracy as m increases, and the ‘overshoot’ phenomenon, are clearly visible. For
m = 0-75, the curve tends to ‘overshoot’ the exact value, but at p = 8 the stress is still below
the exact value. The same behaviour was visible when using the product space as well.

The influence of various meshes while using p-extension is shown in Figure 7, where we
compare the stress convergence for the case m =0-75, using the trunk space over meshes
shown in Figure 2. The pattern of convergence is similar for the three mesh refinements.

Meshes graded in geometric progression with the common factor of 0-17 in the vicinity of
the stress concentration improve the convergence of the stress, but the pattern of convergence
of the stresses as p increases remain the same as for regular meshes.

Comparison between product space and trunk space

The question of whether the product space has any advantage over the trunk space (using
the p-extension over a fixed mesh), when stress maxima are of interest was investigated. The
number of degrees of freedom was used as the basis of comparison. This comparison tends
to favour the trunk space because for a fixed number of degrees of freedom the front size
associated with the product space is smaller than the front size associated with the trunk space.

The dependence of the accuracy on the space chosen appears to be completely random,
meaning that for a fixed number of degrees of freedom in some cases the stress is more
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Figure 7. Convergence curves for m =075, regular mesh, trunk space

accurate when the product space is used, while for other cases the stress is more accurate when
the trunk space is used.

Comparison between p-extensions and h-exiensions

The question whether p-extensions over a fixed mesh, or h-refinement keeping p=2
(constant), is better when point-wise stresses are of interest was investigated also. For this
study we used the two solution domains where m = 0-25 and m = 0-75. The meshes used for
the h-refinement study (for m =0-25) are shown in Figure 8. For the p-extensions the 6-
element mesh shown in Figure 2 was used. Both the trunk and the product spaces were tested.

The error in stresses at point A is plotted against number of degrees of freedom in Figures
9 and 10 for m =0-25 and m =075, respectively.

It is seen that p-extension is superior to h-refinement for both cases (m=0-25 and
m = 0-75). For h-refinement when m = 0-25, the trunk space is more efficient than the product
space, while for m =0-75, the opposite is true.

Remark on cases where the stress gradients are very high

As m — 1 the stress gradient increases very rapidly and the maximum stress converges
progressively slower. For these cases the direct method is impractical. The following method
for an indirect computation of the maximum stress is preferable,
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Figure 10. p- and h-convergence curves for m =075

A simplified solution domain, which contains a crack instead of an ellipse, is analysed. The
‘stress intensity factors’ for this crack tip dominate the behaviour of the stresses around it, and
can be computed very accurately using superconvergent techniques (see Reference 8 for
details). The local state of stress around the crack tip is dominated by the stress intensity
factor, and a relationship between them for various m values can be obtained once and for
all. The stress values are then obtained as a function of stress intensity factors. This approach
has been tested satisfactory by Andersson er a/.® and by the authors.

SUMMARY AND CONCLUSIONS

A benchmark problem was developed for testing the convergence characteristics of stress
maxima in two-dimensional elasticity problems as a function of the smoothness of the exact
solution. This benchmark problem was used for comparing the performance of p- and h-
extensions and for investigating the question of whether a pattern exists which could be
exploited for extrapolating from low-accuracy data to high-accuracy data. A large number of
cases were investigated. This paper contains only a representative sample of the results. Based
on this investigation, the following observations can be made:

1. There is a frequently occurring phenomenon in uniform p-extensions — the maximum
stress converges from below at low p-values, ‘overshoots’ the exact stress value and then
converges from above for higher p-values. When this pattern is visible then the error
corresponding to the highest p-level is generally small (less than 3 per cent).

2. There does not appear to be a generally valid error estimation for stress maxima
computed from finite element solutions. The error in energy norm can serve as a rough
estimate when the solution is smooth. Generally, plots of convergence curves, similar to
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those shown in Figure 3, should be used. In general, the most reliable approximation of
the exact stress is the stress computed for the highest p-level.

3. The relative performance of the product and the trunk spaces with respect to increasing
degrees of freedom is mixed. There does not appear to be a clear-cut advantage of one
family of spaces over the other. Nevertheless, the product space yields better results for
the same p-value. For this reason use of the product space in critical regions is
recommended.

4. It is well known that for smooth problems p-extensions converge exponentially, whereas
h-extensions converge algebraically in the energy norm. The much faster convergence of
stress maxima in the case of p-extensions is evident from the results presented here.

ACKNOWLEDGEMENTS

The support of this work by the Air Force Office of Scientific Research under grant no. 92-J-
0043 is gratefully acknowledged.

REFERENCES

1. 1. Babuska and A. Miller, ‘The post processing approach in the finite element method — part 1:
Calculation of displacements, stresses and other higher derivatives of the displacements’, Int. j.
numer. methods eng., 20, 1085—1109 (1984).

2. K. Izadpanah, ‘Computation of stress components in the p-version of the finite element method’,
D.Sc. dissertation, Washington University, 1984.

3. D. Vasilopoulos, ‘Extraction of two-dimensional stresses on the boundary’, GMR Research
Publication GMR-7459, 23 August 1991.

4. N. I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity, P. Noordhoff
(Ed.), 1953.

5. C. E. Inglis, ‘Stresses in a plate due to the presence of cracks and sharp corners’, Trans. Inst. Naval
Architects, London, Vol. LV, 1913, pp. 219-230.

6. 1. Babuska, ‘The p- and hp-versions of the finite element method: The state of the art’, in D. L.
Dwovyer, M. Y. Hussaini and R. G. Voigt (Eds), Finite Elements: Theory and Application, Springer-
Verlag, 1988, pp. 199-239.

7. B. A. Szabé and 1. Babuska, Finite Element Analysis, Wiley, 1991.

8. B. A. Szabo and I. Babugka, ‘Computation of the amplitude of stress singular terms for cracks and
reentrant corners’, Fracture Mechanics: Nineteenth Symposium, ASTM STP 969, T. A. Cruse (Ed.),
ASTM. Philadelphia, 1988, pp. 101-124.

9. B. Andersson, I. Babu§ka, T. von Petersdorff and U. Falk, ‘Reliable stress and fracture mechanics
analysis of complex aircraft components using a h-p version of FEM’, The Aeronautical Research
Institute of Sweden, Report no. FFA TN 1992-17, August 1992, Sweden.




