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Abstract

Numerical solutions of non-linear stochastic thermo-hyperelastic problems at finite strains
are addressed. These belong to a category of non-linear coupled problems that impose chal-
lenges on their numerical treatment both in the physical and stochastic spaces. Combining
the high order finite element methods (FEMs) for discretizing the physical space and the poly-
nomial chaos projection (PCP) method for discretizing the stochastic space, a non-intrusive
scheme is obtained manifesting an exponential convergence rate. The method is applied to a
1-D coupled, stationary, thermo-hyperelastic system with stochastic material properties.

We derive exact stochastic solutions that serve for comparison to numerical results, allowing
their verification. These demonstrate that stochastic coupled-problems intractable by standard
Monte-Carlo (MC) methods may be easily computed by combining high-order FEMs with the
PCP method controlling discretization errors.

1 Introduction

Thermo-mechanical problems that undergo finite deformations are of interest in many en-

gineering applications and are two-way coupled: the temperature field results in volumetric

deformations, whereas the heat conduction equation has to be satisfied on a domain that de-

forms due to the mechanical loads and displacements. These problems are formulated as a set

of partially differential non-linear equations with material properties that are usually consid-

ered as deterministic. However, realistically the material properties are stochastic fields, which

may be approximated by random variables if the domain is small enough. The stochastic ma-

terial properties within the coupled system of PDEs result in a stochastic coupled non-linear

problem.
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For the deterministic problem, methods such as the p-version of the finite element method

(p-FEM) were recently presented [17]. There, the one-dimensional (1-D) steady-state thermo-

hyperelastic problem in a bar was addressed, demonstrating exponential convergence rates for

smooth solutions. The 1-D problem is a typical example that is simple enough to enable exact

solutions to be derived against which numerical solutions can be compared to demonstrate the

convergence and accuracy properties. We herein extend the complexity of the coupled problem

by further considering the stochastic solution due to the stochastic material properties. Lever-

aging the deterministic p-FEMs already developed we here make use of the polynomial chaos

(PC) approach [8, 15] to develop a non-intrusive algorithm, i.e. we transform the stochastic

problem to a set of deterministic problems each being solved by the deterministic p-FEM

without the need to alter the code.

Popular and straight-forward robust non-intrusive methods to analyze stochastic processes

are Monte-Carlo (MC) based methods that are statistical in nature. Their accuracy depends on

the sample size so the simulations may become prohibitively expensive, especially for coupled

non-linear problems (which are computationally exhausting even for a single deterministic

solve). Efficient methods, as the multi level Monte-Carlo [3], that are based on balancing the

numerical error in the physical space with the error in the stochastic space may turn out to

be inefficient. This is because high-order FEMs reduce the numerical error in physical space

extremely fast as one increases the polynomial order, so that there is no balancing possible

with the MC stochastic error. On the other hand, the PC approach, being a spectral expansion

of the stochastic processes in terms of orthogonal polynomials, converges exponentially when

using Hermite polynomials and the underlying random variables are Gaussian. This idea was

further generalized by Xiu and Karniadakis [16], to obtain exponentially converging algorithms

even for non-Gaussian random variables.

PC has been applied to many problems in the field of nonlinear solid mechanics, see e.g.

[12, 6]. In an intrusive manner it was applied to a coupled electromechanical system in [1].

There the influence of the uncertain variations in material properties and geometrical param-

eters on the static analysis of electrostatic MEMS was investigated. The intrusive application

necessitated altering the deterministic conventional FE-code used. In [2] the formulation and

implementation of coupled numerical models by facilitating the communication of information

across physics as well as between the iterations of solvers was used for response computa-

tions. The effectiveness of the proposed dimension reduction methodology was analyzed and
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demonstrated through a multiphysics problem relevant to nuclear engineering.

Here, the coupled thermo-hyperelastic problem with material properties depending on dif-

ferent random variables is addressed. Taking advantage of the PC method, we discretize the

stochastic space by a set of orthogonal Hermite polynomials, and use a projection technique

by the expectation operator. We discretize the physical space by hierarchical high-order finite

elements as detailed in [17]. Combination of the two methods allows a non-intrusive technique,

with the exponential convergence rate realized by p-FEMs and the exponential convergence

rate realized by the projection PC. Because it is impractical to apply MC techniques to obtain

a benchmark solution (against which the numerical approximations can be assessed) due to

an unbalanced rate of convergence in space discretization and uncertainty disctetization, we

derive exact solutions (in physical and stochastic dimensions) against which convergence rates

are determined and demonstrated.

The paper is organized as follows: in Section 2 the problem statement and notations are

introduced. First we formulate the deterministic coupled-problem (in “physical space”), fol-

lowed by the introduction of uncertainties in the material properties, resulting in the stochastic

coupled ODEs of interest. In Section 3 the discretization in stochastic space is formulated us-

ing the polynomial chaos projection (PCP) approach. We then derive exact solution to three

different problems in Section 4. First we consider one material property with one-random

variable and the stochastic solution to a hyperelastic (non-coupled) problem. We then solve

the hyperelastic problem with two random variables and finally three random variables are

considered for the fully coupled thermo-hyperelastic problem. In Section 5 we present numeri-

cal examples compared to the analytical solution to demonstrate the proposed methodology to

quantify the effect of uncertain material properties, and we conclude the discussion in Section

6.

2 Problem statement and notations

2.1 Physical space

Consider a one-dimensional beam, Ω0 = {X
∣

∣X0 < X < L}, presented in [17] subjected to

mechanical and thermal loading. The beam is made of a hyperelastic material and to simplify

our presentation we consider a constant cross section of 1, and a length L−X0 = 1.
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U(X) and Θ(X) are the displacement and temperature at the reference location X . The

only relevant term in the deformation gradient is

F11 = 1 +
∂U(X)

∂X
≡ 1 + U ′,

where the prime indicates the derivative with respect to the axial coordinateX in the reference

configuration, U ′ = dU(X)
dX . There are no displacements in the other two directions , leading

to

J = 1 + U ′ (1)

We define

ϕ
def
= [1 + αΘ(Θ−Θ0)] ,

where αΘ is the thermal expansion coefficient and Θ0 is a reference temperature. The com-

pressible hyperelastic strain energy constitutive model considered in [17] allows to explicitly

represent the second Piola-Kirchhoff axial stress (see [17, (32)]):

T̃XX =
κ

10

[

(1 + U ′)3

ϕ15
− ϕ15

(1 + U ′)7

]

+
4c10
3

(1 + U ′)−2/3

[

1− 1

(1 + U ′)2

]

. (2)

with c10(Θ) usually related to the shear modulus µ/2 in the limit of the small strains case and

κ(Θ) the bulk modulus. Both material coefficients may depend on the temperature.

The bar is clamped at X0, a force is applied at L: FL = F11T̃XX and ρRG is the force per

unit of volume of the reference configuration. With these notations the weak form associated

with the physical space is:

Seek U(X) ∈
o

E such that ∀V (X) ∈
o

E
∫ L

X0
T̃XX(U ′,Θ, X)V ′J dX −

∫ L

X0
ρRGXV dX − FLV (L) = 0 (3)

Here
o

E is :
o

E def
=
{

U ∈ W 1,s(X0, L), U(X0) = 0
}

Where s is such that the first integral in (3) makes sense for any choice of U and V .

The heat-transfer weak form for the bar is presented next. We denote by ρRR(X) the
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heat-source per unit of volume in the reference configuration and we consider homogeneous

Dirichlet boundary conditions at X = X0, (Θ − Θ0)

∣

∣

∣

∣

X=X0

= 0. At X = L a heat flux is

prescribed:

qn(X = L)
def
= −kR(Θ)

dΘ(X)

dX

1

F11

∣

∣

∣

∣

X=L

(4)

with the assumption that Fourier’s model has a temperature dependent heat conductivity

kR(Θ).

With these notations the weak form for the heat-transfer problem is:

Seek Θ(X) ∈
o

E(X0, L) such that ∀Υ(X) ∈
o

E(X0, L)

0 =
∫ L

X0
kR

∂Θ
∂X

∂Υ
∂X

1
J dX − kR

dΘ(X)
dX

1
F11

∣

∣

∣

∣

X=L

Υ(L)−
∫ L

X0
ρRRΥdX (5)

The two weak forms (3)-(5) are coupled, leading to the nonlinear coupled system in physical

space to be solved ([17, section 2.4]):

Seek (U(X),Θ(X)) ∈
o

E(X0, L)×
o

E(X0, L) such that ∀(V (X),Υ(X)) ∈
o

E(X0, L)×
o

E(X0, L)

∫ L

X0
T̃XX V ′J dX −

∫ L

X0
ρRGXV dX − FLV (L) = 0 (6)

∫ L

X0
kR Θ′ Υ′ 1

J dX −
∫ L

X0
ρRRΥdX − kR

dΘ(X)
dX

1
F11

∣

∣

∣

∣

X=L

Υ(L) = 0 (7)

A schematic representation of the coupled problem is shown in Figure 1. The coupled sys-

X

X=1 X=2

ρ
R
G

X
(X)

U(1)=0 FL(=2)

ρ
R
R(X)

Θ(1)=0 -kR dΘ/dX (1/F11)(2)

Figure 1: Schematic representation of the thermo-hyperelastic coupled problem.

tem (6)-(7) is discretized applying p-FE methods, and may be very efficiently solved, obtaining

a FE approximation of the entities of interest, i.e. UFE(X) and ΘFE(X) (see [17]).
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2.2 Stochastic space

Usually the material parameters are not deterministic, but are random fields. Since the domain

Ω0 is small, then we constrain ourselves to material properties that are random variables i.e.

determined by a PDF which is not a function of the physical space. The probability density

function (PDF) of the material property is assumed to be known. For example let us assume

that a normal (Gaussian) distribution is given by the mean and standard deviation:

c10(ξ1) = µc10 + ξ1σc10 (8)

with µc10 the mean, σc10 the standard deviation of c10(ξ1) and ξ1 is the zero-mean and unit

standard deviation realization of the random variable [4]. Similarly, we can express both κ

and kR by a normal distribution:

κ(ξ2) = µκ + ξ2σκ (9)

kR(ξ3) = µkR
+ ξ3σkR

(10)

Finally, we denote by ξ the random variables vector (the three random variables are inde-

pendent identically distributed, iid, random variables):

ξ = (ξ1 ξ2 ξ3)
T

As a result, the displacement and temperature must be a function of both the physical co-

ordinate X as well as the random variable vector ξ: U(X, ξ) and Θ(X, ξ). The coupled system

in physical space (6)-(7) should be in this case reformulated, so that for each given realization

of the random vector ξk = (ξ
(k)
1 ξ

(k)
2 ξ

(k)
3 )T , one obtains UFE(X, ξk) and ΘFE(X, ξk). The

determination of an approximation to U(X, ξ) and Θ(X, ξ) by discretizing the stochastic space

is given in the next section.
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3 Discretization in stochastic space

3.1 Hyperelasticity with one random variable

For simplicity, let us first concentrate on the hyperelastic problem (assume the temperature

is kept constant) with one material property being a random variable given by (8). Thus, we

consider an approximation of U(X, ξ1):

UD(X, ξ1) =

N−1
∑

i=0

UD
i (X)φi(ξ1) (11)

with φi(ξ1) being stochastic polynomials that have to be chosen according to the PDF of ξ1.

For a normal distribution with the PDF

fξ1(t) =
1√
2π

e
−t2

2 , (12)

the hierarchical family of Hermite polynomials are used (see Table 1).

Distribution Support Polynomial

Gaussian [−∞∞] Hermite

Uniform [-1; 1] Legendre

Gamma 0 +∞ Laguerre

Chebyshev (-1 1) Chebyshev

Beta (-1 1) Jacobi

Table 1: Polynomial Chaos [16]

We may define the error between the exact and approximated solution:

e(X, ξ1)
def
= U(X, ξ1)− UD(X, ξ1) = U(X, ξ1)−

N−1
∑

i=0

UD
i (X)φi(ξ1) (13)

Projection into the polynomial chaos space: Demanding the error to be orthogonal to
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the polynomial chaos space under the expectation operator (see [11, eq. 3.7]) implies:

E [e(X, ξ1)φk(ξ1)] = E
[

(U(X, ξ1)− UD(X, ξ1))φk(ξ1)
]

= 0 (14)

def
=

∫

∞

−∞

(

U(X, t)−
N−1
∑

i=0

UD
i (X)φi(t)

)

φk(t)fξ1(t)dt = 0

∀k = 0, · · · , N − 1

The integral is split into two terms and (14) becomes:

∫

∞

−∞

U(X, t)φk(t)fξ1(t)dt =

N−1
∑

i=0

UD
i (X)

∫

∞

−∞

φi(t)φk(t)fξ1(t)dt (15)

∀k = 0, · · · , N − 1

Because fξ1(t) is a Gaussian (normal) PDF then the chaos polynomials are chosen to be

Hermite polynomials since they satisfy the orthogonality condition [15, eq. 3.19]:

∫

∞

−∞

φi(t)φk(t)fξ1(t)dt = k!δik (16)

Substituting (16) in the RHS of (15) one obtains:

N−1
∑

i=0

UD
i (X)

∫

∞

−∞

φi(t)φk(t)fξ1(t)dt =

N−1
∑

i=0

UD
i (X) k!δik

= k!UD
k (X) (17)

Inserting (17) in (15) we finally obtain:

UD
k (X) =

1

k!

∫

∞

−∞

U(X, t)φk(t)fξ1(t)dt, ∀k = 0, · · · , N − 1 (18)

The integral in the RHS of (18) is evaluated by a numerical quadrature. For a Gauss-

Hermite quadrature in one dimension, M quadrature points ξ
(i)
1 , the roots of the Hermite

polynomial of order M are determined.

For each given c10(ξ
(i)
1 ), the weak form (3) becomes a deterministic formulation solved by

the p-FE method - this makes the present method a non-intrusive method. Thus the RHS
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of (18) is

RHS =
1

k!

∫

∞

−∞

U(X, t)φk(t)
1√
2π

e
−t2

2 dt ≃ 1

k!

M−1
∑

i=0

WiU
FE(X, ξ

(i)
1 )φk(ξ

(i)
1 ) (19)

with ξ
(i)
1 the Hermite quadrature points and their corresponding quadrature weights Wi (see

[11, App. B eq. B.60]).

Remark 1 Note that two discretization errors are incorporated in this step: a) The spatial

discretization error due to the FE solution of UFE(X, ξ
(i)
1 ), and b) The numerical integration

error dictated by the quadrature rule of M points.

Substituting (19) in (18) one finally obtains:

UD
k (X) =

1

k!

M−1
∑

i=0

WiU
FE(X, ξ

(i)
1 )φk(ξ

(i)
1 ), ∀k = 0, · · · , N − 1 (20)

Notice that UFE(X, ξ
(i)
1 ) are the FE deterministic solutions: For each of the ξ

(i)
1 , i = 0, 1, · · · ,M−

1, c10(ξ
(i)
1 ) is evaluated and used in the FE deterministic solution. Thus the final solution is

by substituting (20) into (11):

UD(X, ξ1) =

N−1
∑

k=0

(

1

k!

M−1
∑

i=0

WiU
FE(X, ξ

(i)
1 )φk(ξ

(i)
1 )

)

φk(ξ1) (21)

Once UD
i (X) are found, the moments can be calculated easily because of the orthogonality

property of the Hermite polynomials.

3.1.1 Computing moments of UD(X, ξ1)

The expectation of U(X, ξ1) is the first moment (the mean) and it is approximated as the

expectation of the projection:

E
[

UD(X, ξ1)
]

= E

[

N−1
∑

i=0

UD
i (X)φi(ξ1)

]

(22)

=

N−1
∑

i=0

UD
i (X)

∫

∞

−∞

φi(t) fξ1(t) dt =

N−1
∑

i=0

UD
i (X)E [φi(ξ1)]
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The expectation of Hermite polynomials E [φi(ξ1)] = δi0 (see [13]), thus (22) reduces to

E
[

UD(X, ξ)
]

= UD
0 (X) =

1

0!

M−1
∑

i=0

WiU
FE(X, ξ

(i)
1 )φ0(ξ

(i)
1 )

=

M−1
∑

i=0

Wi U
FE(X, ξ

(i)
1 ) (23)

which is nothing more than is the expectation of UFE(X, ξ1):

E
[

UFE(X, ξ1)
] def
=

∫

∞

−∞

UFE(X, t)fξ1(t)dt

The second moment (variance) is by definition

V ariance ≡ σ2
U = E

[

(

UD(X, ξ1)
)2
]

−
(

E
[

UD(X, ξ1)
])2

=

∫

∞

−∞

(

N−1
∑

i=0

UD
i (X, t)φi(t)

)2

fξ1(t)dt −
(

UD
0 (X)

)2
(24)

Exploiting the orthogonality property (16) the first term in the LHS of (24) simplifies:

σ2
U =

N−1
∑

i=0

(

UD
i (X)

)2
E
[

φi(ξ1)
2
]

−
(

UD
0 (X)

)2

=

N−1
∑

i=0

i!
(

UD
i (X)

)2 −
(

UD
0 (X)

)2
=

N−1
∑

i=1

i!
(

UD
i (X)

)2
(25)

(see also [6]).

3.2 Hyperelasticity with two random variables

Let us generalize the stochastic hyperelastic problem (assume the temperature is kept constant)

by assuming two material properties being a random variable, considering both (8) and (9).

Thus, we consider an approximation of U(X, ξ1, ξ2):

UD(X, ξ1, ξ2) =

N−1
∑

i,j=0

UD
ij (X)φi(ξ1)φj(ξ2) (26)

Similarly to section 3.1, we project the solution into the stochastic space by the expectation
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operator, resulting in:

∫∫

∞

−∞
U(X, t, s)φk(t)φℓ(s)fξ1(t)fξ2(s)dtds

=
∫∫

∞

−∞

∑N−1
i,j=0 U

D
ij (X, t, s)φi(t)φj(s)φk(t)φℓ(s)fξ1(t)fξ2(s)dtds ∀k, ℓ = 0, · · · , N − 1(27)

The LHS of (27) is approximated by a cubature, with UFE(X, ξ
(a)
1 , ξ

(b)
2 ) instead of the

exact solution:

LHS ≃
M−1
∑

a,b=0

WaWbU
FE(X, ξ

(a)
1 , ξ

(b)
2 )φk(ξ

(a)
1 )φℓ(ξ

(b)
2 ) ∀k, ℓ = 0, ..., N − 1 (28)

The RHS of (27) is

RHS =

∫∫

∞

−∞

N−1
∑

i,j=0

UD
ij (X)φi(t)φj(s)φk(t)φℓ(s)fξ1(t)fξ2(s)dtds

=
N−1
∑

i,j=0

UD
ij (X)δkik!δℓjℓ! = k!ℓ!UD

kℓ(X) ∀k, ℓ = 0, ..., N − 1 (29)

Substituting (28) and (29) in (27) one may determine the projection coefficients:

UD
kℓ(X) =

1

k!ℓ!





M−1
∑

a,b=0

WaWbU
FE(X, ξ

(a)
1 , ξ

(b)
2 )φk(ξ

(a)
1 )φℓ(ξ

(b)
2 )



 ∀k, ℓ = 0, ..., N − 1 (30)

Changing indices from ℓ,m to i, j in (30) and substituting in (26), the approximated solution

UD(X, ξ1, ξ2) is:

UD(X, ξ1, ξ2) =

N−1
∑

i,j=0

1

i!j!





M−1
∑

a,b=0

WaWbU
FE(X, ξ

(a)
1 , ξ

(b)
2 )φi(ξ

(a)
1 )φj(ξ

(b)
2 )



φi(ξ1)φj(ξ2) (31)

3.2.1 Cubature evaluation by Smolyak-like sparse nested grids

Determination of the coefficients UD
kℓ(X) in (30) amounts to performing a multidimensional

quadrature. Unfortunately, traditional quadrature approaches suffer the “curse of dimension-

ality”, whereby the number of realizations scale exponentially with the number of stochastic

dimensions. Sparse quadratures (Smolyak-like) provide one avenue to mitigate this high com-

putational cost (for an overview see [5]).
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Smolyak [14] introduced a general rule for extending univariate operators to multivariate

problems, having sparse and nested grids. This approach has been further enhanced by [10].

The main advantage of this sparse grids integration (SGI) rule over the well-known product

rule extension of univariate quadrature is that it does not impose exponentially increasing

computational costs with a rising number of dimensions, is general and straightforward to

implement.

The generation of the cubature sparse weights and abscissas that corresponds to the cross

product in 2-D ofM2 abscissas or in 3-D of M3 abscissas is according to the algorithm by Genz

and Keister [7, Table 3.2] using the Kronrod-Patterson rule. The algorithm for the generation

of the sparse Kronrod-Patterson cubature abscissas an weight was obtained1 according to [9].

In Table 2 the number of cubature points for the Kronrod-Patterson rule that corresponds

to M2 abscissas in two iid random variables and to M3 abscissas in three iid random variables

is provided.

Remark 2 Herein we keep the notation M to represent the number of cubature abscissas in

the sum
∑M−1

a,b=0, keeping in mind that the actual number of cubature abscissas is according to

Table 2.

Remark 3 One may notice in Table 2 that for a 2-D integration (two iid random variables)

the number of cubature abscissas using the K-P rule is larger compared to the tensor product

cubature (this is not the case for 3-D). Nevertheless, the K-P rule is hierarchical, i.e. once a

cubature for one level is available, the next level is obtained by adding more points thus the

integration accuracy is improved by having to add a small number of terms. Contrary to this

very efficient approach, the standard cubature based on a tensor product needs to update all

abscissas when increasing M .

Remark about the accuracy of a nested quadrature

Citing [11, p. 86]: “In fact, a general observation regarding non-intrusive methods and

related algorithms, even for the more advanced ones, is the lack of theoretically well grounded

error estimators and theoretical convergence rate for the approximation of general (nonlinear)

models. Consequently, adaptive strategies are still based on ad-hoc or heuristic rules to guide

the adaptive procedure or to decide that the results are sufficiently converged.”

1The code is freely distributed at http://www.sparse-grids.de.
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Two random variables Three random variables
Equivalent tensor product 2D # of abscissas Equivalent tensor product 3D # of abscissas
cubature abscissas M2 according to K-P rule cubature abscissas M3 according to K-P rule

12 = 1 2 13 = 1 3
22 = 4 5 23 = 8 7
32 = 9 9 33 = 27 19
42 = 16 17 43 = 64 39
52 = 25 37 53 = 125 93
62 = 36 45 63 = 216 165
72 = 49 61 73 = 343 237
82 = 64 77 83 = 512 381
92 = 81 97 93 = 729 513
102 = 100 133 103 = 1000 703
112 = 121 141 113 = 1331 919
122 = 144 205 123 = 1728 1183
132 = 169 253 133 = 2197 1719

Table 2: Number of cubature points for Kronrod-Patterson rule corresponding to a tensor product
cubature abscissas for two and three iid random variables.

The accuracy of a nested quadrature is increased as more levels are evaluated - see [11, Eq.

(3.16)] and [15, Proposition 7.2. p. 85].

3.3 Discretization in stochastic space: Thermo-Hyperelasticity with

three random variables

We further generalize the stochastic problem, addressing now the fully coupled system, as-

suming the three material properties being a random variable, considering (8) -(10). Thus, we

consider an approximation of U(X, ξ) and Θ(X, ξ):

UD(X, ξ) =

N−1
∑

i,j,k=0

UD
ijk(X)φi(ξ1)φj(ξ2)φk(ξ3) (32)

ΘD(X, ξ) =
N−1
∑

i,j,k=0

ΘD
ijk(X)φi(ξ1)φj(ξ2)φk(ξ3) (33)

Remark 4 One does not need to use the same projection order for U and Θ, but we do so

for consistency.
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Similarly to section 3.2, we project both U(X, ξ) and Θ(X, ξ) into the stochastic space by

the expectation operator, resulting in:

∫∫∫

∞

−∞
U(X, s, t, q)φℓ(s)φm(t)φn(q)fξ1 (t)fξ2(s)fξ3(q)dsdtdq

=
∫∫∫

∞

−∞

∑N−1
i,j,k=0 U

D
ijk(X, s, t, q)φi(s)φj(t)φk(q)φℓ(s)φm(t)φn(q)fξ1(s)fξ2(t)fξ3(q)dsdtdq

∀ℓ,m, n = 0, · · · , N − 1 (34)

∫∫∫

∞

−∞
Θ(X, s, t, q)φm(s)φn(t)φℓ(q) fξ1(s)fξ2(t)fξ3(q) dtdsdq

=
∫∫∫

∞

−∞

∑N−1
i,j,k=0 Θ

D
ijk(X, s, t, q)φi(s)φj(t)φk(q)φm(s)φn(t)φℓ(q) fξ1(s)fξ2(t)fξ3(q) dsdtdq

∀ℓ,m, n = 0, · · · , N − 1 (35)

The LHS of (34), and (35) is approximated by a cubature, with UFE(X, ξ) and ΘFE(X, ξ)instead

of the exact solution. For example, the LHS of (34) is:

LHS ≃
M−1
∑

a,b,c=0

WaWbWcU
FE(X, ξ

(a)
1 , ξ

(b)
2 , ξ

(c)
3 )φℓ(ξ

(a)
1 )φm(ξ

(b)
2 )φn(ξ

(c)
3 ) ∀ℓ,m, n = 0, ..., N−1

(36)

The RHS of (34) is

RHS =

∫∫∫

∞

−∞

N−1
∑

i,j,k=0

UD
ijk(X)φi(s)φj(t)φk(q)φℓ(t)φm(s)φn(q)fξ1(s)fξ2(t)fξ3(q)dsdtdq

=
N−1
∑

i,j,k=0

UD
ijk(X) ℓ!δℓim!δmj n!δnk = ℓ!m!n!UD

ℓmn(X) ∀ℓ,m, n = 0, ..., N − 1 (37)

Substituting (36) and (37) in (34) one may determine the projection coefficients:

UD
ℓmn(X) =

1

ℓ!m!n!

M−1
∑

a,b,c=0

WaWbWcU
FE(X, ξ

(a)
1 , ξ

(b)
2 , ξ

(c)
3 )φℓ(ξ

(a)
1 )φm(ξ

(b)
2 )φn(ξ

(c)
3 ), ∀ℓ,m, n = 0, ..., N−1

(38)

Changing indices from ℓ,m, n to i, j, k in (38) and substituting in (32), the approximated

solution UD(X, ξ) is:

UD(X, ξ) =

N−1
∑

i,j,k=0

1

i!j!k!

M−1
∑

a,b,c=0

WaWbWc U
FE(X, ξ

(a)
1 , ξ

(b)
2 , ξ

(c)
3 )φi(ξ

(a)
1 )φj(ξ

(b)
2 )φk(ξ

(c)
3 )φi(ξ1)φj(ξ2)φk(ξ3)

(39)

14



The same procedure applies to Θ(X, ξ):

ΘD(X, ξ) =

N−1
∑

i,j,k=0

1

i!j!k!

M−1
∑

a,b,c=0

WaWbWc Θ
FE(X, ξ

(a)
1 , ξ

(b)
2 , ξ

(c)
3 )φi(ξ

(a)
1 )φj(ξ

(b)
2 )φk(ξ

(c)
3 )φi(ξ1)φj(ξ2)φk(ξ3)

(40)

4 Deriving exact solutions

To determine the accuracy of the numerical results and investigate the contribution of the er-

rors associated with the approximation in physical space and that associated with the stochas-

tic space, we herein derive exact solutions. Many past publications compare the numerical

approximations to the MC approximation which is robust. However, to compute a MC ap-

proximation that is considered accurate enough for the coupled problem one would need at

least (105)3 FE solutions, each lasting a couple of minutes, which is impractical.

Exact solutions are derived for the strong (classical) formulation that correspond to the

weak formulation (6-7) with homogeneous Dirichlet boundary conditions at X0 and Neumann

boundary conditions at L:

d

dX

[

F11(X, ξ) T̃XX(X, ξ)
]

+ ρRGX(X, ξ) = 0, X ∈ (1, 2), ξ ∼ N (0, 1) (41)

d

dX

[

1

F11(X, ξ)

dΘ(X, ξ)

dX

]

+ ρRR(X, ξ) = 0, X ∈ (1, 2), ξ ∼ N (0, 1) (42)

First we compute the exact solution of the hyperelastic problem alone (assuming the tem-

perature kept constant) with one and two random variables, and then address the thermo-

hyperelastic coupled problem with three random variables.

For each of the three example problems we also compute the exact mean and the exact

variance. For example, for the problem with two random variables these are given by:

µU (X) =

∫

∞

−∞

∫

∞

−∞

U(X, ξ1, ξ2)
1√
2π

e
−ξ21
2 dξ1

1√
2π

e
−ξ22
2 dξ2 (43)

σ2
U (X) =

∫

∞

−∞

∫

∞

−∞

U2(X, ξ1, ξ2)
1√
2π

e
−ξ21
2 dξ1

1√
2π

e
−ξ22
2 dξ2 − µ2

U (X) (44)
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4.1 Hyperelastic problem with one random variable c10(ξ1)

Consider first the hyperelastic problem (temperature is kept constant), schematically shown

in Figure 2, with c10 being the only random variable given by (8). The exact solution depends

X

X=1 X=2

ρ
R
G

X
(X)

U(1)=0 FL(=2)

Figure 2: Schematic representation of the hyperelastic problem.

on the physical coordinate X and the random variable ξ1:

U(X, ξ1) = (X4 −X)e
−ξ21
2 (45)

U(X, ξ1) in (45) identically satisfies the homogeneous Dirichlet boundary conditions atX0 = 1.

The Neumann BC at X = 2 that is consistent with (45) is determined by:

FL(X = 2) = F11(X = 2)T̃XX(X = 2)A = F11(X = 2)T̃XX(X = 2). (46)

where F11 ≡ J is given in (1) and T̃XX in (2)

Substituting (45) in (1) and (2) one obtains:

F11 = 1 +
dU(X, ξ)

dX
= 1 + (4X3 − 1)e

−ξ21
2 (47)

and

FL =
κ

10

[

(

1 + (4X3 − 1)e
−ξ21
2

)4

−
(

1 + (4X3 − 1)e
−ξ21
2

)

−6
]

(48)

+
4

3
(µc10 + ξσc10)

[

(

1 + (4X3 − 1)e
−ξ21
2

)1/3

−
(

1 + (4X3 − 1)e
−ξ21
2

)

−5/3
]

The Neumann condition at X=2 is:

FL(X = 2) =
κ

10

[

(

1 + 31e
−ξ21
2

)4

−
(

1 + 31e
−ξ21
2

)

−6
]

(49)

+
4

3
(µc10 + ξσc10)

[

(1 + 31e
−ξ21
2 )1/3 − (1 + 31e

−ξ21
2 )−5/3

]
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Body force

The body force in the reference configuration is computed using the equilibrium equation:

ρRGX = −d(JT̃XX)

dX
= −d(JT̃XX)

dJ

dJ

dX
(50)

=

[

−κ

5
(2J3 + 3J−7)− 4(µc10 + ξσc10)

9
(5 J

−8
3 + J

−2
3 )

]

dJ

dX

= 12X2e−
ξ21
2

{

−κ

5

[

2

(

1 + (4X3 − 1)e
−ξ21
2

)3

+ 3

(

1 + (4X3 − 1)e
−ξ21
2

)

−7
]

−4(µc10 + ξ1σc10)

9

[

5

(

1 + (4X3 − 1)e
−ξ21
2

)

−8/3

+

(

1 + (4X3 − 1)e
−ξ21
2

)

−2/3
]}

For this example problem one may compute the mean and variance of the solution U(X):

µU (X) =

∫

∞

−∞

(X4 −X)e−
ξ21
2

1√
2π

e
−ξ21
2 dξ1 =

(X4 −X)√
2

(51)

σ2
U (X) =

∫

∞

−∞

(

(X4 −X)e−
ξ21
2

)2 1√
2π

e
−ξ21
2 dξ1 − µ2

U (X) = 0.07740X2(X3 − 1)2 (52)

Remark 5 The mean of the exact solution is not obtained by simply taking ξ1 = 0 in (45).

4.2 Hyperelastic problem with two random variables

Let both c10 and κ be random variables according to (8) and (9), and the exact solution to

the hyperelastic problem with two random variables chosen as:

U(X, ξ1, ξ2) =
(

X4 −X
)

e−
ξ21+ξ22

2 (53)

We follow the same steps as in subsection 4.1. The homogeneous Dirichlet boundary

condition at X = 1 is identically satisfied by (53), and the Neumann boundary condition at

X = 2 is determined by (46):

FL(X = 2) =
(µκ + ξ2σκ)

10

[

(

1 + 31e−
ξ21+ξ22

2

)4

−
(

1 + 31e−
ξ21+ξ22

2

)

−6
]

(54)

+
4

3
(µc10 + ξ1σc10)

[

(

1 + 31e−
ξ21+ξ22

2

)1/3

−
(

1 + 31e−
ξ21+ξ22

2

)

−5/3
]

Body force
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The body force in the reference configuration is computed using the equilibrium equation:

ρRGX = −d(JT̃XX)

dX
= −d(JT̃XX)

dJ

dJ

dX
(55)

= 12X2e−
(ξ21+ξ22)

2

{

− (µκ + ξ2σκ)

5

[

2

(

1 + (4X3 − 1)e
−(ξ21+ξ22)

2

)3

+ 3

(

1 + (4X3 − 1)e
−(ξ21+ξ22)

2

)

−7
]

−4(µc10 + ξ1σc10)

9

[

5

(

1 + (4X3 − 1)e
−(ξ21+ξ22)

2

)

−8/3

+

(

1 + (4X3 − 1)e
−(ξ21+ξ22)

2

)

−2/3
]}

The mean and variance of U(X) are:

µU (X) =

∫

∞

−∞

∫

∞

−∞

(X4 −X)e−
ξ21+ξ22

2
1

2π
e

−ξ21−ξ22
2 dξ1dξ2 =

X(X3 − 1)

2
(56)

σ2
U (X) =

∫

∞

−∞

∫

∞

−∞

(

(X4 −X)e−
ξ21+ξ22

2

)2 1

2π
e

−ξ21−ξ22
2 dξ1dξ2 − µ2

U (X) =
(X −X4)2

12
(57)

4.3 Thermo-hyperelastic coupled problem with three random vari-

ables

In this section the fully coupled thermo-hyperelastic system is considered with c10, κ and

kR being three random variables according to (8) - (10). The exact solution to this thermo-

hyperelastic problem is chosen as:

U(X, ξ1, ξ2) = (X4 −X)e−
ξ21+ξ22

2 (58)

Θ(X, ξ3) = (X4 −X)e−
ξ23
2 (59)

Because the temperature Θ is to be understood as the difference compared to a reference

stress-free temperature, we choose the reference temperature Θ0 = 0. The exact solution

(58)-(59) satisfies identically the homogeneous Dirichlet boundary conditions at X = 1:

U(1, ξ1, ξ2) = 0, Θ(1, ξ3) = 0

18



The mechanical Neumann boundary condition at X = 2 is derived as in subsection 4.2, with

one difference that instead of ϕ = 1, here:

ϕ = 1 + αΘ(X
4 −X)e−

ξ23
2 .

that leads to

FL(X = 2) =
µκ + ξ2σκ

10

[

(1 + 31e−
ξ21+ξ22

2 )4(1 + 14αΘe
−

ξ23
2 )−15 − (1 + 31e−

ξ21+ξ22
2 )−6(1 + 14αΘe

−
ξ23
2 )15

]

+
4

3
(µc10 + ξ1σc10)

[

(1 + 31e−
ξ21+ξ22

2 )1/3 − (1 + 31e−
ξ21+ξ22

2 )−5/3

]

(60)

The flux boundary condition at X = 2 is:

qn(X = 2) = −kR
dΘ

dx

∣

∣

∣

∣

X=2

= −kR
dΘ(X)

dX

1

J

∣

∣

∣

∣

X=2

=
−31(µkR

+ ξ3σkR
)e−

ξ23
2

1 + 31e−
ξ21+ξ22

2

(61)

Body force and heat sources

The body force in the reference configuration is computed using the equilibrium equation:

ρRGX(X, ξ) = −J
dσ

dx
= − dσ

dX
= −d(JT̃XX)

dX

= − κ

10

{

[

4J3ϕ−15 + 6J−7ϕ15
] dJ

dX
−
[

15J4ϕ−16 + 15J−6ϕ14
] dϕ

dX

}

+
4c10

9

[

J−2/3 + 5J−8/3
] dJ

dX
(62)

with

dJ
dX = 12X2e−

ξ21+ξ22
2 (63)

dϕ
dX = αΘ(4X

3 − 1)e−
ξ23
2
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The heat source in the reference configuration is obtained by [17, eq. (78]:

ρRR(X, ξ)) =
d

dX

(

− kR
dΘ

dX

1

J

)

= −kR
d

dX

( dΘ

dX

1

J

)

= (µkR
+ ξ3σkR

)
4

(2X + 1)2
e(

ξ21+ξ22−ξ31
2 ) (64)

=
12X2(µkR

+ ξ3σkR
)e−

ξ23
2

(4X3 − 1)e−
ξ21+ξ22

2 + 1





(4X3 − 1)e−
ξ21+ξ22

2

(4X3 − 1)e−
ξ21+ξ22

2 + 1
− 1



 (65)

The mean and variance of U(X) and Θ(X) are:

µU (X) =

∫

∞

−∞

∫

∞

−∞

(X4 −X)e−
ξ21+ξ22

2
1

2π
e

−ξ21−ξ22
2 dξ1dξ2 =

X(X3 − 1)

2
(66)

µΘ(X) =

∫

∞

−∞

(X4 −X)e−
ξ23
2

1√
2π

e
−ξ23
2 dξ3 =

X(X3 − 1)√
2

(67)

σ2
U (X) =

∫

∞

−∞

∫

∞

−∞

(

(X4 −X)e−
ξ21+ξ22

2

)2 1

2π
e

−ξ21−ξ22
2 dξ1dξ2 − µ2

U (X) =
(X −X4)2

12
(68)

σ2
Θ(X) =

∫

∞

−∞

(

(X4 −X)e−
ξ23
2

)2 1√
2π

e
−ξ23
2 dξ3 − µ2

Θ(X) = 0.07740X2(X3 − 1)2 (69)

5 Numerical Results

In this section results of the PCP and p-FEM are presented for the three problems with exact

solutions in Section 4. Two error measures are used for the error in the mean eµU
(X) and the

error in variance eσ2
U
(X). The first is a pointwise norm that quantifies the relative difference

in mean and variance at a given location along the bar:

eµU
(X) =

∣

∣

∣

∣

µUEX (X) − µUD(X)

µUEX (X)

∣

∣

∣

∣

, eσ2
U
(X) =

∣

∣

∣

∣

∣

σ2
UEX (X) − σ2

UD(X)

σ2
UEX (X)

∣

∣

∣

∣

∣

, (70)

The second error measure is the global discretized L2 norm for the mean and variance

computed at q + 1 equally spaced points along the bar Xi, i = 0, 1, · · · , q with Xq = L (see

[11, (Eq. (6.75)]):

eL2
µU

=
L−X0

q

√

√

√

√

1

2
e2µU

(X0) +

q−1
∑

i=1

e2µU
(Xi) +

1

2
e2µU

(L), eL2

σ2
U

=
L−X0

q

√

√

√

√

1

2
e2
σ2
U

(X0) +

q−1
∑

i=1

e2
σ2
U

(Xi) +
1

2
e2
σ2
U

(L),

(71)

In all the numerical experiments we use q = 60, so the L2 discrete norms are based on 61
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points.

In (70)-(71) we use the exact mean and variance defined by (43)-(44) for the exact solution

and (23)-(25) for the numerical approximation.

We monitor the three sources of errors - the approximation error of the p-FEM solution in

physical space, characterized by the order of the shape functions p, the approximation error of

the stochastic space, characterized by the number (order) of Hermite polynomials N , and the

cubature error, characterized by the number of cubature points and weights that is associated

with M .

5.1 Hyperelastic problem with one random variable

The problem presented in subsection 4.1 is solved using the deterministic p-FEM presented in

[17] for p = 1, · · · , 4 over a mesh consisting of three equal elements of equal size of 1/3 in the

physical space and by increasing the order of the Hermite polynomials from 0 to 9 (N = 9)

for the stochastic space discretization. The p-FE results converge to the exact solution for

any p ≥ 4 because the exact solution is a polynomial of degree 4 in physical space. In this

example problem, since it involves only one random variable, we use the standard Gauss-

Hermite quadrature, which means that N = M . The random variable c10 has a mean of

µc10 = 1.5 and a variance σc10 = 0.2.

Choosing a point in the middle of our domain in the middle of the second element X = 1.5,

we present in Figure 3 the relative error of the mean and variance as we increase the number

of Hermite polynomials. We also present the relative difference in the PDF of U(X = 1.5, ξ1)
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Figure 3: Relative error in mean (Left) and variance (Right) of U(X = 1.5) vis. p and degree of
Hermite polynomials N .
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Figure 4: Relative difference in PDF in percentage at U(X=1.5). Black vertical line shows the
mean value.

in Figure 4. This PDF is generated by 100,000 MC realizations of the exact solution and the

approximated solution. One may notice the fast pointwise convergence with respect to both

the polynomial level in physical space and order of the Hermite polynomials in the stochastic

space. Same fast convergence is obtained when examining the global L2 norm of the relative

error between the exact and approximated solution as demonstrated in Figure 5.

0

5

10

1

2

3

4

−4

−3

−2

−1

0

1

Hermite Order N
FE p 

lo
g 10

e µ UL2

0246810

1

2

3

4

−1.5

−1

−0.5

0

0.5

1

1.5

Hermite Order N

FE p 

lo
g 10

e σ2 U

L2

Figure 5: L2 norm of error in mean (Left) and variance (Right) of U as function p and number
of Hermite polynomials N .
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5.2 Hyperelasticity with two random variables

For the second example problem there are two iid random variables determined by:

c10(ξ1) = 1.5 + 0.2ξ1, κ(ξ2) = 0.5 + 0.05ξ2

As in subsection 5.1 we choose a point in the middle of our domain in the middle of the second

element X = 1.5, and present in Figure 6 the exact and approximated solution and in Figure

7 the error of the mean as we increase the number of cubature points.

Remark 6 Since the mean is computed only by the coefficient of the Hermite polynomial of

order 0, therefore it is independent of the number of Hermite polynomials (see (23)), and

depends only on the cubature order M .

−4
−2

0
2

4

−4

−2

0

2

4
0

1

2

3

4

ξ
1

ξ
2

U
 e

xa
ct

 (
X

=
1.

5)

−4
−2

0
2

4

−4

−2

0

2

4
0

1

2

3

4

ξ
1

ξ
2

U
 p

ro
je

ct
ed

 (
X

=
1.

5)
,p

=
4,

H
e−

10

Figure 6: Exact solution U(X = 1.5) (Left) and approximated solution at p = 4, N = 9 and
M = 13 (Right) as a function of ξ1 and ξ2.

Figure 8 shows the pointwise convergence of the relative error of the variance at X = 1.5

as we increase the FE p-level, the number of Hermite polynomials and the cubature order.

The global L2 norm of the relative error of the mean and variance as a function of the p-FE

level, the Hermite order and the cubature order is shown in Figures 9-10. The fast pointwise

and L2 convergence with respect to both the polynomial level in physical space and order of

the Hermite polynomials and cubature order in the stochastic space was demonstrated for two

iid random variables.
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Figure 10: L2 norm of error in variance of U vis. p and the number of Hermite polynomials N
for M = 13 (Left), and vis. p and cubature order M for N = 9 (Right).
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5.3 Thermo-Hyperelasticity with three random variables

For the third example problem αΘ = 10−5 and Θ0 = 0, and we consider three iid random

variables determined by:

c10(ξ1) = 1.5 + 0.2ξ1, κ(ξ2) = 0.5 + 0.05ξ2, kR(ξ3) = 1 + 0.1ξ3

As in subsection 5.1 we choose a point in the middle of our domain in the middle of the second

element X = 1.5, and present in Figure 11-12 the exact and approximated solution for U and

Θ at p = 4, N = 9 and M = 13. In Figure 13 the error of the mean is presented.

Remark 7 Since the mean is computed only by the coefficient of the Hermite polynomial of

order 0, therefore it is independent of the number of Hermite polynomials (see (23)), and

depends only on the cubature order M .
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Figure 11: Exact solution U(X = 1.5) (Left) and approximated solution at p = 4, N = 9 and
M = 13 (Right) as a function of ξ1,ξ2.

The error of the means of U and Θ at X = 1.5 as we increase the FE polynomial order and

the number of cubature points are shown in Figures 14-15. The convergence of the variances

of U and Θ at X = 1.5 as the p-FE level, M and N increases are shown in Figures 16-17.

The global L2 norm of the relative error of the mean and variance as a function of the

p-FE level, the Hermite order and the cubature order for both U and Θ are shown in Figures

18-21.
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Figure 14: Relative error of the mean of U(X = 1.5) vis. p and cubature order M for N = 9.
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Figure 15: Relative error of the mean of Θ(X = 1.5) vis. p and cubature order M for N = 9.
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Figure 16: Relative error in variance of U(X = 1.5) vis. p and degree of Hermite polynomials N
for M = 13 (Left), and vis. p and cubature order M for N = 9 (Right).
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Figure 17: Relative error in variance of Θ(X = 1.5) vis. p and degree of Hermite polynomials N
for M = 13 (Left), and vis. p and cubature order M for N = 9 (Right).
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Figure 18: L2 norm of error of the mean of U as function p FE p and cubature order M for N = 9.
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Figure 19: L2 norm of error of the mean of Θ as function p and cubature order M for N = 9.
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Figure 20: L2 norm of error in variance of U vis. p and the number of Hermite polynomials N
for M = 13 (Left), and vis. p and cubature order M for N = 9 (Right).
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Figure 21: L2 norm of error in variance of Θ vis. p and the number of Hermite polynomials N for
M = 13 (Left), and vis. p and cubature order M for N = 9 (Right).
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6 Summary and Conclusions

In this paper we derived the PCP method to demonstrate its use in studying coupled elliptic

nonlinear ODEs with random inputs. We were motivated by the non-intrinsic property of

the PCP, allowing one to use any deterministic FE code without altering it, and simply post-

process the results. Since the efficiency of the PC can be orders of magnitude higher than the

methods that require sampling, e.g. MC method (especially when the random inputs have low

to moderate dimensions), and due to the exponential convergence rates of p/hp-FEMs, the

combination of the two provided dual paths of convergence, i.e., exponential convergence in

both physical space and stochastic space.

To the best of our knowledge, it is for the first time that a framework has been presented for

accurate non-intrusive stochastic modeling of coupled thermo-hyperelastic problems. To assess

the efficiency and convergence rates of the presented methods we developed exact solutions

(both in physical and stochastic spaces) against which the numerical results were compared.

These exact solutions were mandatory because the usual past approach to obtain benchmark

solutions by MC simulations were shown to be impractical due to the need of prohibited

computational resources for such MC simulations.

We considered three numerical examples, with one, two and three iid random variables to

demonstrate the convergence rates. The numerical experiments show that the application of

PCP with p-FEMs demonstrates a highly efficient method, by far more than MC methods for

a moderate number of random dimensions. Preliminary experiments using the standard MC

method for the coupled problem (with 1000 and 125000 samples) demonstrate that the PCP

method is three order of magnitudes faster.

Many open issues remain to be further addressed. We list some of them as follows:

• The random variables used in our study have an assumed normal (Gaussian) distribution,

so that realizations may have negative values that are unacceptable. Due to the narrow

variance in the values used and the relatively small quadrature order, these negative

values were not evident in our analysis. In future studies a more physical distribution,

as the log-normal distribution, should be considered.

• Material parameters in our study were assumed to be temperature independent. Temper-

ature dependent material parameters better represent the reality, and future formulation

of the coupled problem has to be enhanced accordingly.
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• The fast convergence of PPC relies on the smoothness of the solution in the stochas-

tic space with the assumption of equal importance of each random variable. However,

adaptivity may be necessary for the region with low regularity or when one of the vari-

ables affects much more the solution. Effective adaptive strategies are also necessary for

p-convergence in physical space.

• We considered only Gaussian random inputs. Non-Gaussian random processes have

received more attention recently and the present methods have to address such also.

• Extension of the methods to a coupled set of PDEs in three-dimensional physical space is

a mandatory step towards practical engineering applications considering stochastic fields.
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Clermont-Ferrand, France, 2009.

[5] H. J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:147–269, 2004.

[6] J. Foo, Z. Yosibash, and G. Karniadakis. Stochastic simulation of riser-sections with

uncertain measured pressure loads and/or uncertain material properties. Computer Meth.

Appl. Mech. Engrg., 196:4250–4271, 2007.

[7] A. Genz and B.D. Keister. Fully symmetric interpolatory rules for multiple integrals over

infnite regions with Gaussian weight. J. Comp. Appl. Math., 71:299–309, 1996.

[8] R. Ghanem and P. Spanos. Stochastic finite elements: A spectral approach. Springer-

Verlag Publishers, 1991.

[9] F. Heiss and V. Winschel. Estimation with numerical integration on sparse grids. Munich

Discussion Paper No. 2006-15, 2006.

[10] F. Heiss and V. Winschel. Likelihood approximation by numerical integration on sparse

grids. Jour. Econometrics, 144:62–80, 2008.

[11] O.P. Le Maitre and O.M. Knio. Spectral Methods for Uncertainty Quantification. 2010.

[12] H.G. Matthies and A. Keese. Galerkin methods for linear and nonlinear elliptic stochastic

partial differential equations. Computer Meth. Appl. Mech. Engrg., 194(12–16):1295–1331,

2005.
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