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Abstract

The solution to elasticity problems in three-dimensional (3-D) polyhedral multi-material anisotropic domains in the vicinity of an
edge is addressed. It includes eigen-functions (similar to 2-D domains) complemented by shadow-functions and their associated edge
stress intensity functions (ESIFs), which are functions along the edge. These can be complex and are of major engineering importance
in composite materials because failure theories directly or indirectly involve them.

The p-version finite-element methods presented in Yosibash and Omer [Z. Yosibash, N. Omer. Numerical methods for extracting edge
stress intensity functions in anisotropic three-dimensional domains. Comput. Methods Appl. Mech. Engrg., 196 (2007) 3624-3649] are
extended herein to compute complex eigen-functions and shadows and applied to multi-material anisotropic interfaces. The quasidual
function method [M. Costabel, M. Dauge, Z. Yosibash. A quasidual function method for extracting edge stress intensity functions.
SIAM J. Math. Anal. 35(5) (2004) 1177-1202] is also extended for extracting complex ESIFs from finite element solutions.

Numerical examples for 3-D isotropic and anisotropic multi-material interfaces are provided for which the complex eigen-pairs and
shadow functions are numerically computed and ESIFs extracted. These examples show the efficiency and high accuracy of the numerical

approximations.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Elastic solutions for realistic three-dimensional (3-D)
domains in the vicinity of an edge (as a crack front for
example) are of major engineering importance because
these are associated with failure initiation and propagation
in brittle materials. To the best of our knowledge the num-
ber of publications addressing edge singularities in 3-D
anisotropic multi-material interfaces is very limited. These
works do not address the complete elastic solution and are
mainly interested in the first most singular stress intensity
pointwise values. The available numerical methods all
extract pointwise values of SIFs along the 3-D singular
edges, and some employ restrictive assumptions of plane
stress/strain situations. Among works applying plane
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strain/stress assumptions we refer to [6,5,7]. In Ref. [6],
the energy release rate is extended to 3-D interface crack
between dissimilar anisotropic materials for the computa-
tion of Ki,Ky, and Kyy. The volume integral, obtained
by extending the 2-D J-integral to 3-D domains, was used
in [5] and straight or penny-shaped cracks are addressed in
[7] by the “near field” integral — in these works bi-material
cracks are considered restricted to only modes I and II
loading.

SIF extraction for anisotropic cracked domains is
reported in [2,8]. Employing the M-integral good pointwise
approximations of SIFs are reported in [2], and in [8] aniso-
tropic penny-shaped cracked configurations are investi-
gated based on both the traditional displacement
boundary element method and the displacement disconti-
nuity method. Transversely isotropic bi-material cracked
domains are investigated in [13] by the dual boundary ele-
ment method. The fundamental solution for the bi-material
solid occupying an infinite region is incorporated into the
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dual boundary integral equations and modes I, II, and III
SIFs are computed by the crack opening displacements
method.

In the vicinity of an edge the 3-D elastic solution may be
represented by a family of eigen-functions (denoted primal
and are the well known eigen-functions in 2-D domains)
with their associated edge stress intensity functions (ESIFs)
which are functions along the edge. At 3-D edges the pri-
mal eigen-functions are complemented by shadow-functions
so the series expansion in the vicinity of an edge is given
by (see [4,12] and details in Section 2):

=" 0d(x;) @ (1, 0),

il j>0

(o) it ()
D, (r,Q)—rﬂ(pj (0), (1)

where # is the displacement vector in cylindrical coordi-
nates, 4,;(x;) is the edge stress intensity function (ESIF)
associated with the ith eigen-pair, the primal singular func-
tion @) = () being the well known two-dimen-
sional eigen-function, whereas (I)j(-“"), j = 1 are the shadow
functions of the primal singular function. In isotropic mate-
rials one may compute analytically the primal eigen-func-
tions and their shadows in (1) to be used in conjunction
with a newly developed quasi-dual function method
(QDFM) [4] for extracting ESIFs from finite element solu-
tions. However, in anisotropic materials and multi-material
interfaces difficulties are encountered due to the possible
existence of complex eigen-pairs on one hand and intracta-
ble analytical derivation on the other hand.

In Ref. [11] a numerical method based on the p-version
of the finite element method (p-FEM) was presented for the
computation of eigen-pairs and shadow functions for
anisotropic domains, used for the extraction of ESIFs.
For specific pathological cases (one of which is the cracked
configuration being of major importance in fracture
mechanics) the numerical methods for computing sha-
dow-functions break down because of conceptual difficul-
ties. These difficulties and the required modifications in
the numerical methods for their resolution are addressed
herein.

Thereafter the numerical method in [11] is extended to
complex eigen-pairs and multi-material interfaces. This
case is of particular interest when considering cracks at
bi-material interfaces, frequently encountered in laminated
composites due to debonding occurring between two aniso-
tropic layers. As a result of the complex eigen-pairs the
edge stress intensity functions (ESIFs) are complex also,
and the efficient and robust QDFM [4,11] is being extended
for extracting complex ESIFs.

We start with a brief description on the series expansion
of the elastic solution in the vicinity of a 3-D edge in Sec-
tion 2. Thereafter the weak formulation for the computa-
tion of eigen-pairs and their shadows (complex or real)
and the discretization by p-FEMs is addressed in Sections
3 and 4. At this point an explanation on the difficulties in
the numerical treatment of the pathological cases is pro-

vided in Section 4.3 and a remedy is proposed. A numerical
example is provided that illustrates the problems and the
remedy. Finally, the quasi-dual function method QDFM
is extended to extract complex ESIFs in Section 5. Numer-
ical examples for multi-material interfaces involving aniso-
tropic materials are provided in Section 6 for which the
complex eigen-pairs and shadow functions are numerically
computed and complex ESIFs extracted. These examples
show the efficiency and high accuracy of the numerical
approximations.

2. Notations and elastic solution in the vicinity of an edge

Consider a domain Q in which one straight edge & of
interest is present. For simplicity of presentation let the
domain be generated as the product Q = G x I, where 1
is the interval [—1,1], and G is a plane bounded sector of
opening o € (0,2n] (the case of a crack, w=2m, is
included), as shown in Fig. 1. Of course G may be com-
posed of several materials and any 7 can be chosen, and
the simplified ones have been chosen for simplicity of
presentation.

The variables in G and [ are (x;,x;) and x3, respectively,
and the coordinates (xj,x,,x3;) are denoted by x. Let (r, 0)
be the cylindrical coordinates centered at the vertex of G so
that Gdg{(xl ,X,) € R*|0 € (0,w)}. The edge & of interest is
the set {x € R’|r = 0,x; € I}. The two flat planes that
intersect at the edge & are denoted by I'y and I',. For future
purposes we also define the cylindrical surface I'; as
follows:

def

IRE{xcRlr=R, 0€(0,w),x; €I} (2)

Remark 1. Methods are restricted to geometries where
edges are straight lines and the angle w is fixed along x3.

To distinguish between the displacement vector in

Cartesian or Cylindrical coordinates, we denote these by
T ~ T .

w={u,ur,us} and &= {u, up,u,} , respectively and

The Edge €

Fig. 1. Domain of interest Q.
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use either of them when convenient. The strains and stres-
ses are denoted by e ={e, en, 8337y23,y137y12}T, &=
{8m896, €33, 7035 V135 Vro} and ¢ ={
012} = {Gm099,033,003,0r3,0re}T

Usually, for a general anisotropic domain Hooke’s law
is given in a Cartesian coordinate system and may be rep-
resented also in a cylindrical coordinate system:

o =[Els, ora&=[E (3)

where [E] (respectively [E]) is a symmetric matrix and [E]
depends on [E] and 6 as provided in Appendix A. The Na-
vier-Lamé (N-L) equations for an elastic anisotropic do-
main without body forces in cylindrical coordinates are

[11]:

T _ _ _
<—E22; + E1505 + Ess”a§ + 2E 560903 + Eéé;az

011,022, 033,023,013,

+E11@r + 2E15r6,63 + 22?16@60 -+ Em’@f) u,
-1 - ~
+ <E26; + (Evg — Egq — Es6)03 + E45r03
~ ~ 1 ~ ~ ~ 1 ~
—(En + E¢)—0g + (Eas + E6)0905 + 526—6(2) — E0,
r r
+(El4 + E56)r6,.63 + (Elz + 566)6169 + Elsi’a,z.) 20
L _ 1 -
+ <(E13 — Ex3)03 + E35r03 — E24;69(E36 + E45)0403
1 _ _
+E46;a§ + (E1s — E25)0, + (E13 + Es5)r0,05
+(E]4 + E56)arag + E15r63> u; =0, (4)
~ 1 ~ ~ ~ 5~ - 1
Eze; + (E2 + 2E56)05 + Eqsr0; + (Exn + Eéé);a()
_ 1 o
+(E2s + E46)0003 + Eze;az + (2E16 + E2)0,
+(E14 + E56)rara3 + (Elz + E66)aral) + Eléraf) u,
= 1 =~ A2 AT = 1,
+ _E66; + E4603 + Eq4r05 + 2E240003 + Ex ;a()
+ E%ar + 2E4(,r6,63 + 2E266,69 + E«,r@f) Uy
_ _ _ 1 _
+ <2E3663 + E34r6§ + E4<>;69 + (E23 + E44)0003
_ 1 _ _
+E24;6§ + 2E 560, + (E36 + E45)r0,03

+ (E2s + E46)0,00 + Eséraf) us =0, (5)
((EB + E55)63 + E35r6§ + Ez4%ao + (E36 + E45)6063

+E46%65 + (EIS + EZS)ar + (En + ESS)rara3

+(E14 + ESG)araﬁ + Elsraf> u, +

((545 — E34)0;

- ~ 1 ~ ~ ~ 1
+E341’6§ - E46;60 + (Ex + E44)0903 + Ez4;6(2)

+(E36 + E45)r6,63 + (C25 + E46)6,60 + E56raf)u()

_ - _ ~ 1 -

+ <E3563 + E3370; + 2E 340005 + E44;63 + Es50,

+ 22’?351"6,@3 + 2§456,60 + wa@f) Uz = 0. (6)
The N-L equations can be split into three operators as
follows:
L(@t) = [Mo(d,,0, 0, E;))ia + [Ml(a,,ao, 0, E;;)|0sit

+ [M>(3,,09, 0, E ) |03 = (7)

2.1. Series expansion of the solutions in the vicinity of &
The splitting (7) allows an expression of the solution # as

the series (1) in which the shadow functions are determined
by the following recursive relations (see [4,12]):

[Mo]®F =0
[MO](D(IO(‘) + [Ml](b(gw = 07 (r7 6) € Ga (8)
[MO](D§+2 +[M ]q)<1'1 + [M3)] /('11) =0, j=0

accompanied by homogeneous boundary conditions (BCs)
on the two surfaces I'; and I',. The PDE system (8) results
in an ODE system for the computatlon of (p : ) after the
substitution of [M;] and @, @), ) = r“f*f(p(“‘ (0):

L)@y =0,

o)\ = —[a1)py” 0<0< o, 9)

olojis = [ 4l)% — Ao,

where

[ Mool = ([4:)0; + (o + 7)[42] + [4
+ (o + 7)[4s] + [4q])) @] (o)

A0 = ((ArJon + (06 + D)lAs] + o))l
[ 4] = [A10] @

j=z0,

31)0 + (o1 +7)[A4]

and

Ees Ex Eu
il = | Exs Exn Ex |
Es Exn Eu
E14+Ese
Exs+Ey |
2Ess

E12 + E%
2Ex

216
En+ Eg
EM + E% Ezs + E46
—Eyy
Ey + Eg 0 Ew |,
E» —Ey 0

0 _EZZ - E66
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Ey Ey Es
[44] = EIG E66 E56 )
Eis Esq Ess
0 —Eis—Eyx —Eas
[s] = | Eis+ Ex 0 Ess |
E»s —Es 0
—E»n Ex 0
[Ae] = | Ex —Ee 0|,
0 0 O
2Ess (Ezs +E46) (Eas +E45)
[A7] = (Ezs + E46) 2524 (Ez3 + E44) )
(Ess + Ess)  (Exs + Eas) 2E3
2E)s (E14+E56) (EH +E55)
[s] = | (Eis+ Eso) 2E 4 (Es¢ + Ess)
(EB +E55) (E36+E45) 2E 35
Ejs (Evg — Ess — Esg) (Es — En)
[o] = | (Ex +2Es) Ey 2E 3 ;
(E23+E55) _(E36 —E45) E35
Ess Es Ess
[AIO] = E45 E44 E34 : (11)
Ess Ey Exy

Notice that y =0,1,2,... correspond to ¢, @, @,,. ...
For any eigen-value o; also —a; is an eigen-value with an
associated dual function which is the solution of (9); [4]:

Wi = o (0), (12)
where cé “) is a real coefficient chosen for normalization
purposes (will be discussed in the following). The shadow
dual functions are obtained from (9); 3

(o) _ o —ai+jyp (o) P
‘I’j =r +/l//]- (9), j=12... (13)

The ODE system (9) is complemented by either homoge-
neous Dirichlet boundary conditions (clamped-BCs) on
I'y and I',, which reads:

¢ (0=0,0)=0, j=0,1,... (14)
or traction free BCs:

[T 0]pg =0

(T oo +[T1]e; =0, j =0 for0=0,0, (15)
where

[T o]@l) = ([B1]0g + (2 + 7)[B2] + [B3))) 9", (16)

ERSEAS

and
EIG E66 Ess
[Bl] = [Al]a [BZ] = EIZ E26 Ezs )
2V’714 E46 E45
Ezs _E66 0 Ess E46 E36
[33}: Ezz _EZ() 01, [34]: Ezs E24 Eza
E24 _E46 0 E45 Z'744 E34

(17)

Remark 2. The matrices [4,] and [B;] are E dependent. If
material properties are given in a Cartesian coordinate
system, E is represented in terms of [E] and each
of the matrices is a combination of 9 independent
matrices, multiplying trigonometric functions: [4;]+
[4i],, cos(0) + [4;] , cos(20) + [4,] 5 cos(30) + [4;] 4 cos(40)
+[4,],, sin(0) + [4,],, sin(20)+ [4;] 3 sin(30) + [4;], sin(40).
Although in the practical computational scheme we use the
decomposition above, herein we condense our notation by
using [E].

3. Computing eigen-pairs

Any eigen-value o and pr1ma1 eigen-functions »* (po ,
(and dual eigen-functions r*“-po ) are the solution of (9),
with y = 0, resulting in a quadratic eigen-problem:

(1] @) + (alda] + [43]) @) + (o[Aa] + a[ds] + [46])py = O,
0 € (0,w). (18)

The above equation is augmented by either homogeneous
Dirichlet BCs, or traction free BCs according to (15);:

{[Bi]e, + (2[B2] + [B3])@o }o—o, = 0,
{‘P0}|9:0,w =0,

Traction free,

Homogeneous Dirichlet.

(19)
Since the eigen-pairs may be complex, we formulate the
sesquilinear form corresponding to (18) on the element le-
vel, followed by an assembly procedure. Multiplying (18)
by a test function ¥ then integrating over the 1-D element
(from w;_; to w;) and integrating by parts the second deriv-
ative term (¢ = @y(w;—1 < 0 < w;)) one obtains:

{{[Al]qoé"}TV"‘}

a5l 4o

w;
:Zj-,l - {[Al}‘Po

i1

+ [ {(al4a] + (3]} v do
(/)11
e 1T e
+ { [44] + o[As] + [46))@f } ¥ d6 = 0. (20)

Wi—1

After enforcing traction free BCs (19):

{{deiy v 1o, = {{iBilei'} 5 12

= {82 + By} 5
1)
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we define the elemental sesquilinear forms:

e —ei\ __ o e;! Tfe,-/ o e;! Tfe,
«@8((/)0,1’ )=- {[AI]‘PO v do + {[Aﬂ‘l’o } v do
wi_| Wj—1

] Audai a0 {{Bles} v

;1

Ci P — “ Ci T*Ei N i T*Fi
B0y, ) = | {lAleg’} v do+ [ {[4s]ef} v do
wi_1 Wi_

By Y1
€ € (Ui (4 T*e
B (95, 7) = {[aloy } v do.

Wij—1

(22)

Finally, assembling all elements, the quadratic sesquilinear
eigen-form for the evaluation of the primal and dual eigen-
pairs is obtained:

Seek a€C, 0#¢,cH'(0,0), st YveH(0,0)
B3 (9o, V) + 0B (@, 7) + oA (9, %) = 0
(23)

where H' is the Sobolev space, %)(p,,¥), %)(¢,,v) and
#)(@,,v) are the assembled sesquilinear forms resulting
from %5(p%,v), B) (@5, v) and %5(eS,v), respectively.
In the assembly procedure continuity of the displacement
is enforced which insures continuity of traction between
two materials in case of multi-material interfaces. The
two surfaces 0 = 0, @ are therefore under traction free con-
dition. In the_case of Dirichlet BCs the Sobolev space s
replaced by H' = {v[v € H',v(0 = 0, ) = 0}.

3.1. p-FEMs for the solution of the weak eigen-formulation

The eigen-functions are smooth functions, thus the
application of p-FEMs for the solution of (23) should
result in exponential convergence rates. To this end
o, = (up vy wo)T is expressed in terms of the basis func-
tions N, (&) (integrals of Legendre polynomials) in the stan-
dard element:

p+l p+l

ug (&) = Zaka(f), v (&) = Zap+1+ka(f)»
=1 =1

p+l

Wi () =D anpiui(9) (24)
k=1
or
?)
Ni(&) Ny (9) 0---0 00
= 0---0 Ni(&) Ny (&) 0---0
0---0 0---0 Ni(&) - Npn (&)
aj
X d=ef[N]af)i~ (25)
as(p+1)

Similarly ¢ déf[N]bf;", and df = $ d¢&. Substituting (25) in

(23) one obtains the FE formulation of the weak eigen-
form:

ay (o [K3) + oK) + [KG)) = 0, (26)

where [K(], [KY], [K9] are the assembled matrices corre-
sponding to  [K)]”,[K}], [K9],  respectively and
0% = w; — ;.

Ky =5 [ T Ve,

1

oo+ [ T e

K3 = ={ V"B "M} 1

2
-

;
W1

kS = —{ VLB [ W

(27)

a, is the vector of assembled coefficients of a;. For clamped
BCs [By]|, = [B2]l,, = [Bsllo = [B3]l,, = [0]. The quadratic ei-
gen-problem (26) is solved by a linearization process
according to [l]. Setting dy=oay, the (3pQ+ 3)x
(3pQ + 3) (Q is the number of elements) quadratic eigen-
problem is transformed into a linear (6pQ + 6)x
(6pQ + 6) “standard eigen-problem”:

() )= G )
d, I [K'] dy 0 —[K)]

Because the eigen-pairs may be complex, the complex o and
ay are denoted by: a = oy + iox and ay = ao,, + iao,.

3.2. The normalization factor ¢,

The dual eigen-functions ¥, are the solutions of (28)
associated with negative eigen-values. The normalization
factor cé“) is determined so that the primal and dual
eigen-functions satisfy an orthonormal condition (see
[4,12]) under the integration along a circular curve with
the edge being its center:

/0 {Traf) W — @) T R0 = 1, (29)

where T'* is Neumann trace operator (related to %) on a
circular surface around the edge:
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w [ 7 1512-’-515@34- E1660+E116 —-E16+E14a3+ Elzao-l-glsa Edy +1 E1460+E156 u,
T™"a= | 6, | = 1E26+E5663 +- E6669+E166 _‘E66+E4663+ E2669+E66a E3603 +1 E4669+E565r ug
0r3 1 Ezs + Ess05 + 1 E5660 + E 150, — Ess + Eq4s03 + 1 Ezsao + Es60,E350; +1 E4560 + Essd, s

The operator T'* is split according to T'* = T{*(d,,dy)+
TfR (6,, 69)63 with:

7@ 00®, = ([T 100+ (100, + (7. + ) )@,

TIFR (ara 69)(1)1 = [Td}q)jv
(31)
Em ?12 ]134 Ell ?16 ElS
(T.] = Ee  Esx Eas |> (Ty] = Eis Ees Ess |>
Ess Exs Eys Eis Ess Ess
Eu _Elé 0 E15 EM EB
T.]= Ey —Ee¢ 0 [ (T = Ess E4  Es
Eys —Ess 0 Ess Ess  Ess
(32)

Because the eigen-pairs and their duals are independent of
x3 one obtains:

T @) = Ti*@f = R{[T ¢o+0<[Tb]<po+ [T]oo},
TP =TI = R {[T, o[ Ts|tho + [T ]t }-

(33)

Inserting (12) and (33) in (29), the expression for the nor-
malization factor ¢ is obtained:

cw(lw«wu%+muu%+wnww-¢—¢o

([TuWy — ofTolibo + [T w@—l (34)

Substituting ¢g = co, + icoy, &= o + 1o, @y = @, + 1.

and o = Yo, — W, into (34) the following system is
obtained:
(o) I(le
(o) 7R 3 Copw — 92 2
{co"lcf — cojm 1 . O = ;130 7 (35)
s I =0 (@) _ e
CO R * CO" Coy = 1“2 +;)‘
where
1?; = ([Ta]‘l’:)w + “‘R[Tb]q’om - “3[Tb}¢03 + [Tc](p09;) Yo, 40

0

/ ([TJ0h, + an(Tlpo, + o3(Tslgn, + [Telo,) - o, 40

+ @, - ([T, — o [TslWo,, + os[Toliro, + [Telth,, ) dO

o\so\so

+ Doy - ([Taw’gj - Ofat[Tb]'/’03 - OCS[Tb]'//o,R + [Tc]'l’oj)do

(30)

/ (710}, + o(Ts)gn, — o05Tolpo, + [Telepn,) - Yo, 40
0

+/0 ‘Po~ + o [To]@o, + 05[Ts)@g, + [Tel@y,) - Yo, 40
+ / 0o, (T, — ow[Toloba, + 2(Tslobo, + [Teltby, )0
— [ (T, [Tl = 35[Til, + (70 ) 0
(36)

4. Computing complex primal and dual shadow functions

4.1. The weak form for the computation of primal and dual
shadow functions

The primal and dual shadow functions ¢, and ¥, are the
solutions of system (9) ¢,,¥, are the solutions of (9),
whereas ¢, .,y > 2 are the solutions of (9)3. ¥, is com-
puted by replacmg ((p +1(p ) and (o +iag) by
(t//,f,;) + inp,f,;‘)) and (—og + 1oc ;) in ‘the relevant equation of
system (9). Notice that oy + ixs is known, obtained by
solving the eigen-value problem in the previous section.
The weak formulation for @), on the element level, is
obtained by multiplying the appropriate equation in (9)
by a test function ¥ and integrated over w%. Applying inte-
gration by parts on the second derivative term one obtains:

{([A Joy )T‘e’}liijﬁ,l —/ ([41]e@5) 9" do

" / (e )le] + s o do

+/“Kw+w%ahwa+wmq+M4>ﬂT“%
[ el a0 [ o= Dl

;1

+ o) )" d0

+@/ (10,5 d0 = 0, (37)
where
0 »=1,
— 38
¢ {1 y = 2. (38)

Traction free boundary conditions are applied on each ele-
ment and by using (16) we represent the first term in (37):
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{(adey™ Jio, = {(Bile) ¥ 12
~{ [+ Bo] + B3 o
—{Baer) e

(39)
The sesquilinear form for the computation of the shadow
function ¢, is:
Seek ¢, € H'(0,w), st. #(p,v) =7F'(v),
v € H'(0, ) (40)

where #'(¢,,v) and F'(v) are the assembled forms of
# (@5, v) and F7(v):

#lorv) = [ el a0+ [ ()i

i— i—
w;

(47" 44
+ (o +7)[As] + [4q]) ﬂ v do
~{l(@ B + B o, (41)

w;

+ s do, + /

i_|

w;

[((o+ 7 — 1)[ds]

T () = —

() )5 d0 — /

;| i1

+ [As)) g ]9 dO
—o [ o
- {([34]% ) "”}le . (42)

In the assembly procedure continuity of the displacement is
enforced. The two surfaces 0 = 0, w are therefore under
traction free condition. In the case of Dirichlet boundary
condition  Sobolev  space H ' is  replaced by
H' ={vre H" v(0 = 0,0) = 0}.

4.2. p-FEMs for the solution of (40)

We apply p-FEMs for the solution of ( 401) similarly to

Section 3.1. To this end ¢, = (u, v, w,) =[Nla, and
_ def
v =[N]b,.
The resulting FE formulation is
Trey) — T
a, [K']=F", (43)
where

KT = ={IN" (o) B+ B[ DIV
— o [ T e

e

+ [ W@+l + (s

[

2

L VT (4 9)*[Aa)" + (7)) + (6] IN]dE,

Fe = {asﬂ a«elrl [N/]T[A7]T[N}dé

B, - [

[ N oy - DT+ T

S AN PRI (44

[K7] are the assembled matrices formed of [K7]” and F” are
the assembled vectors formed of F'. For clamped BCs

[Ba]lo = [Ba]l,, = [Bs]ly = [Bs]l,, = [0].

Substituting oc = oy + o5, 4, = @) +ia,a, | = @ |+
i | and @, , = @}, +ia} , into (44) we obtain the FE
formulatlon

SN'OK) K (FR)

g MU I e I (43)

a; —[K'5 Ky Fy
where

k7Y = ={ VI (o ) [B2)" + (BN

= Ve

e

+f VT (G +9) A"+ LN

+ 5 [ I (om 27— )"
o+ (o 7)As] + [Ae]HINE,
K = ~{ IV GalBa DIV + [ VT Gl 0

[

3 /71[N]T(2(°C~R+V)°<3[A4]T+0€3[A5]T)[N]d5

Fiy = {a V"Bl I, - / @IV o] V)ag

o !

-5 (o +

2 "/_1) NRe; —Ol

@) [N]" [4g]" [N]d¢

o ! Rel T T o ! Re! T T .
5 [ AT =S [ a T Ve,

JeT w; ! Jel y
Py = {a B - [ T v

e ! Re, e .
5 [ s Gty = 1)V ] V)0

- [ e

[ox

> /,lafivvﬂAmf[N]d&

(40)

5 are the assembled matrices from [K']§; and
F7 are the assembled vectors from Fii' and FZ'.

K], [K7]
K75 F,
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4.3. Difficulties in computing shadows and remedies for
several pathological cases

There are several pathological cases, among which one is
of major importance being the cracked case, where the
numerical methods presented fail, and remedies are to be
implemented. These pathological cases occur when
o; = o; — n for n being an integer. For a cracked configura-
tion for example, oy =0y =03 =1/2,04 =05 =05 =1,
o7 = og = o9 = 3/2, etc. In this case consider for example
the first shadow function associated with o; = 1/2 — which
has to satisfy the non-homogeneous ODE (9),:

Latalof?” = (1 + (Sl + 4

R 47)

Formally, the solution (47) may be obtained by the inverse
of the operator [.#,] applied to the RHS. Practically, when
FE discretization is applied the operator [.#,] results in the
matrix [K'] that has to be inverted and must not be singu-
lar. This is equivalent to requiring a particular solution
without the homogeneous part of the solution. However,
the LHS of (47) is exactl%/ the ODE for the computation

of (p(()“‘ﬂ), only that for ¢, ") the ODE is homegeneous:

[ o)y = ([Al]@(z) + G [42] + [A3]) 3y

+<<§) [44] +%[A5] + [As]> ) 9" =0, (48)

In the continuum case (i.e. theoretically as the number of
degrees of freedom tend to infinity) [K'] is singular and
may not be inverted. Practically, because the eigen-values
are computed numerically, the larger the eigen-value the
worse is the approximation, so [K'] is not identically singu-
lar, but ill-conditioned, and as the polynomial degree is in-
creased (resulting in better approximation of eigen-values)
the more ill-conditioned [K'] becomes. Of course this situ-
ation occurs with any of the dual shadow functions com-
puted numerically.

The remedy to this problem is achieved if one notices
that only a particular solution of (47) is sought, therefore
a constraint can be added that the sought solution is
orthogonal to the homogeneous solution for the operator
[#). Practically, in the FE formulation one has to enforce
the additional condition that the scalar product between

a%“‘) and Zlf)“‘“), for example, is zero. Or in general, we
add scalar product between a(*) and 718“” where

o; = o + 7 (if @ exist) to ensure that al*) is not al”, "

dependent.
The system (45) for these pathological cases becomes
therefore:

<“3‘(11))T ( Kl [y & ng) -1
) KL Kl & @ 0
(1xS) (Sx(5+2)) 0
(Ix(S+2))
(49)

where S = 3pQ + 3, O is the number of elements. Since sys-
tem (49) is now over-determined system of equations, we
use least squares solution to determine &'*) and a)*).

To demonstrate the pathological case discussed, as an
example, we compute the eigen-pairs and first two shadow
functions of an orthotropic bi-material cracked domain
shown in Fig. 2. Both materials are made of the same
high-modulus graphite-epoxy system with different fiber
orientation. Referring to the principle direction of the
fibers, the material properties are:

E; =1.38x10° MPa E;=E.=1.45x 10* MPa
Gir =G =Gpr=0.586x 10* MPa, v;; =v, =vz=0.21,

(50)
X2
P ol
r
Material # 1
X1
X
3 Material # 2
>
\___ _/"
Fig. 2. Bi-material cracked domain.
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where the subscripts L, T,z refer to fiber, transverse and
thickness direction of individual material. The orientation
of fibers of the upper material (Material # 1) is in x; direc-
tion whereas the orientation at the lower material (Material
# 2) is in x; direction. The first three eigen-values for this
example problem, computed using 8 elements at p = 15
are:

o2 = 0.5 £10.05106124425, o3 = 0.5. (51)
In this example also the eigen-values o =2.5+
10.05106124425, (o = o, + 2) which causes the [K*] matrix

of (pgm to be singular. Fig. 3 shows the condition number
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of the matrix [K?] associated with <p§°‘1>, computed using
increasing p-level. It may be noticed that the condition
number of [K?] increases continuously as p is increased.
The condition number of [K?] after incorporating the con-
strain of the scalar product remains constant.

The functions u, and v, of ¢{"?' computed with and
without the scalar product condition are presented in Figs.
4 and 5, respectively.

It is visible from Figs. 4 and 5, that the functions com-
puted without any additional condition are scattered
whereas the functions computed using the scalar product
condition converge.
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5. Extracting complex edge stress intensity function by the
quasi-dual function method (QDFM)

The QDFM was theoretically introduced in [4], applied
for the extraction of edge stress intensity functions (ESIF)
in isotropic domains using high-order finite elements in [12]
and extended to anisotropic domains in [11]. Herein, it’s
extension to complex ESIFs and multi-material interfaces
is provided. Assume the ESIF A4;(x;) is of interest. For its
extraction the quasidual-singular function K*[B] is con-
structed where m is a natural integer called the order of
the quasidual function, and B(x3) is a function, provided
in the sequel, called extraction polynomial. K\*)[B] is char-
acterized by the number of dual singular functions m
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needed for its construction and the extraction polynomial
B:

KGO (B = > oB ()W (52)
Jj=0

A scalar product of 4;(x;) with B(x3;) on & can be extracted
with the help of the anti-symmetric boundary integral J|[R],
over the cylindrical surface I'y (2).

s k) [ [k -

- TT*K 7 [B])],_pRdOdxs, (53)

where I = & (the edge) along x5 axis (Fig. 1) and T'* is the
radial Neumann trace operator presented in (30). Note that
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Fig. 9. Eigen-functions (left) and dual eigen-functions (right) associated with oz = 0.5 of example A, computed by four elements, p = 6.
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J[R] in (53) is unrelated to the classical J-integral [9], but
rather it is an extension of the dual singular function meth-
od [3] to 3-D domains.

With the above definitions we have the following theo-
rem [4]:

Theorem 1. Take B(x3) such that

B(x3) =0 for j=0,...,m—1 ondl (54)

Relative Error (%)

971

then, if the ESIFs A; in the expansion (1) are smooth
enough:

J[R](@, K [B]) = /Ai(x3)B(x3)dx3 + O(RFC)RC T,
I
as R—0. (55)

Here R(oy) is the smallest of all positive eigen-values w,.
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Fig. 10. (left) The p-FEM model of example A, having 160 elements. (right) Convergence rate of the relative error in the energy norm.
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In the case of complex eigen-values 4;(x3) =
AR (x3) +147(x3) and B(x3) = B¥(x3) +1B¥(x3). Choosing
m =2 we have in (55) O(R™*)~%)+3) Theorem 1 allows
a precise determination of [, 4;(x3)B(x3)dx; by computing
(55) for two or three R values as R — 0. The extraction
functions B(x;) are based on Jacobi polynomials [12] so
that if A4;(x;) is a polynomial of degree N, it is expanded
as a linear combination of Jacobi polynomials. For the
functions B(x;) we chose them to satisfy &B(x;) =0 for
j=0,1,2,3, more than required in (54) (see reasoning in
[12]). The family of extraction polynomials is constructed
by:

B (x3) = B3 (x3) = (1 - x3)"

" 2°(k +4)\(k + 4)!
T2k +9)(k+8)!

where /ik) (x3) is the Jacobi polynomial of degree k and or-

der 4. If we take an approximation of A4;(x;) as a polyno-

mial of Nth order, being a linear combination of Jacobi
polynomials:

Ai(x3) = AT (x3) + 47 (x3),
{A?‘oca) = () + a0 () + e+ E Y ()
A¥xy) = a3 79 () + @ g () + -+ a2 ()

1

(56)

(57)

then we can obtain the coefficients @; directly by applying
Theorem 1 with the different extraction polynomials:

1
/ A,—(X3)B(k)(X3)dX3 = Jm(k) + l'J:((k), k= 0, 1, . 7]\7.

(58)

Xy

04, 25

i 5 i

and
) JRE g3k pRE) 4 g3
at = — a = — (60)

In the view of (55), the J[R] integral evaluated for the quasi-
dual functions K*)[B®],k = 0,1,...,N provides approxi-
mations of the coefficients a,. Note that the polynomial
degree is the superscript k. Of course, in general 4,(x;) is
an unknown function and we only find a projection of it
into spaces of polynomials. It is expected that as we
increase the polynomial space, the approximation is pro-
gressively better.

The increase of the polynomial space in which 4;(x3)
is projected is acheived by the computation of (55)
for k=N-+1. This way: A4"(x3) = A" (x3)+
ani1. Y v (x3).

Because the exact solution # is in general unknown one
may use finite element methods and obtain &g instead, to
be used in (53), and the integral being then computed by a
Gaussian quadrature. The quantities @pg and T'*ipg are
computed numerically from the FE model of the entire
domain FE, whereas K{"/[B®] and T"*K{"'[B*)] are com-
puted numerically after computing by p-FEMs the dual
and shadow functions ", ¥ = and ¥5* in Sections 3 and 4.

Fig. 13. The p-FEM model of the CTS with a constant loading in x;
direction (the loading at the upper hole is as in the shown lower hole, in
the opposite direction).

* 4 Fiber Orientation

X,
-
>

X, Y
X,
>

X,
\
\_/( X,

Fiber Orientation

Fig. 12. Dimensions of CTS. The thickness of the specimen is 2 ranging from —1 < x; < 1.
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6. Numerical examples

To demonstrate the accuracy of the proposed methods
two example problems are considered herein. The first is
a crack at a bi-material interface between two isotropic
materials for which semi-analytical solutions are known
thus the accuracy of the numerical results can be evaluated.

The second example problem is a crack in a compact test
specimen at an interface of two anisotropic materials.
Although the loading is perpendicular to the crack face,
because of the anisotropy of the materials all three modes
are exited.
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6.1. Example A — crack at the interface of two isotropic
materials

Consider a bi-material interface which is composed of
two homogeneous materials (Fig. 2). The two materials
are isotropic, both having Poisson ratio of v = 0.3, the
Young modules of the upper material (material # 1) is
E =10 and of the lower material (material # 2) is £ = 1.
This example was chosen to present the performance of
the method for cases of complex eigen-values. The exact
first three eigen-values for this example problem, as
reported in [10], are:
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Fig. 14. Real part of the eigen-functions (left) and dual eigen-functions (right) associated with o, = 0.5 = 0.0510612, computed by 8 elements, p = 15.
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o5 = 0.5 £ 007581177769, a3 = 0.5. (61)

The relative error in percentage in the first three eigen-val-
ues computed using 2 and 4 elements is shown in Fig. 6.
For the first complex eigen-value the relative error is split
into real and imaginary parts:

R(o12) — R(ey)

€Ruyy = 100 ER(OCl 2) )
(o) — J(“f,g)
e, = 100——2 o) (62)

The eigen-functions, duals and shadows associated with the
first three eigen-values are presented in Figs. 7-9 computed
using 4 elements, p = 6.
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Obtaining the eigen-pairs and shadows for the first three
eigen-values, we choose the ESIF to be, for example a poly-
nomial of order 2. Thus, the solution is:

it = Ay (x3)r" @) (0) + 0341 (x3)r" o (0)
+ 034, (x3)r" 25 (0) +A2(x3)r 5> (0)
+ 03a (x3 ) ) (0) + 0345 (x3) 0QJFZ‘P (0)
+ A3 (x3)r 9™ (0) + 0345 (x3)r 0 9 (0)
+ 0343 (x3)r 25 (0).

Note that the eigen-pairs and shadows of example A are
obtained numerically and therefore (63) represents an
approximation of the exact solution only.

(63)
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Fig. 15. Imaginary part of the eigen-functions (left) and dual eigen-functions (right) associated with oy, = 0.5 +0.0510612, computed by 8 elements,

p=15.
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For example, consider the following exact ESIFs (poly-
nomials of order 3):

Affz(x3) = (3+4x;+ 5x§) +i(2+ 3x; + 4x§)7

A (x3) = 5+ 4oy + 243 (64)

If we prescribe on a traction free cracked domain Dirichlet
boundary conditions according to (63) and (64), the exact
solution at each r, 0, x; is as (63). Consider a 3-D domain
as shown in Fig. 1 with w = 2n. The domain is discretized
by using a p-FE mesh, with geometrical progression to-
wards the singular edge with a factor of 0.15, having 4 lay-
ers of elements. In the x5 direction, a uniform discretization
using 5 elements has been adopted. In Fig. 10, we present
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the mesh used for the cracked domain and the convergence
rate of the relative error in the energy norm.

We specify on the entire boundary 0Q Dirichlet bound-
ary conditions according to (63). Therefore the exact solu-
tion at any point x = (r, 0,x;) should be (63).

When J[R] is computed with the quasi-dual function
Ké“i) and B¥(x;) we expect to obtain, according to (55),
(57) and (60) the coefficients 212““‘)7 Zz,f(“’) for complex
eigen-values or Zz,((“’) for real eigen-values.

The ESIF is then easily represented by a linear combina-
tion of the Jacobi polynomials in (57). We extract the
ESIFs at R = 0.05 by using the numerically computed dual
eigen-pairs and their shadows with K\ [B®)].
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Fig. 16. Eigen-functions (left) and dual eigen-functions (right) associated with a3 = 0.5, computed by 8 elements, p = 15.
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Fig. 17. ESIF extracted using B* with k = 3,5,7,9,11 for the CTS problem.

We present the relative error in percentage of the
extracted A}, (x3), 47, (x3), A3(x3) of order 3,4,5 in Fig. 11.
Notice that the relative error of the extracted ESIFs is
less than 0.2%. These results indicate that the method is
accurate and efficient, and may be applied to realistic engi-
neering problems for which analytical solutions are

unavailable as addressed in the next subsection.

6.2. Example B — CTS: crack at the interface of two
anisotropic materials

Consider the classical compact tension specimen (CTS)
of a constant thickness 2 (—1 <x; <1), shown in
Fig. 12. The CTS’s faces are traction free and it is loaded
by bearing loads at the tearing holes having an equivalent
force of 100 in the x, direction as seen in Fig. 13. Although
the loading is independent of x3, because of the vertex sin-
gularities at x3; = +1 we anticipate to see a variation in the
ESIFs as the vertices are approached. The domain is dis-
cretized by using a p-FE mesh with geometrical progression
towards the singular edge with a factor of 0.15 where the
smallest layer in the vicinity of the edge is at » = 0.15°. In
x3 direction we also used a mesh graded in a geometrical
progression close to the vertex singularity at x; = £1.
Smallest layer in the vicinity of the vertex is
—l<x3<—-140.151<x; <1—0.15% see Fig. 13.

The CTS is made of two orthotropic materials as shown
in Fig. 12. Both materials are made of the same high-mod-

ulus graphite-epoxy system (50) with different fiber orienta-
tion. The orientation of fibers of the upper material is along
x; direction whereas the orientation at the lower material is
along x3 direction.

The first three eigen-values for this example problem,
computed using a 8 elements model and p = 15 are given
in (51). The eigen-functions, duals and shadows associated
with the first three eigen-values are presented in Figs. 14-16
computed by 8 elements, p = 15.

We extract the ESIF 4,,4, and A3 by increasing the
polynomial order of approximation: 3, 5, 7, 9 and 11 at
R = 0.05 (there was no noticeable difference between the
ESIFs extracted at R = 0.05 and at R = 0.1). The extracted
ESIFs are presented in Fig. 17.

One may notice the good convergence of the ESIFs as
the order of the extraction polynomial is increased.
Although the ESIFs are influenced by the vertex singularity
at x3 = 1, as we increase their polynomial order the
extracted ESIF converge closer to the vertices and provide
a better approximation. This example demonstrate the effi-
ciency and accuracy of the ESIF extraction method, and
it’s excellent results also in the close vicinity of the vertices.

7. Summary and conclusions

The series expansion representing the solution to elastic-
ity problems in 3-D polyhedral multi-material anisotropic
domains in the vicinity of an edge is addressed. The
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weak-forms for the computation of eigen-functions com-
plemented by shadow-functions and their associated edge
stress intensity functions (ESIFs), which are functions
along the edge, presented in [11] are refined and extended
herein. In the case of anisotropic multi-material interfaces,
analytic methods for the computation of eigen-pairs and
shadows is impractical. Therefore the p-version of the finite
element method is used for their computation. The numer-
ical schemes are extended so to address complex eigen-
functions and shadows and applied to multi-material
anisotropic interfaces. The quasidual function method [4]
is also extended for extracting complex ESIFs from finite
element solutions.

We illustrate herein some pathological cases, among
them the important crack configuration, for which the
computation of the shadow-functions by numerical meth-
ods may fail. A heuristic remedy is proposed to alleviate
the problem, shown to result in excellent approximations
for the shadow-functions in several numerical examples.
A rigorous mathematical analysis of these pathological
cases is underway and will be reported in a future
publications.

Two numerical examples for 3-D isotropic and aniso-
tropic multi-material interfaces are provided for which
the complex eigen-pairs and shadow functions are numeri-
cally computed and ESIFs extracted. The first example
problem is tailored so to demonstrate the accuracy of the
presented methods, and the functional representation of
the complex ESIF. The second example problem is a typi-
cal problem in composite materials of a crack at the inter-
face of two anisotropic materials. The complex ESIFs are
computed, and the method shows excellent performance
also close to the vertex singularities.

The application of p-FEMs for the computation of the
dual shadow functions in conjunction with the quasi-dual
functions method for the extraction of the edge stress inten-
sity functions have been shown to provide a very accurate
functional representation of ESIFs in any 3-D domain made
of isotropic or anisotropic elastic material, provided the
edges of interest are straight.
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Appendix A. The anisotropic material matrix in Cartesian
and cylindrical coordinate systems

The material matrix [E] (respectively [TE ]) is a symmetric
matrix

En En Es Euy Eis Eg
Ey Exn Ey Ey Ex
Eyz Ey Eszs Esg

E| = , 65
£] Ey E4s  Eg (65)
Ess  Esg
Egs

where E;; are the material properties expressed in a Carte-
sian system. The material matrix [E] is associated with [E]
via trigonometric relations:

1
E]] = §(3E11 + 2E12 + 3E22 + 4E66
+ 4(E11 — Egz) COS(ZG) + (E“ — 2E12 +E22 — 4E66)
x c08(40)Eys) sin(20) + 4(E16 — Ey) sin(40),

1
Ep= g(Eu +O6E; + Ey — 4E¢6

— (E” —2E, +Ey — 4E66) COS(4())
+ 4(—E16 + E26) 5111(40))7

~ 1 i
Eps= E(E13 + Ey + (E13 — Exs) cos(20) + 2E5 sin(20)),

1
Eyy= 1 ((3E14 + Exy — 2Es6) cos(0) + (Eig4 — Eas + 2Es)
x €08(30) — 2(Es + Ezs — 2E46 + (E1s — Exs — 2E4q)
x c0s(20)) sin(0)),
1
Eys = Z((3E15 + E»s + 2Ey6)
X COS(G) + (E15 — E25 — 2E4(,)
X €08(30) + 2(E\4 + Ez + 2Ess + (E14 — Ex4 + 2Es5)
x c0s(20)) sin(0)),

1
E16 = g (4(E16 + E25) COS(20) + 4(E16 — E26) COS(40)

—2(En —Ex+ (Eni — 2E12 + Ey — 4E66) c0s(20))
x sin(26)),

~ 1
Ey = §(3E11 +2E1; +3Ep +4E¢
+ 4(—E11 + Ezz) COS(20) + (Ell — 2E12 + Ezz — 4E66)
x c0s(40) — 8(E s + Ea) sin(20) + 4(E s — Ea) sin(40)),

~ 1 .
Ey = E(EB + Ex3 + (—E13 + En3) cos(20) — 2E34sin(20)),

1

E24 = Z ((E14 + 3E24 + 2E55) COS(())
+ (—E14 +E24 — 2E56) COS(39) — (3E15 +E25 + 2E46)
X SIH(H) + (E15 — E25 — 2E46) SIn(SH))7
1

E25 = Z ((E15 +4 3E25 — 2E45) COS(O)
+ (—E15 + E25 + 2E46) COS(39) + (3E14 + E24 — 2E56)
X sm(@) + (—E14 +E24 — 2E56) sm(36)),

~ 1

E26 = g (4(E16 —+ E26) COS(20) + 4(—E16 —+ EZG) COS(40)

+ 2(7E11 + E22) SIH(ZO)

+ (E]l — 2E12 +E22 — 4E66) sm(40))
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Es = Ex,
E34 = E34 COS(O) — E35 sin(U),
Ess = Ess cos(0) + E34 sin(0),
E36 = E36 COS(ZG) + (—E13 + E23) COS(Q) sin(@),
~ 1 .
Ey = 5 (E44 + Ess + (E44 — E55) COS(ZO) — 2E4s Sll’l(20)),
Eus = Eys cos(20) + (Es4q — Ess) cos(0) sin(0),
~ 1
E4 = 3 (2cos(20)(Es cos(8) — Ese sin(0))
+ ((*EM + E24) COS(H) + (E15 — E25) SIH(G)) 8111(29))7
E55 = E55 COS(0)2 + E44 sin(0)2 + E45 Sil’1(20)7
Ess = sin(0)(Escos(20) 4 (—E14 + Eaq) cos(0) sin(0))
+ cos(0)(Ese cos(20) + (—E1s + Exs) cos(0) sin(0)),
~ 1
E¢ = 3 (En —2En+ Eypn +4Eg

— (Ell — 2E12 —+ Ezz — 4E66) COS(40)
+ 4(—E6 + Ex) sin(40)). (66)
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