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Abstract

The active mechanical response of an artery wall resultiogn fthe contraction of the
smooth muscle cells (SMCs) is represented by a strain erdengyion (SEDF) that aug-
ments the passive SEDF recently reported in Yosibash Z. e, “p-FEMs for hyper-
elastic anisotropic nearly incompressible materials ufidée deformations with applica-
tions to arteries simulation’int. Jour. Num. Meth. Eng88:11521174, 2011. The passive-
active hyperelastic, anisotropic, nearly-incompressiiiioblem is solved using high-order
finite element methodsp{FEMSs). A new iterative algorithm, named “p-predictiony i
introduced that accelerates considerably the Newton-8aphlgorithm when combined
with p-FEMSs. Verification of the numerical implementation is caotéd by comparison
to problems with analytic solutions and the advantageg-BEMs are demonstrated by
considering both degrees of freedom and CPU.

The passive and active material parameters are fitted tei@liiaflation-extension tests
conducted on rabbit carotid arteries reported in Wagnerahd®Humphrey J.D., “Differen-
tial passive and active biaxial mechanical behavior of miaand elastic arteries: Basilar
versus common carotid'Jour. Biomech. Eng133 2011. Article number: 051009. Our
study demonstrates that the proposed SEDF is capable afliegahe coupled passive-
active response as observed in experiments. Artery-likectsires are thereafter investi-
gated and the effect of the activation level on the stres-dafmmation are reported. The
active contribution reduces overall stress levels acrossattery thickness and along the
artery inner boundary.
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1 INTRODUCTION

Artery walls are anisotropic and nearly incompressible@mbist of two main thin
layers made of an elastin matrix embedded with stiff colhafieers and smooth
muscle cells (SMCs). In addition to the passive mechanesphanse due to the
elastin and collagen fibers (well investigated in past gs)lithe SMCs contract in
response to chemical stimulus thereby augment the passpemse. Experiments
show that the amount of tension generated by the SMCs is &dunraf the concen-
tration of the chemical stimulus (does-tension relatiamj the amount of stretch
exerted on the muscle fiber (tension-stretch relation) [1].

Artery walls are considered as being hyperelastic, thusastnergy density func-
tion (SEDF) is sought which determines the constitutiveadign (stress-strain re-
lationship). Numerous studies propose different SEDF¢hiepassive mechanical
response [2,3,4]. Some are phenomenological based, s&iDEsSare formulated
to result in a stress-strain response that mimics the expeatally observed re-
sponse [2], or semi-structural [5,6] in which some termym$EDF are related to
the tissue microstructure. A fully-structural model, inialheach component of the
artery wall is modeled, individually, best describes therall passive response, see
e.g. the recent work by Hollander et al. [6]. However, fultyustural models are
very difficult to formulate because they require knowled@arterial microstruc-
ture which is in most cases unavailable. Therefore, semctral models are pre-
ferred, and herein we modify the semi-structunabmpressibléyperelastic SEDF
by Holzapfel et. al [5] for the passive part of the arterydweasponse.

The active response and its numerical treatment were $gaddressed in past
publications comparing to publications on the passivearse. One of the early
works on the subject is by Rachev&Hayashi [7] in which the SM©Ontribution
was considered by an additional term to the Cauchy strebg icitcumferential di-
rection. The magnitude of the added stress depends on thaadieoncentration
and the circumferential stretch ratio. There, no cleatieiavas provided between
the concentration of the stimulating chemical and the dgped active stress. The
study showed that incorporation of SMCs resulted in a redoaf the circumfer-
ential Cauchy stresses. The “added stress” proposed indsjutized by Masson
et al [8] to model the active response and to fit active mdtpasameters from
in-vivo monitoring of the time dependent pressure respaise human carotid
artery, assuming as in [7], that the SMCs fibers were circtentelly oriented.
A different functional representation for the added acsitress was used by Wag-
ner&Humphrey [9] for simulation of inflation-extension exqpments on the basilar
and common carotid arteries of New-Zealand white rabbite functional rep-
resentation for tension-dose relation was more specifehlerg the modeling of
partial SMCs contraction. An incompressible one-layemdrical tube-like artery
undergoing pure radial deformation (enabling an anallsication to be obtained)
was considered.



Another method of introducing the SMCs effect in the consitie model is through
an “active-SEDF”, see e.g., Zulliger et al. [10] and Murtadal. [11]. The active-
SEDF proposed in [10] does not incorporate the tension-ckdagon and focuses
on the passive, normal tone state (for which the pointwiswaton level takes
the form of Gaussian distribution function) and then on tleximum SMCs con-
traction. This results in a linear stress-strain relatmmgor maximal contracted
SMCs thus it is only suited for the ascending part of the tamsitretch curve. The
active-SEDF in [11] is based on a micro-mechanical apprsadhat the activation
level is determined by a chemical kinetics model with anrimaétime-dependent
variable, requiring the determination of many materialgamies. Schmitz and Bol
[12] incorporated in the finite element (FE) framework anvecSEDF similar to
the one in [11]. Uniaxial strip experiments on porcine medtaps reported by
Herlihy&Murphy [13] under passive and active response wised to fit the active
material parameters together with the collagen fiber dgperreported by Dahl
et al. [14] for the fit of the passive material parameters. €Gagrement between
the predicted and experimental results is reported, butrtbhods were not ex-
tended to artery-like structures and were restricted tp sfrecimens. It must also
be noted that in [12] the implementation of the SEDF in theaork of FEs is
not described and thus not verified.

In [15] the p-version of the FE methog-FEM) was shown to perform very well for
modeling the passive-response of artery-like structundslaat slight compressibil-
ity which is mostly neglected in past studies was taken intts@eration. Here we
develop a new active-SEDF (aimed at augmenting the paS&&# in [15]) that is
easily incorporated in the framework pfFEMs. The use of-FEMs based on the
displacement formulation is motivated by the recent reqi,17,18,15] showing
their advantages over conventioriaFEMs. p-FEMs were shown to be highly-
efficiency for the analysis of isotropic hyperelastic miaisrand are locking-free
for nearly incompressible Neo-Hook isotropic hyperetastiaterials. These ad-
vantages in addition to the robustness of theEM with respect to large aspect
ratios and distortion of the elements, makes it especidthactive for modeling
biological tissues as arteries. To the best of our knowlékiges the first study that
usesp-FEMSs to investigate the passive-active artery responsepidsent several
"benchmark” problems used to verify our numerical impleta¢éion and demon-
strate the superiority gf-FEMs over traditionah-FEMs in terms of degrees-of-
freedom (DOFs) and CPU. A novel method, intrinsic to the dmehic property
of the p-shape functions, is exploited here to expedite the Newkahpson al-
gorithm and dramatically reduce computational time. Rwilg the verification
of our methods we use experimental inflation-extension miasens reported by
Wagner&Humphrey [9] to fit the material parameters for thegpae and active
SEDFs.

In section 2 the notations and the derivation of the actiZ®Sare outlined and the
ingredients required for implementation of the active madehe FE framework
are explicitly presented. Three problems with analytizgoh are utilized in sec-



tion 3 to verify our numerical implementation and to invgate the performance
of the p- and h-FEMSs. Fitting of passive and active model material paramnseto
experiments is outlined in section 4. There we also invagtithep-FEM perfor-
mance for a more realistic bi-layer artery-like structuresection 5 we emphasize
the effect of the various active parameters on the artery. W& summarize our
work and draw several conclusions in section 6.

2 NOTATIONS AND IMPLEMENTATION OF AN ACTIVE-SEDF IN THE
FRAMEWORK OF FEMs

The point of departure is a brief description of our notatifor a fiber reinforced
hyper-elastic material. The basic quantity is the defoiomagradientF’ = Grad (X, t)
= 0z"(X1, X2, X3,1)/0X g, ® G, wherex(X , t) defines the placement of the
point X attimet. X, k = 1,2, 3, are the material (reference) coordinaigsare

the tangent andz™ the gradient vectors in the current and the reference config-

uration. Customary, the displacement vedo(X , t) o (Ux, Uy, Uyz)" is intro-

duced, i.,ex = X + U (X, t), and with this notatiod" = I + Grad U (X,t). We
interchangeX!, X2, X3 with XY, Z when appropriate. A general strain-energy
density function (SEDF) for an isotropic hyperelastic mialevith two families of
fibers used to model the passive response is denoted,hy;,.(C, Mo, Ml) =

U ussive(les e e, IV ¢, V), following Holzapfel et al. [5]. It depends on the
invariants of the right Cauchy-Green ten§de= F? F = (I + GradU)" (I + GradU),
and two unit direction vectors along collagen fiber direu$idZ,, andM ;. For ex-
ample, using the Cartesian coordinate system in Figureelfiliers directions are

: Y Z " : Y Z
MO = (Slllﬁ7 —COSBW,COSﬁW)T,Ml = (—smﬁ, —COSﬁW,COSﬁW)T.

The invariants of the Cauchy-Green tensor are

\
Media Adventitia \

Fig. 1. Coordinate system in a typical artery.



1 e
lg=trC,  llg=3((trC)’ ~trC?), g =detC = (det F)* 2,
(1)
wheretrC symbolizes the trace operator and the invariants thatseptestretch in
the fiber directions are

Ve =M,-C-M,, Vlg =M, -C - M, (2)

Following [5] we consider a strain-energy density functtmmposed of three parts
for modeling the passive response, an isochoric isotragi@asolumetric isotropic
Neo-Hook parts representing the elastic matrix, and a veaxssly isotropic part
representing the collagen fibers in the artery wall

\I/passive(lc’a 1] C, IVC; VIC’) = [\Ijisoch(lc’u 1] C) + \onl(lll C)]+\I/fibers(|V07 VIC’);

3
The isochoric isotropic and volumetric isotropic parts @presented by a nearly
incompressible Neo-Hookean SEDF:

- 1
Wisocn = Cl(lCI” 01/3 - 3)7 Vot = D_<|“ 1C{2 - 1>2 (4)
1

¢ and D, are constants related to the shear modulasd to the bulk modulus

1 2
== D, = —.
C1 9’ 1 -

(5)

The transversely isotropic part for modeling the collagbarficontribution is [19]:

W fipers = 2’“—];2 lexp [k2 (Ve = 1)] = 1] (6)
+ 2% lexp [k (VI = 1)°] = 1], Ve, Vig>1

Remark 1 In some publicationsl ;,.,; is expressed in terms of the invariants
of the unimodular right Cauchy-Green tens6r = (det C)~'/3C, i.e., V5 =
IVelll 62, Vi = Viclll ¢? (see [5]). This representation is inappropriate be-
cause no stresses are generated when an unimodular deformatprescribed
resulting in a homogeneous deformation that stretchesdhagen fibers.

For modeling the active response we construct a SEDF bad&dl die first Piola-
Kirchhoff stress component due to SMCs contraction wasddarbe proportional
to the concentration of the vasoconstricdf, as well as the stretch ratio in the
SMCs-fibers directionM ,,, denoted by :

prgte = S([ADf(Ar) (7)

whereS([A]) is the tension-dose relationship afid\ ;) is the tension-stretch rela-
tion. The tension-dose relationship is usually availalbenfring-tests, as given for



example in [1], so that:

A"

S([A]) = Smame‘i‘—E%

(8)
wherem is the slope parametef,, ... the maximum value of contraction (saturation
level) andECs is the concentration at whick0% of maximum generated tension
is obtained. In Figure 2 a representative tension-dostarls presented. It shows
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Fig. 2. Representative tension-dose relation udiligs, = 0.000015 [mol/liter], m = 1
taken from [1] andS,, .. = 100 kPa taken from [7].

that under a vasoconstrictor threshold concentration doded active response is
generated and on the other end the active response reaciasaisn level beyond
a given vasoconstrictor concentration.

The tension-stretch relation is adopted from the work bylRa&Hayashi [7], see
e.g. Figure 11:

2
| — (2= ] M Ap > A
Fp) = [ (=)

9

9)

Otherwise

with ), being the stretch at which maximum contraction is possihtk g and
A1 = Ao+2(Am— o) being the minimum and maximum stretches at which contrac-
tion can be generated. This relationship is obtained fropegments at saturation
levels so for)\,,: ‘
P;}:twe - Smaa: (10)
Inserting (8) and (9) in (7) one obtains:
[A™ Am=Ar\?2
P}z;tive _ Sma:v [A]m4+ECT {1 o (Am—k(j)c) ] ’ AL > )\f > )\0
0, Otherwise

(11)



Remark 2 The expression given {{11) results in different active stress values for
the same chemical concentration provided that the SMCsradendifferent stretch
ratios as demonstrated in experiments [13].

Defining the direction of the SMCs after deformationras, », one can compute
Ar from the initial fiber direction and the right Cauchy-Greesfatmation tensor,
see [20, (6.200)]:

/\2 = (mMF)T . (mMF) = (FMMF)T . (FMMF) = MMF . (CMMF) = |V]\C/[F
12)
Assuming the existence of an active-SEDE;.., the first Piola-Kirchhoff stress
in the SMC-fiber direction can be derived directly from theC&H20, (16.47)]:
awactive

Pactive — 13
11 By (13)

Inserting (11) in (13) then integrating, on may obtain anregpion for) ...

[A]™ Am—Ap)*
Stmaz [A["+ECT: [3()\m*)\fo)2 + )\f} , AL > )\f > Ao

(14)
0, Otherwise

¢active(Af7 [A]) = {

Substituting (12) in (14), a general form of the active-SE®Bbtained:

Al ()\mf |V]VIF)3
S e [ VNG | |ng} S BV

0, Otherwise
(15)
The dependency o¥ ;.. On IV%F assures that the active stress is in the SMCs
direction only, with zero components perpendicular taitAppendix A we demon-
strate that for the incompressible cdde= 1) the SEDF (15) results in the Cauchy
stress term for the active response given in [7], even if t#ferdnation of the tissue
is not in the SMC fiber direction.

\Pactive(lng7 [A]) =

The passive-active SEDF is the sum of the passive and adiéS
\I]tissue - \I[passive + \I[active (16)

For the purposes of implementation in a finite element codengcessary to obtain
expressions for the second- Piola- Kirchhoff str&sand the elasticity tensdt =
%. In [15] explicit expressions fof ,,ssive ANAC,455i0e are provided. Using (15)
one obtains explicit expressions for the active comporrenjsired.

[Alm + ECE A — Ao

— 2
Sactive - SmamL (IV]\C/[F)_% (1 - (M> ) [MMF ® MMF]

(17)



A™ 1 (A =/ IVETR
(Cactive = Smaxwm[_}_—]EC% 2 (IV%F) 1 ( (/\m N )\0; ) (18)
3 /N MF 2

The expressions fo$ ..., andC,..;,. are necessary for the "tangent stiffness ma-
trix” and "out of balance” vector at each Newton-Raphsoratien used in the FE
framework:

S = Spassive + Sactive; C= (Cpassive + (Cactive (19)

3 VERIFICATION OF THE IMPLEMENTATION

To verify our numerical implementation for the SMCs contitibn we consider
three "benchmark” problems for which an analytical solatman be computed.
The first two problems denoted as A and B represent homogesti@ish and shear
respectively while problem C represents an inhomogeneetsdation. For all
problems we assume a Neo-Hook matrix embedded with SMC fiber8 x 2 x

2 mm? cube. For problems A and B the two families of collagen fibeesadso in-
corporated in the SEDF and the domain is defined(by, Y, Z7)| 0 < X <2, 0 <
Y <2, 0< Z < 2}.Forproblem C the domain is defined pyX, Y, Z)| 0 < X <
2,0 <Y <2 1< Z < 3}. The orientations of the collagen fiber families are
M, = [cos 3, — sin Fsin ¢, sin [3 cos @], M, = [cos 3, sin G sin ¢, — sin (3 cos ¢
and the SMC fiber orientation 37, = 0, cos B, sin By | (Figure 3). The
material parameters used in (4), (6) and (15) for problemsnd B arec, =
0.027 M Pa, D, = 30 MPa™', k; = 0.00064 M Pa,ky = 3.54 M Pa and),, =
1.4, Xy = 0.65,5([A]) = 0.05 M Pa. The constant valu&([A]) = 0.05 M Pa
assigned is attributed to normal basal tone according th&&dayashi [7]. In
Table 1 we summarize the boundary conditions and exactigotufor problems
A-C. The matrix and fiber material parameters used aboveesept the human
coronary artery [21]. The fourth and sixth invariants in [Ealh for problems A
are Vg = Vlg = cos 3% + sin? B(sin? ¢ + a® cos? ¢) and for problem B are
IVe = Vig = cos 32 + sin? 3(1 — sin 2¢ sin §). The fourth invariant of the SMC
for problem A is V%Y = cos? By + a?sin? By and for problem B IN5T =
sinfsin 206, + 1 . These invariants are to be substituted in the expressivas g
in Table 1.

For problem C we assumed the SMCs are aligned alondg/tdeection and did
not consider the collagen fibers so as to be able to obtainapteral solution. To
ensure equilibrium one must also apply the following bodyéy, = 4‘31 73 —

20775 — 5y — S([A]) (32=%Z) 2 with the first part associated With the pas-

)\ —
S|ve component and the second part associated with theactimponent (deriva-
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Fig. 3. Top Left and Middle: Domain and deformation for pieros A/C, and B. Top Right:
Face labeling used in Table 1. Bottom: Collagen and SMC fibentations.

tion of the body force are given in Appendix B). For problemarfd B the analytic
solution is obtained using one hexahedral element with1 (due to the homoge-
nous stress state highetevels are unnecessary). Several SMCs initial oriematio
angles were considereth,;» = 0°,10°, 30°,50°, 70°, 90°. Deformations of up to
100% were considered for problem A & 2) and shear angles of up o= 60° for
problem B. We used different combinations @&f5,,r, ¢ in our verification pro-
cess. The exact solution was obtained in all cases using-Et&M with ten load
steps with an average of three equilibrium iterations fahdaad increment.

For problem C the deformation is inhomogeneous allowinghgpéct the perfor-
mance ofp-FEMs compared to the conventioriaFEM for the coupled passive-
active response. No commercialFEM code has the active model implemented
thus we use our code farextensions also.

Remark 3 Since we use our code for theextensions, in Appendix C we show that
compared to the commercial finite element code Abaqus 6.& EnBximum CPU
factor of ~ 2.5 between the run-times is obtained when a standard Neo-Hooke
problem is considered.

A p-extension on a uniform mesh with eight hexahedral elemsmsrformed for
the solution of problem C. At = 4 already a relative errdte(U)|| < 1075% (see
(20)) is obtained. For the-extension the number of elements is increased, keeping
fixed the polynomial degree over all elements with either 1 or p = 2. For the
h-FEM ten equal load increments were used (the minimal nurobérad steps



required for convergence) and up to four equilibrium itieenag were required for
each load step.

For thep-FEM we use a novel iterative scheme denoted “p-predictionthis case
for p = 1 the regular Newton-Raphson iterative algorithm is used.a~pearly-
incompressible material, since thd=EM encounters locking until = 4, then the
first p-FE solution starts gt = 4 by a regular Newton-Raphson algorithm. For
p > 2 (andp > 5 for a nearly incompressible material), the converged smiudt

p — 1 is used as the "initial guess” to the iterative algorithmtlsat the entire load
is not sub-divided in sub-loads. This results in a very faswergence, usually with
one load step. The “p-prediction” algorithm is shown in Fgd.

’ Set # max p, # load steps, # max iterations 4—

LOOP ON P-LEVEL

NO YES

p=4 nearly incompressible

Apply Aload= (load / # load steps)
all load

l

i=1,...,# load steps
F=ixAload

LOOP ON LOAD
STEPS

NO ‘ vES

Initial guess

u(pl— 1)

Initial guess
u'=0
I I

LOOP ON
EQULIBRIUM STEPS

k =1,.., # max iterations

’ Compute tangent stiffness matrices and out of balance vector for % ,:
i

’ Au = [Tangent stiffness matrices] “Ix [Out of balance vector]

!

iterations

p=#max p
NO

END 1 YES

Fig. 4. The “p-prediction” algorithm.

To verify the numerical results we consider both global aothfvise values. The
performance op- andh-FEMs is demonstrated by inspecting the convergence of

10



the relative error in energy norm [22] .

[le@)||(%) =

Jo V(C)dSpp; — Jo W(C)dS2

FEzxact % 100

Jo ¥(C)d2

FExact

(20)

and pointwise by inspecting the convergencé/ofando. ., 0, at points A and B
(see Figure 5). In Figure 6 the convergence in the relatike @m strain energy as

5
%

[}
B=(15,152.5)

AW

Fig. 5. Mesh used for problem C. Left: Uniform mesh for hEEM and points A and B.
Right: Example of an uniform mesh for theFEM (2744 elements).

percentage, as a function of both DOFs and CPU is shown. Tiveogence of the
relative error for the displacement and stresses at poirasddB shown in Figure
5is provided in Figures 7 to 9.
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Fig. 6. Problem C: Convergence of the relative error in gnamym (the numbers in paren-

theses are number of load steps for convergence) for potimd h-FEMs. Left: DOFs.
Right: CPU.
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Z

B=(1.5,1.5,2.5)(bottom).
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Fig. 8. Problem C: Convergencedn, for point A=(2,2,3) (top) and point B=(1.5,1.5,2.5)
(bottom).

As evident from Figures 6 to 9 theFEM is considerably more efficient for solv-
ing the passive-active mechanical response especially ebm@putations of stress
values are of interest.
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Fig. 9. Problem C: Convergence dn,. for point A=(2,2,3) (top) and point B=(1.5,1.5,2.5)

(bottom).
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Table 1. Tractions and exact solution for problem A.

Problem Qo Boundary conditions applied to faces F1-F6 Solution
Fl:ux =uy =uz =0
0<X <2 F2:ty:—[%cl(af%—a%)+Dil(a2—a)
—4k1 Ve — 1] X (sin2 (3 cos ¢ sin qb) e)(p"Q('VC’D2
2
_1 Am—/IVME
+S(A]) (IVgF) <1 - <Txf) ) cos? ﬁw] r=X,y=Y,z=aZ
ty = — [4k1 Ve —1] x (sinQBcos2 qb) expk2(|v0*1)2
2
_1 Am—A/IVME
+S([A]) a (VM) (11— (7%&0 ) ) cos Bnrr SinﬁMF]
A 0<Y <2 F3:tX:§c1(afg—a%)—i-Dil(aQ—a) ux =0
+4k1 [IVg — 1] x (cos? ﬁ) exp’lQ(NC*l)2
o — 2 -2 4 2 (2
0<Z2<2 F4.ty—§cl(a 3—a3)+D1(a —a)
+4k1 Ve — 1] x (sin2 (3 cos ¢ sin qb) e)(p"Q('VC’D2
2
_1 Am—/IVEE
+5((A) (Ve") <1 - < v ) >C052 ﬁMF) uy =0
ty = [4k1 Ve —1] x (sin2 3 cos? ¢) eka2(|VC’1)2
2
_1 Am—q/IVME
+S([A]) - a (VYT 72 <1 _ <7MAUC ) cos Barr sin Barr
2 -2 4 2 (.2
F5:tX:—(§c1(a 3—a3)+D—1(a —a)) uz = Z(a—1)

—4k1 [V — 1] X (0052 ﬁ) exp’lQ(NC*l)2
by, =4 3 a3 )+ 2 (a—
F6.tz—gcl(a3 ai”)+D1 (a—1)

c

+4k1 Ve — 1] x (sin2 3 cos? ¢) e)(p"Q('VC’l)2
2
_1 A —/IVME
+S([A)a (IVYF) 2 < - <TAOC) >sin2ﬁMF>
X

ty = —4ki1a[lVeo — 1] (sin2 (3 cos ¢ sin qb) e)(p’”('\/c’l)2

2
—s(A) (vMF) (1 - (A"}mi VLVCF) ) cos Barp sin farr
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Continuation of Table 1: Tractions and exact solution fatjem B.

Problem Qo Boundary conditions applied to faces F1-F6 Solution
Fl:ux =uy =uz =0
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Continuation of Table 1: Tractions and exact solution fatjpem C.

Problem Qo Boundary conditions applied to faces F1-F6 Solution
Fl:ux =uy =uz =0
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4 FITTING MATERIAL PARAMETERS TO INFLATION-EXTENSION
EXPERIMENTS

After verifying the FE implementation on simple problemsydich an analytical
solution may be derived, we investigate how well one mayiptdide passive-active
response (using-FEMs with the suggested SEDF), when compared to experimen-
tal observations. For this purpose, one needs to estimaten#terial properties
using experiments in which multi-axial loadings (tensiertension, torsion) are
applied on the distinct layers of the arteries in a passiaesand thereafter when
the smooth muscle cells are activated. Publications degesluch experiments on
arteries including geometrical data, precise loading tmm$ and detailed mea-
sured observations, are very rare, and usually only pamfiadmation is available.
Here we use the recent publication by Wagner and Humphrey {@hich inflation-
extension experiments of carotid artery specimens haddsim the New Zealand
rabbit are reported. The numerical performance opH&EM implementation on a
more realistic artery is demonstrated after fitting the maltparameters to the ex-
periments in [9]. There, artery specimens were stretcheéldeio observed in-vivo
axial stretch\, = 1.68 and then an internal pressure was applied=£ 7mmH g
to P = 120mmH g) while measuring the outer diameter and axial force reqttioe
maintain the axial-stretch constant. These experiments s@nducted for a pure
passive state and thereafter when exposing the artery t@aisiog concentrations
of the vasoconstrictor Endothelin-fl4{ = 1071 — 10~ "[mol /liter]).

We mimic the experiments by constructing a bi-layered dyiral tube with a mesh
and boundary condition shown in Figure 10. The inner andraaidial displace-
ments, circumferential stress and energy norm were cordport@-levelsp = 1—8
to ensure that the results are free of numerical errors. eSwrcall parameters ex-
amined, the values obtainedat= 4 are within less than.1% error compared to
p = 8 results, we used in the subsequent computations a p-level of

No data is provided in [9] on the ratio between the media theds to the total wall
thickness, thus we assume it to& as common in a muscular artery [21].

4 Din =1.15 mm
L=10 mm
z
— —
rrt . U ,Z68mm
P »Y
Ly v, =U.=0
- 1
D, =1.694 mm

Fig. 10. Mesh and boundary conditions that mimic a bi-lagexgery described in [9].

The material parameters for the passive response are fitesthdeed so that the
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outer diameter and axial force measured correspond to tee computed when
the pre-stretch is applied and internal pressure is ineteabhe compressibility
parameterD, is determined by assuming that under physiological pressue
relative change of volume iss 1% as reported in [23] for the rabbit aorta. The
fitted material properties for the passive response areiggdun Table 2 and the
comparison between the predicted response and the expéginodservations is
depicted in Figure 12 by the solid line.

Table 2
Material parameters fitted to a slightly compressible pasSEDF.

Layer c1 Dy k1 ko | Bm

[MPa) | [MPa™'] | [MPa] [°]
Media 0.01 3 0.0006 | 1.2 | £20
Adventitia || 0.005 3 0.0004 | 1.2 | +64

To determine the active material parameters we fitted treefdathe tension-stretch
and tension-dose relationship reported in [9] as presanteédjure 11. These pa-
rameters are summarized in Table 3.

Table 3
Material parameters fitted to the coupled passive-actiMeFsSE

)\m )\O Sma:v m EC50
[M Pa [mol/liter]

1.49 | 0.85 | 0.045 | 5.9 10710

Neither the density nor the orientation of SMCs is availatilas we assumed that
these are uniformly distributed so a similar active respaos®btained in the entire
artery and that SMC are oriented circumferentially, iig.- = 0. With these as-
sumptions, and using the already determined passive and acterial properties,
we predict the pressure-diameter and pressure-axial fesponse when the artery
is activated by a vasoconstrictor. In Figure 12 we presenpthdicted response as
compared to the experimental observations extracted f@jrfof different inter-
nal pressures and a given axial stretch\pf= 1.68. The axial force is computed
by the integral of the Cauchy stress over the deformed crestsos area of the
artery. One may observe that the passive-active predietgzbnse is close to the
experimental observations. However, below a pressure aifitat) mmHg in the
passive state, ant) mmHg in the active state, an unclear phenomenon in the ex-
perimental observations is visible, namely, the axialédncreases as the pressure
decreases. This phenomenon in the experimental obsersatiq9] is unclear to
us and cannot be explained by the proposed SEDF.

An important experimental observation associated witheitteve response of the
SMCs is the phenomenon of reduced contraction (at a fixedetration of the
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Fig. 11. Fitting of tension-stretch and tension-dose i@hships: Circles - experimental
results extracted from [9], Squares - fitted data using (8)(&h

vasoconstrictor) beyond a given stretch rafg ). This observation is clearly shown
by Herlihy&Murphy [13]. There uniaxial tension experimerdf stimulated strips
harvested from the media layer of the swine carotid artexyeported. In Appendix
D we demonstrate that our analyses simulate well this phenam

4.1 \frification of thep — F'E implementation on a representative bi-layered
artery

Using the fitted material parameters given in Tables 2 and 8omsider the bi-
layered artery having the dimensions and boundary comditas in Figure 10.
Since we only consides,;» = 0, a circumferential segment can be used, and we
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Fig. 12. Comparison of the predicted and experimental oseresponse of a New Zealand
rabbit carotid artery in passive and passive-active statgsrted in [9]. Left: Diameter—

pressure response &t = 5 mm for a constant\, = 1.68. Right: Pressure-axial force
response.

chose one fourth with appropriate symmetry boundary candt A physiolog-
ical pressure of? = 100mmH g is applied on the internal surface and a SMC
activation caused by a vasoconstrictor concentratign= 10 - 10~'!. A "bench-
mark” solution is obtained by solving the problem usizig hexahedral elements
(4 x 6 x10in 60, R, X directions) and» = 8. The convergence in energy norm
for the "benchmark” solution is given in Figure 13. The pmhl is solved also

10* 10
DOF

Fig. 13. Convergence in energy norm for= 1 to 7 in comparison to the benchmark
solution atp = 8.

by h-extension and p-extension with and without the p-mtexh algorithm. In
case of h-extension meshes with 150, 300, 480, 1200, 4800 elements were used,
whereas for p-extensions we use a coarse mesh, see Figiier bath theh-FEM
and p-FEM without p-prediction, the load was applied in thirtyuadjload steps.
In Figures 1516 and 17 the convergence in energy norm, rddiplacement and
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lle(U)II [%]

Fig. 14. Top: RepresentativeFE mesh consisting a0 elements. Bottom: ConstaptFE
mesh consisting of2 elements and the point of data extraction.

circumferential stress are presented. One may observéhiatprediction algo-

~o-h-FEM i e i et ~e-h-FEM
-¢-p-FEM -¢-p-FEM
—=—p-FEM (p-prediction) —=—p-FEM (p-prediction)

lle(U)I| [%]

DOF CPU [sec]

Fig. 15. Convergence in energy norm for the artery probleth tie number of average
equilibrium iterations in parenthesis.

rithm significantly reduces the computation time and fh&EMSs are by far more
efficient tham-FEM, both in DOFs and CPU.

5 THE EFFECT OF SMCs ON THE MECHANICAL RESPONSE OF AN
ARTERY

The bi-layered artery with boundary conditions and meslilaino these presented
in Figure 10 is used as the basis for the investigation of ME€S&effects on the
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Fig. 16. Convergence in radial displacement at the poimtefést for the artery problem.

Relative error in o, (R, ) [%]

~o- h-FEM
-¢-p-FEM
—=—p-FEM (p-prediction)

~o-h-FEM

-¢-p-FEM
. |==*=p-FEM (p-prediction)
S
=
o 10t
% d
3
£ S
= TR [
5
[ N
o 3
2 10 G
5 N TS
° B . STNa e
o Tl
\\ “
\\
1 4
10"
10° 10' 10° 10° 10°
CPU [sec]

Fig. 17. Convergence in circumferential Cauchy stresseaptiint of interest for the artery
problem.

mechanical response. The material parameters are thosblesT2 and 3 and the
SMCs are assumed to be oriented in the circumferentialtthres,;» = 0. To in-
vestigate the effect of the vasoconstrictor concentrdéweels we increaspd| from

a pure passive state until saturation léyl= 10-10712, [A] = 8.3 x 107, 10 x
10711, 12 x 1071, 10 x 10~8[mol /liter]. The activation levels chosen represent
values 0of0, 25, 50, 75, 100% on the tension-dose curve (Figure 11). To investigate
the effect of the tension-stretch relation we fix the vasstactor concentration at
[A] = 10-10~!! and investigate different pressure values in the physicédgange

P = 80,100,120 mmHg. In all cases the radial displacement and circumferen-
tial Cauchy stress across the artery wall thickness{(at 5 mm) are computed.

In Figure 18 the effect of increased activation level on tlieuenferential stress
and stretch ratio is shown. The dashed vertical line in Ed8-Top represents the
media-adventitia-interface, whereas the horizontal eddime in 18-Bottom rep-
resents the value of,, = 1.49. Figure 18 demonstrates that an increase in the
concentration of the vasoconstrictor results in the "ftattg” of the stress distribu-
tion across the artery wall. One may observe a decrease airtuenferential stress

at the inner boundary of the media and an increase at thelmatedary of the me-
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Fig. 18. Top: Circumferential Cauchy stress distributiamoas artery wall for different
SMCs activation levels anfy;» = 0°, P = 100 mmH g. Bottom: Stretch ratio across the
artery wall atX = 5 for different SMC activation levels, with tension-streteiationship
presented in the inner caption.

dia and across the adventitia. The contraction is inhomegen across the artery
thickness due to the circumferential stretch ratios (inSM&C direction). In Figure
18-Bottom atkR = 0.63 — 0.67 mm a transition for all activation levels occurs,
so that the circumferential stretch ratio which is inityadireater then\,,, decreases
bellow \,,. Since at the boundary of the inner meglia> \,,, then as the stretch ra-
tio decreases across the artery wall the effect of SMC cotndraincreases. Once a
point is reached in the artery wall wekg = )\, any further decrease ik, results
in a decrease in the effect of SMC contraction. In Figure E@auchy stresses
across the artery thickness f6k;» = 0° and A = 10 x 107'*[mol/liter] for
different pressures are shown. Figure 19 demonstrategveatunder a constant
activation level the SMC contraction is inhomogeneoussgtbe artery thickness
as a result of the different stretch ratios induced on the SMC
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Fig. 19. Left: Circumferential Cauchy stressXat= 5 for different internal pressures for
Bur = 0°, [A] = 10 x 10~ [mol /liter], Right: Stretch ratio across the artery wall at
X = 5 for different pressure values apd; - = 0°, [A] = 10 x 10~ [mol /liter].

6 SUMMARY AND CONCLUSIONS

In [15] an anisotropic hyperelastic model, representirggthssive response of the
artery wall, was incorporated in the framework of the p-FEMsre we extended
the application of p-FEMSs to the passive-active responfieecdirtery wall. A SEDF
for describing the SMCs was formulated based on [7]. Thesidignts required for
incorporating the proposed SEDF in the finite element fraorkwvere explicitly
provided. Three problems with analytical solutions usedtie verification of the
numerical implementation are detailed and the superiofifyFEMs over the tra-
ditional h-FEMs for solving the coupled passive-active response wasastrated.
CPU times required to solve these nonlinear problems magdhgced by a factor
of ~ 25 and more by using the new "p-prediction” algorithm desaiiberein.

The passive-active, tension-inflation experiments reggbm [9] were used to fit
both the passive and active model parameters, demongtihiath the proposed
SEDF can describe the coupled passive-active responsglinglthe reduction in
stress levels observed following stretches ovgr However, at low pressure lev-
els (which are not physiological) our SEDF is not capable ell vepresenting the
mechanical response documented in [9]. Investigationeatiive response for an
artery-like structure was presented with the effect olvation level on the stresses
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and deformations.

Proper description of the mechanical response of the astailiyn-vivo requires the
incorporation of SMCs contribution, because experimeobservations demon-
strate that their activation is notable [13]. Our proposetiva SEDF, although
phenomenological, incorporates the distinct featuresMES contraction as ob-
served in experiments (tension-dose and tension-strefatianships), and requires
five material parameters, \,,, EC5, Syqz, m @and one microstructural parameter
Gur. The active response reduces significantly the circumfielestress distribu-
tion across the artery thickness and along the artery lefdté reduction in cir-
cumferential stress value is not surprising and has beantezpin [7] and [10] (in
both cases the tissue was assumed to be incompressibliefuore we observed
that for high activation levels the stress gradients actlossartery thickness may
increase compared to moderate activation levels due tatieduof active stress
generation at high stretches. On a side note, whep > 0° for a constant stimu-
lation level (not reported in this manuscript) the conti@tforces which limit ar-
terial inflation are reduced, enabling a greater arteritdrdeation which increases
active stress generation as there is a "climb” along theiderstretch curve pro-
vided that\y < \,,. This results in an increase in both axial and circumfeadnti
stress values for increasing valuesif.

Past studies [24,25] also suggested that the stress leyetinve growth and re-

modeling of the tissue to maintain homeostatic baseliresstralues. Since we
noticed that SMCs contraction largely affects the stredbese may have a large
effect on growth and remodeling. This aspect will be ingsted in a future study.

With respect to the tension-stretch curve it has been showeveral studies that
the value of)\,, differs greatly when different species are analyzed. Instudies
based on [9] a value of,, = 1.49 was determined for the carotid artery of the
New Zealand rabbit, whereas in [18}, = 1.25 is reported for the swine carotid
artery and in [8]\,, = 1.7 and \,, = 1.62 are reported for the human carotid
artery. Some studies refer to the stress generated at thpoimdof the tension-
dose curve as the basal tone value as reported in [7] and moeatty in [8] but
since the coupling between the active and passive statesmydependent on the
tension-stretch relation, it is reasonable to assume #s#lllone values will differ
from one specimen to another even if the tension-dose oalaisimilar.

In this study we chose to use a simple SEDF not incorporati@eghemical kinetics
as proposed in [11] and [26]. For models incorporating thenloal kinetics one
has to determine seven different rate constants which adtie imodel’s complex-
ity. The work in [12] which utilized an SEDF similar to the opeoposed in [26]

for modeling the experiments reported in [13] assumed aerged contraction
process and as a result did not have to solve the rate egsatiesour opinion that

the activation level can be properly incorporated via thsi@n-dose relationship
when time independent problems are considered.
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In our analysis we neglected both axial and circumferergsitiual stress as we did
not want to complicate the two effects. We also assumed arédySMCs helix layer
in our analysis whereas several layers with different péobles may exist in the
media layer. The main "bottle neck” in further research esldck of experiments
reported on the coupled response especially for humanesi®dfore experimental
work is necessary for both passive and active parametetifidation to pursue
more elaborate simulations for investigation of in-vivteay response.

One of the limitations of our study is the use of non-systérmaéthod for the deter-
mination of the material properties. Optimization algomiis as the ones suggested
by Hartmann [27] and Hollander et al. [6] will be implementied a systematic
optimization of the material parameters.

We may conclude that the SMCs-effect greatly influences téie ©f stress and
deformation in artery walls and thatFEMs may be utilized to investigate their
passive-active response, resulting in fast and accursiétseFuture work is aimed
at further validating of the proposed active SEDF by expental observation. The
possibility of introducing varying active response levielseach layer based on the
average volume fraction of the SMC constituents in the maddadventitia, will
also be investigated. Finally, the role the active stresd filays in the pathology
of vascular disease such as arterioscleroses or the devedpf aneurisms may
only be addressed once a validated model for the coupledanaxti response in a
healthy artery will be provided.
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A The active SEDF assuming incompressibility

In this section we wish to demonstrate that the active SERviges the active
Cauchy stress term given in [7] for a general incompresgsibfermation of the
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tissue. Consider the following incompressible Cartesiefomnation of the tissue
embedding the SM fiber:

A0 0 A0 0
F=|0 )\XN01|=C=]0 )Xo , J(F)=1 (A.1)
0 0\2 0 0\t

Where > 1is the stretch of the entire tissue. The SMC are initiallyhie direction

My = [0, cos Barr, sin By ] Which is not in direction of stretch. The structure
tensor is:

0 0 0
M e @ Myp = |0 cos? Burr cos Byrr sin By (A.2)
0 cos Bupsin fyp  sin® Bup

Using (12) the stretch in the SMC direction g = IV " = M 5 (C-Myp) =
A2 cos? Burp + A~ sin? Basp. The Cauchy stress tenser,...,. can be obtained by
pushing forwardS ;.. in equation (17).

1
o= jFSFT (A.3)

A20 0|00 0
=10 M\ O ox 0 |95
0 OANZ| |00 )2

0 0 0
=0 A2 cos? Barr A2 cos Barp sin Bur| - S
0 A3 cos By sin B p A2 sin? Bap

With S = S([A) F(IVET) (IVET) 2.
The unit vector in the SMC direction after the deformatian is

R 0
myr FM yr

1
= = ~ = | AcosBuyr |-
marl PN PV ViVe

A_% sin ﬁMF

(A.4)

myr =
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Thus the component of the Cauchy stress in the SMC direcdion i

omr = (0 - myp)-myr =SNG = S(A)FIVETIVIV e = S([A]) f(A) A

(A.5)
This is in accordance with the expression for the Cauchgstpeovided in [7] for
a stretch in the SMC direction.

B Derivation of the body force term for problem C

The equilibrium equations in Cartesian coordinates are:

aO'Z'j aO'ij

&’L‘Z‘ - an 6:752 J an

Fl=1 (B.1)

The Cauchy stress tensor is computedoby= L FSF" = 2 FSLF". With the
deformation gradienf’ and left Cauchy-Green deformation tengoifor problem
C given as:

10 0 100 10 0
F=|o010|l=C=lo10|l=C"'={01 0| , J=detF =22
0022 002 002!
(B.2)
Using equations (4)(6)(15) one can obtain an expressiof farthe form:
S=7"%c (_20_1 (2+Z)+21) + 2o (z-27Y) (8.3)
1 3 D, .
2
1 A — /IVET . .
+ S([A4]) (|VgF) 2 (1 (/\—/\C) ) [MMF®MMF}
m — N0

With MMF = [0,0, 1] and |V]\C/[F = [MMF ®MMF} : C = Z. The CaUChy
stress takes the form:

o= Zhe, <—§Cl 2+ 2)+ 21> n Dic1 (2% -1) (B.4)
st (1= (3 fitus s

Using (B.1) and (B.4) the body force component required tantaan equilibrium
can be computed.
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£ ((%rm N 00y . 00 ., _0 (B.5)

Ox dy 0z

[ <8azy N oy, N 8crzy> 0
1

ox dy 0z

do,. 0oy, 00, 00, 0o, 07

or | oy = 0z 0z 07 0z
dey s 20cy 1 A —VZ\
T 15 2 D7 S(4D) ( )\m—/\())Z

C Comparison of our code to Abaqus using h-extension

Here we wish to compare between the performance of our catitharcommercial
code Abaqus [28] when h-extension is used. To that end we naden C given
in Table 1 but with no SMC contribution (not available in Al similar to the
problem presented in [15]. In Abaqus an automatic load stgppas used result-
ing in 17 load increments with an average»équilibrium iterations per a step. In
our code we used0 equal load steps resulting in an average of three equitibriu
iterations per step. In Figure C.1 the relative errot jnando;; extracted at point
X =2Y =2 7 = 2is compared as a function of CPU using both our code
and Abaqus. It can be seen that both our code and Abaqus czomarge to the
exact solution when only = 1 is utilized for the h-extension used {0 1000 ele-
ments). When stresses are considered both codes reachaedraumirelative error
of ~ 3.5%. In terms of CPU times Abaqus requires shorter CPU times agdotor

of ~ 2.5 for the h-extension considered. This can be attributed ihtpahe auto-
matic load stepping algorithm implemented in Abaqus and/ebimplemented in
our code. It should be noted however that when p-extensioansidered for the
same problem and p-FEM is compared to h-FEM our code outmesfdbaqus as
demonstrated in [15].

D Simulation of uniaxial extension experiments

In this section we wish to demonstrate that our proposed S&@+model the
reduction in active force generation observed in uniagikknsion experiments re-
ported in [13]. Finite element models simulating the uraéhgiretch-tension exper-
iments were generated. The boundary conditions and meshfoiseomputation
are shown in Figure D.1.

Remark 4 1t is reported in [13] that examination of the tissue showkdttthe
SMCs are arranged in a helix like structure with a pitch of Eng = 4.5° with
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Fig. C.1. Relative error in displacement and stress usingode and Abaqus 6.8 E.F.
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Fig. D.1. Boundary conditions and mesh for the uniaxial itamef an arterial strip.

respect to the circumferential direction. The specimen®wat so as to have the
SMCs aligned with the extension direction and thereforeunkE model the col-
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lagen fibers families are not symmetric with respect to thetct direction as de-
picted in Figure D.1.

All analyses for the fitting process were conducted uging 4 following conver-
gence tests for which|e(/)|| < 0.1%. Displacement boundary conditions were
specified at one end of the strip while the other end was cldrapd a constant
value[A] = 0.005 [mol/liter] was applied as reported in [13]. The fitted material
parameters and stress-stretch response for both passiactive states are given
in Table D.1 and Figure D.2 respectively. As evident fromurgD.2 the pro-

Table D.1
Material parameters fitted to a slightly compressible pasatctive SEDF.
c D, k1 ke | Ba || o | A1 | Am | m ECs Smaz
[MPa) | [MPa™"] | [MPa] [°] [mol/liter] | [kPal
0.007 2 0025 | 43| +35( 0421|1251 0.00075 222
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Fig. D.2. Stress-stretch relationship for a swine carotdiia strip - Model and experiments
from [13] for pure passive and coupled passive-active stdie= 0.005 [mol /liter].

posed active SEDF is capable of predicting the softeningdbraf the active curve
following A > A,,.
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