NH,

Computer methods

%’?@ in applied
B mechanics and
engineering
ELSEVIER Comput. Methods Appl. Mech. Engrg. 157 (1998) 365-385

Thermal generalized stress intensity factors in 2-D domains
Zohar Yosibash

Pearlstone Center for Aeronautical Engineering Studies, Dept. of Mechanical Engineering, Ben-Gurion University of the Negev,
Beer-Sheva 84105, Israel

Received 22 November 1996

Abstract

Computation of thermal generalized stress intensity factors (TGSIFs) in linear thermo-elastic two-dimensional problems with singular
points subjected to steady-state temperature distribution is addressed. The stress tensor in the vicinity of singular points exhibits singular
behavior characterized by the strength of the singularity and the associated TGSIFs. The p-version of the finite element method is first used
to compute the temperature field, usually exhibiting singular behavior of the fluxes in the vicinity of the singular point, then imposed in the
elastic analysis as thermal loading, exciting the TGSIFs. A post-processing technique based on the complementary weak form in conjunction
with Richardson extrapolation is applied to extract the TGSIFs. Importantly, the proposed method is applicable, not only to singularities
associated with crack tips, but also to multi-material interfaces and non-homogeneous materials. Numerical results of crack-tip singularities
(mode I, mode II and mixed modes) and singular points associated with a two-material inclusion and a 90° dissimilar materials wedge, are
presented. © 1998 Elsevier Science S.A.

1. Introduction

Lately, methods that are capable of predicting failure initiation and propagation in structural components
subjected to thermal loads are sought. It is postulated, as in the theory of linear elastic fracture mechanics, that
the methods should correlate experimental observed failures to parameters characterizing the thermo-elastic
stress field in the vicinity of failure initiation points. Failures due to thermal loading occur, for example, in
integrated circuits which are assemblages of dissimilar materials with different thermal and mechanical
properties. The mismatch of elastic constants and thermal expansion coefficients causes stress intensification at
corners of interfaces and may lead to mechanical failure. These corners as well as crack tips are called singular
points because the stress tensor is infinity in the linear theory of elasticity, and so are the steady-state
temperature fluxes if the temperature field is influenced by the presence of the discontinuity in geometry or
thermal properties.

New approaches for predicting the initiation and extension of de-laminations in plastic-encapsulated LSI
(Large Scale Integrated Circuit) devices, for example, are based on the computation of the thermal generalized
stress intensity factors (TGSIFs) and the strength of the stress singularity [1,2]. The TGSIFs are the first two
coefficients of the asymptotic expansion of the stress tensor in the vicinity of the singular point, and the strength
of the stress singularity characterizes how fast the stress tensor approaches infinity in the vicinity of the singular
point,

Although many studies were reported in the past 30 years on thermo-elastic crack problems in isotropic
two-dimensional domains (see e.g. [3—5] and the references therein), very little has been done on multi-material
corner interfaces. Especially, scant attention has been given to singularities affecting both the temperature flux
field and the stress tensor. Recent publications on TGSIFs for bonded interface between dissimilar materials,
ignoring the singular behavior of the temperature fluxes, can be found for example in [1,6-8] and the references
therein. To the best of our knowledge no previous numerical or rigorous analytical treatment is available on
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singularities affecting both the temperature flux and the stress field, and also applicable to isotropic as well as
anisotropic multi-material interfaces.

Herein, the un-coupled linear heat-conduction and elasticity theories are applied over two-dimensional
domains to reliably compute the TGSIFs and the strength of stress singularity for crack tips and multi-material
corner interfaces, taking into consideration the singular behavior of the thermal stress field. Using the p-version
of the finite element method, the temperature distribution is first found, which is imposed thereafter as a thermal
load in the elasticity problem. The strength of the flux and stress singularities are computed using the modified
Steklov method [9]. The complementary weak form is then applied in the post-processing phase over a series of
sub-domains with decreasing radii for computing the TGSIFs and by using Richardson extrapolation excellent
results are obtained. This extraction procedure is an extension of recently developed methods reported in [9-11]
for thermo-elastic problems.

In Sections 2 and 3, the classical and the corresponding complementary weak formulations of thermo-elastic
problems is presented. The results of the mathematical analysis are demonstrated in Section 4 by extracting the
TGSIFs for several problems involving cracks in rectangular plates and cracks emanating from a circular hole,
subjected to different temperature boundary conditions. In Section 5 TGSIFs for dissimilar isotropic elastic
wedges perfectly bonded along their common interface, representing inclusion problems and a 90° two wedge
interface problem are summarized. The conclusions to be drawn from the calculations, are outlined in Section 6.

2. Classical (strong) formulation of the linear thermo-elastic problem

Notations and preliminaries

Let {2 be a simple connected two-dimensional domain with boundaries 942 U, I; which are analytic simple
arc curves called edges. The outward normal vector to the boundary is denoted by n = (n,, n,), and in matrix
form:

n, 0 n,
[n]_[() n, ”2] ’
Assume that {2 contains a reentrant corner, for example, with an internal angle w, created by the intersection of
two straight edges /| and [,. The intersection point P is called a singular point because the stress tensor in the
linear theory of elasticity, and the flux vector in the linear theory of heat conduction is unbounded at this point.
A circular domain S, is defined as the interior points of a circle of radius R centered in the singular point, and
we construct a sub-domain {2, defined by £2 N S, see Fig. 1. In this paper the discussion is concentrated mainly

on the solution near the singular point P. The div operator on vectors and div, grad operators on tensors in 2-D
are defined according to [12, Chap. 9].

I,

Fig. 1. Domain and notations.
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2.1. The linear heat conduction problem

We denote by 7(x, y) the temperature field, which is the solution of the linear heat conduction problem
div([a]grad 7) =0 in {2 (1)

with prescribed Dirichlet boundary conditions on a part of d{2, prescribed Neumann boundary condition
(g, = grad 7 - n) on the other part of 32, and homogeneous boundary conditions on /] U I. The 2 X 2 matrix
[a] consists of the heat conduction coefficients a,,,a,,,a,, =a,,, which are assumed to be constants (or
piecewise constants in multi-material interface problems) and satisfy the ellipticity restriction. In isotropic
materials (a,, = d,,, a,, = 0) (1) becomes the Laplace equation and the temperature field is independent of [a].
The heat conduction problem is solved in practice by means of the p-version of the finite element method (see
details in [13, Chap. 8]) over {2, however, for mathematical analysis purposes it is assumed that the exact
solution can be found. In the vicinity of the singular point P, the special functional representation of 7 is of
special interest in the sequel.

There are two different approaches when considering the temperature field in the vicinity of P. The simplified
approach assumes that for crack tips, for example, the presence of a singular point does not influence the heat
flow continuum, because the two faces of the crack remain in contact, or are almost in contact (for small
deformation elasticity theory). In this case it is assumed that 7= constant in the vicinity of P.

The other approach, i.e. when the faces I U I, are assumed to be either isolated or the temperature is kept
constant, the temperature field, is expressed in the vicinity of the singular point as

« S
0, 0) =1, + 2, 2, byr® In'(Nh(8), (2)
i=1y5=0
r and 6 being the polar co-ordinates of a system located at P, 8, =0 and B, < g, for i <j. 7, is a constant which
may be zero, depending on temperature boundary conditions (except for inclusion problems where it is almost
always not zero). The coefficients b, , called generalized flux intensity factor, are uniquely determined by the
thermal boundary conditions on 7] U [, and away from the singular point. S =1 only for special angles for
which B, is an integer number, otherwise, S =0 (see [14, p. 264]). If grad 7 is considered, the terms containing
the In r functions are less singular than terms containing r# for B < 1. The same functional representation given
by (2) apply also to multi-material interface domains [15].

2.2. The linear thermo-elasticity problem

Once the linear heat conduction problem is solved over {2, one may proceed to the un-coupled linear

thermo-elasticity problem, and prescribe the exact temperature field as a thermal loading. The displacements
- . . - 3 . -

vector expressed in a Cartesian coordinate system is denoted by u = (u,, u2)T and the linear strain tensor by

RN
6"'!'(“)—2 8xj+ ax, |-

Throughout the paper the stress tensor in two dimensions will be denoted either by its tensor or vector form,

der [ O Oy def T
o, o) T o=(0, 0, 0,)

The constitutive law (Hooke’s law) for a two-dimensional elastic material is given by
def
[Clo=€e= (g, &, 812)T 3)

where for an isotropic material

1 1
= - 1
1+ p 5+l 6 bo 1= plane strain
[C]= 1 1 , 8= ,
2E | ——=1 —=+1 0 1+v
13 é 1 plane stress
0 0o 2 g
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and E and » are the Young’s modulus and the Poisson’s ratio, respectively. The matrix [C] is fully populated for
an anisotropic material. For presentation simplicity we restrict our discussion to isotropic materials, although the
present methods are equally applicable to anisotropic materials.

Traction-free boundary conditions are assumed on /] and [,, thus the boundary conditions (due to thermal
loading alone) are

t, =uBr on UL, (4)

t, being the normal traction on the boundary, u = E/2(1 + v), 7 is the elevated temperature field in respect to
the stress-free state,

2(1 + p)
) 1=2v
B= 21+ v)
1—-v

«a plane strain

a plane stress

and « is the coefficient of linear thermal expansion. Again, it is assumed that the thermo-elasticity problem can
be solved analytically over {2 for mathematical analysis purposes, but the p-version of the finite-element method
is used for performing the actual computations. On the boundary I, = 92 — I'| — I, displacement, traction or
spring boundary conditions may be applied, however, on I} and I, we assume homogeneous mechanical
boundary conditions.

Since the focus of this work is the solution of the thermo-elasticity problem in the vicinity of the singular
point, we concentrate our attention in the sub-domain f2,, assuming that the displacement field on 7, is
available. The classical linear thermo-elastic problem in an isotropic domain (2, described in terms of stresses is

divg=pggrad7r in { (5)
t,=0,,=uBr onl,UJ,, (6)
t,=0,=0 on UL, (7)
u prescribed on /.

The stress tensor which is the solution to the thermo-elastic problem in the vicinity of the singular point
consists of three parts
gp: a particular stress tensor solution satisfying the partial differential equation (5) and homogeneous
boundary conditions on I] U /5.
g, another particular stress tensor solution which satisfies the homogeneous partial differential equation (5),
and the boundary conditions (6) and (7).
a,: a homogeneous stress tensor defined by

P

S
uq |

oy =

uq

P

w

Thus, gy only involves the ordinary stress singularities as shown in the following:

Tn-

The stress tensor which is the solution to the homogeneous equilibrium equations with homogeneous traction
boundary conditions in the neighborhood of a singular point can be expanded in an asymptotic series (herein we
use the vector representation of the stress tensor)

x M
ou(r,0)=2 2 A,r" 'In"rF,(0) (8)

=1 m=0
where A, = are the coefficients of the asymptotic expansion (called the generalized stress intensity factors—
GSIFs). The GSIFs are determined uniquely by the traction and displacement boundary conditions away from
the singular point, and when excited by thermal loading they are called thermal generalized stress intensity
factors (TGSIFs). The first two GSIFs associated with crack tip singularities are called stress intensity factors
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(SIFs) in fracture mechanics terminology and are denoted by K; and K|, or thermal stress intensity factors
(TSIFs) if they are excited by the thermal loading. The eigenvalues «, and the eigen-stresses F, () are
associated pairs which depend on material properties, geometry, and boundary conditions in the vicinity of the
singular point only. Notice that the function vectors F, (6) vanish on /; U I, because homogeneous traction
boundary conditions are assumed. The smallest eigenvalue is called the strength of the stress singularity, and
a@; < a; for i <j. Under special (exeptional) circumstances, for specific combination of material properties and

geometry, M # 0. However, we restrict our discussion to cases where M =0, thus (8) to be addressed is
o, (r. 0) = i ArtT'F (). 9
i=1
This displacements vector corresponding to (9) is given by
uH(ra9)=§:lA,ra‘ﬁ(0), (10)
where f(8) are the eigen-functions of the so-called homogeneous solution.
ap and oy

Both particular stress tensors ¢, and ¢;, depend on the temperature field 7 in the vicinity of the singular
point. These particular stress tensors do not play a direct role in the numerics, and do not have to be actually
computed. Their main role is the linkage to the theoretical framework providing the justification of their removal
in a systematic way.

As mentioned in Subsection 2.1, the simplified approach is to assume that the singular point has negligible
influence on the distribution of the temperature in its vicinity. Therefore, the temperature distribution in the
closed vicinity of the crack tip may be considered to be constant. In this case the thermo-elasticity problem to be
solved becomes

divg=pBgradT=0 in {2 (11)
1, =0 =upr=C onl UL, (12)
t,=0,=0 on L UI,. (13)

The solution to the problem (11), (12) and (13) consists of two parts only
T=gy g

A particular stress tensor g, which satisfies the equilibrium equations (11), and the boundary conditions (12)
and (13) is

— — — T ¢ def
(U-rr U«‘?(i o-rH)P = C = 0'” . (14)
0

The second approach of considering the temperature field assumes that the temperature field is disturbed by the
singular point. In this case the temperature flux posses singular behavior in the vicinity of the singular point and
the temperature field is given by (2). It is assumed that 8, # a, — 1 for any / and B, <1. By separation of
variables, using the shift theorem for the equation in r, the stress vector @, in the vicinity of the singular point
can be represented as follows:

a,(r,0)= o, + BrP H@) + 0" ") (15)
where B 1s a constant, and € > 0. If 8, = a, — 1, then (16) will also contain a In(r) term
0,(r.6) = o, + Br In(n\F(0) + rP H@) + O¢" ") (16)

where B is chosen so as to satisfy Fredholm’s Alternative (see [16, pp. 78-80)). This case is not addressed in
the following.
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Since @ vanishes on the boundaries /; U [, the stress tensor ¢ can be any tensor that produces only
non-zero ;fge and this could be a linear function of 6§ multiplied by a function of r of the form r®' + (%1 "¢).

The displacements vector corresponding to @, + gy is denoted by u, and can be expressed in the vicinity of
the singular point (as r — 0) by

up(r,0)=u, +rg6) + 0"y, (17

where u,, is a vector containing constants (describing the displacements of the singular point P), and g(8) is an
analytic vector function of 6.

3. The weak complementary formulation of the thermo-elastic problem
Let 3(f2,) be the statically admissible space defined by
2000) ={g 2,20, <=:idive=pBgrad 7 in £3}.

Here

dcl
“0'”L NRRVAC A ST

where

(@ @)z, = f f! e an= f f! ) 2 2 (0),(0,),, de2.
R R 7

The statically admissible space for cases when non-homogeneous traction boundary conditions are prescribed,
[n]g =t, on the boundary I and/or I is defined by

32, ={g| g€ 3(UY):Inle=ton [, and/or I}}.
One may notice that 3 and ¥ are not linear spaces. We also define the linear space X"'(42,) by

) ={o

5 R<OC;div g=0in ()}.
When [n]g =0 on ] and/or I we define the space f”(.()R) by
fH(!ZR) ={g|oeX"(U):inlg=0o0on I, and/or I}.

Any finite dimensional subspaces of the above will be denoted by a subscript N, for example 3% ~ 15 a subspace
of 3" with dim 3% =N <o,

The dual (complementary) weak formulation for the (thermo-) elasticity problem over the sub-domain {2, is
(see [17, pp. 103-108])

Seek o € f(!)R) such that

Bo, 0)=F(a,) Yo 3 (18)
where
B0, m):H,} o'[Clo, dN . (19)
F (o)) :f u'-([n)o)ds . (20)
(91f25),

Here, (34};), denotes the part of the boundary where displacement boundary conditions u are prescribed.
Any statically admissible stress Vector oc E(!) ) can be written as an arbitrary known function from E(.() )
and a suitably chosen function from 2 (£2,). Therefore, we can write
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o=0,+ 0, o,

(21)
o, €30, (o, +0,)€E3(0,).

With these notations, the dual weak form (18) can be restated in a more convenient way of treatment

Seek o, € SH(.QR) such that »
B0y, )= F(0,) = B(0p, 0) —~ B(0p,0) Vo, €X (). (22)

3.1. The extraction post-solution scheme

For elastic problems without thermal loading or body forces and with homogeneous boundary conditions on
I, U I, one obtains the weak form (22) without the two last terms in the right-hand side. Computation of GSIFs
for this case has been addressed in detail in [9,10]. First attempt to use the methods in [9,10] for thermo-elastic
problems, using the above dual weak formulation without considering the particular stress tensors is provided in
[11). The first one or two A s, associated with eigenvalues that are smaller than 1, i.e. stresses become infinity
at r =0, will be denoted by TGSIFs or TSIFs. Mathematical analysis proved that the TSIFs can be obtained at
the limit when the radius of the sub-domain {2, approaches zero. However, the error introduced in the extracted
TSIFs at a given finite R, due to neglecting o, and @, was not properly investigated. Numerical experiments for
crack-tip singularities and a singular point associated with an inclusion probiem involving two dissimilar
materials were presented to demonstrate that indeed at very small radii R, one usually obtains good
approximations of the TSIFs. From the numerical point of view this required a considerably refined mesh (with
elements of an order of magnitude up to @(10 ")) in the vicinity of the singular point. It has also been shown
that for weak stress singularities even a very refined mesh did not provide satisfactory results.

Explicit computation of o, and @, is a complicated and tedious task. Thus, we propose herein a procedure
such that the TSIFs could be extracted using only the knowledge of their functional representation in r direction,
and a detailed analysis of the error introduced because of neglecting them. An analysis of the error induced by
not considering the particular solution provides the means to extrapolate to the limit R = 0 and obtain excellent
results without the need for considerable mesh refinements. The model problem for the mathematical analysis
will be a domain containing a reentrant corner in isotropic materials. Although this does not fully represent
anisotropic materials, and multi-material interfaces, it still provides the necessary steps in the proof which can
be reconstructed in a more general case.

3.2. The compliance matrix, load vector and extraction of TSIFs

R . . o
The stress vectors oy, o, in (22), being in the space 3, can be represented by (9), and the elements of the
compliance matrix corresponding to & (o, o) are

. Tt @ .
(B, = @ta f” F OICIF#)do, (23)
where R is the radius of the circular sector {2,. For isotropic materials, the eigen-stress vectors F,(#) and F(0)
are orthogonal in respect to the integral in (23) (see e.g. [13, Chap. 12.2.2]), thus the compliance matrix is

diagonal

RZu‘
B,), =1 2, b=/ iz, (24)
0 i#j

and D, are constants which depend on the angle w, the compliance matrix [C] and the eigen-stresses, but
independent of R.

The load vector corraegponding to the linear form &, is to be evaluated only along the circular boundary /.
This is because o, €2, therefore o, =0 at # = 0, w if traction free boundary conditions are considered. The
displacements vector # as r —0 is given by (10) and (17)
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w=2 Arf(0)+u, +rg®)+ 00" ). (25)
i=1

To obtain the jth component of the load vector, one has to substitute (20), and the jth eigen-stress in the series
(9) (r'F ;(6)) in the expression for the linear form (20). Since the homogeneous eigen-stresses are orthogonal
in respect to the integral along [ for isotropic materials, one obtains

(F),=C, R “+C, R""+C, R" """ +hot j=12,...., N. (26)

Here, C, , are constants independent of R that may be zero and depend on material properties, geometry, far field
loading and temperature ficld.

Evaluation of the other two terms in the load vector, corresponding to B (o, ) and B (0o, 7,), denoted by
., and Z,, correspondingly, is now considered. Substituting (15) in (19), and having o, € fH, one obtains
the jth element of the load vector corresponding to 2,

(%{l)/:R"'f+'f o [CIF(6)do +R“‘/*Bl*‘j H'(0)|CIF(0)do + h.o.t.
: 0 0

=C, R""' +C R thot j=1.2....,N. (27)

The load vector corresponding to 93, is very similar to that given in (27), without the first term, and we may
add them together resulting with

(B.); +(By);=Cs R+ C, R +hott j=1.2,...,N. (28)
In view of (24), (26) and (28). the TSIF A, for example, can be computed

A __zﬂR Za C R211,+C anl_i_C Rulé/j‘+1+c R(tl-l_,r_C Rlll’/i)4]4‘h
1= D, [c, 11 4l s T .0.t.]

2a .
= 7)" [C,, +Cy R+ C, R ™ + hout) (29)
1

Examining (29) as R — 0, one notices that the influence of the particular stress vector on A, is of an order of
magnitude of R' “' or R'7#1 "' (depending on whether C, , is zero or not). The stress field in the neighborhood
of a singular point is singular only if a <C 1, and because B, = 0, the influence approaches zero as R — 0. This
suggests that the terms associated with the particular stress vectors could be neglected, contributing to a relative
error of an order of magnitude G(R' ") or G(R' ™" ") when computing A, for example. Using a finite
sub-domain of radius R,, (A,), can be extracted by (29) neglecting the particular stress vector (only the first
term in the right-hand side considered). By repeating this extraction procedure over a sequence of decreasing
sub-domains of radii R, R, <R, | <---<IR, one obtains a sequence of approximations denoted by (A));.
Then, employing Richardson extrapolation [18, pp. 94-95] with the error behaving as R' “' or R' "% | A,
can be extrapolated at the limit R — 0. We can generate a table of A s, for example, by the recursive formula

AN =AD"
(R,/R.,,) —1

jorm

(A‘);ma:(Al);ni:H_’_ (30)
where y is either | — a, or | + 8, — a, and the accuracy of A, improves as j and m increase (j corresponds to
the radius R, of the sub-domains (2, which is the row number in the generated table, and m corresponds to the
column number—see Table 2 for example).

REMARK I. 1f A, is to be computed, for example, the same procedure holds with y either 1 — «, or
1+ B, — a, in (30).

REMARK 2. The situation described in (16) will affect the third term in (29). and it seems as the leading term
may sometimes be of an order of R' " |1 + In(R)]. However, this is not the case, and this will be
demonstrated by numerical examples on cracked domains, where the temperature field is proportional to r'’?
and the homogeneous stress field is proportional to r "'’
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REMARK 3. For anisotropic materials, or multi-material interfaces, the compliance matrix [B.] is fully
populated, and an explicit equation as (29) is not obtainable. However, computation of the TGSIFs neglecting
the particular stress tensor, for several R;s and extrapolating to the limit is still valid due to similar arguments
(this will be shown by a numerical example). The mathematical analysis of this case is more cumbersome and is
not provided herein.

3.3. Discretization and the numerical algorithm

For solving (22), the displacements along (4£2,), are to be substituted in (20). These are assumed for the
mathematical analysis to be known, but in the numerical realization we substitute in (22} the displacements
extracted from a finite element solution. Instead of u, we obtain an approximation u ., by the ‘classical’ finite
element method (FEM) based on the principle of virtual work. Of course, u, approximates the thermo-elastic
displacements field, with thermal loading being imposed on the domain of interest, and its accuracy can be
controlled by p- or hp-extensions (see e.g. [13]). The proposed procedure is a post-solution operation performed
after the thermo-elastic problem over entire domain (£2) is solved by the FEM, and h%vmg obtained u ..

The weak form (22) is further discretized by choosing a statically admlsslble subspace 3 ,({2,) constructed as
a linear combination of the first N eigen-pairs according to (9). with Ai ,i=1,2,..., N being sought. In
general, also the eigen-pairs are not known explicitly and are computed by the modified Steklov method [9].
Thus, the algorithm for computing TGSIFs is the following:

(a) Compute the smallest eigenvalue B, associated with the flux singularity (by the modified Steklov method)
and the corresponding generalized flux intensity factor (GFIF),. If (GFIF), =0, use as 8, the next
smallest eigenvalue, i.e. 3,.

(b) Obtain a finite element solution of the thermal problem, then impose it as a thermal loading and solve the
elasticity problem to obtain the displacements finite element solution u .. Both the thermal and the
elasticity solutions should have a small relative error measured in the energy norm.

(c) Extract TGSIFs by the principle of minimum complementary energy for several values of integration
radii R,. The radius of integration R, should always be outside the first layer of elements which have a
vertex in the singular point. At each integration radius R,, the TGSIFs should be extracted using the finite

element solutions corresponding to p=1,2....,8, and estimated for p —. This ensures that
discretization errors associated with replacing u,, by u, are small.
(d) Use Richardson extrapolation with the error behaving as either RP ™ or R' ™ to determine the first

stress intensity factor and R”' ™'~ or R' “* to determine the second, as R — 0.

(e) Examine the columns in the table generated by Richardson extrapolation and ensure that the elements in
the columns have similar values. Also, examine the Richardson extrapolation table for p—c in
comparison with the table for p = 8 and ensure the values are close (see following example problems).

(f) Redo step (c), with a larger statically admissible space, i.e. increased number of homogeneous
eigen-stresses N, then redo steps (d)—(e). Examine that the obtained TGSIFs are virtually independent of
N. This reassures the reliability of the results.

In all examples, the integration is performed along a circle of radius R greater than the radius of the elements
having a vertex at the singular point. This is because the finite element solution in the first group of elements at
the singular point is not of high accuracy. Numerical examples are presented in the following to demonstrate
that the proposed method performs well, resulting in accurate TGSIFs.

4. Numerical examples of crack tip singularities

The following problems are solved by means of a p-version finite element computer code, called STRESS
CHECK'. The temperature distribution is computed by solving the steady-state heat conduction problem which
is thereafter imposed as a thermal load in the elastostatic analysis. The trial space used in the finite element
analysis was the trunk space [13, Chap. 6].

' STRESS CHECK is a trademark of Engineering Software Research and Development, Inc. 7750 Clayton Road, Suite 204, St. Louis,
MO 63117.
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4.1. Central crack in a rectangular plate

A rectangular plate with a central crack subjected to two different thermal loadings, for which numerical
results are reported in previous publications is considered. Analytical (exact) solutions to practical problems are
very difficult, if not impossible to obtain, and to the best of the author’s knowledge no analytic solutions are
available to finite geometry models. The rectangular plate of width 2W and length 2L and a central crack of
length 2a = 2 with L/W= 1.0 and a/W = 0.2 is solved for two different sets of thermal loadings representing
pure mode [ and pure mode II (see Fig. 2).

The heat conduction coefficients are taken to be a,, =a,, =1, a,, =0, (results are independent of the heat
conductivity for isotropic materials) and the mechanical material properties are: Young’s modulus £ = I;
Poisson’s ratio » =0.3; and the coefficient of linear thermal expansion « = (0.01. Plane strain condition is
assumed. Taking advantage of the symmetry of the problem, only half of the model has been solved, imposing
the following symmetry boundary conditions at |y| <L, x =0: g, = d7/3x = 0, u, = 0. The finite element mesh
surrounding the crack tip contains only one layer graded in a geometric progression in the vicinity of the
singular point with the grading factor 0.15. Fig. 3 shows the finite element mesh used in our computation. The
results are compared with these previously published in [4,5,11,19-21]. Sumi et al. [4] extracted the TSIFs
using the modified-collocation and complex variable methods. Prasad et al. [19] reported the TSIFs obtained by
employing the boundary element method (BEM), simultaneously solving the thermal and elasticity problem,
then extracting the TSIFs using the path-independent J-integral. Lee et al. [20] used the BEM, first solving the
thermal problem, then the elastic problem and finally computing the TSIFs by the displacement extrapolation
method. Tsai et al. [5] solved the mode I problem using the thermal weight function and the A-version finite

;=100 ap=0 T3=100 T3=100
YT Yy
|
Ip=0 T1=0
2L _— : . ———
x I ; x
i 28
!
2w
T=~100 1,=100
an=0 2 T,=100 2
Mode II Loading Mode I Loading

Fig. 2. Geometry and boundary conditions ot a rectangular plate with a central crack.

- !
tx i
L

l wme_sist fan WRING 18547

Fig. 3. The finite element mesh for the rectangular plate with a central crack.
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clement method. Liu et al. [21] used the BEM, coupling the direct boundary integral equations to crack integral
equations, to extract the mode II TSIF. Yosibash showed in [11] that the TIFs can be obtained by the
complementary energy principle in a limit process as R — 0. The method presented in [11] requires a very fine
mesh in the neighborhood of singular points, resulting in many layers with very small radii O(R) = 0.0006, thus
it is inefficient. Herein, these TSIFs are extracted at large Rs using same procedure described in {11], then using
Richardson extrapolation.

Mode I thermal loading

The quality of the finite element solution is summarized in Table 1. Examining the first eigenvalue of the
thermal singularity, and the first two eigenvalues of the elasticity problem one observes that

B tl—aq=1/2+1-1/2=1 31
B tl—a,=1/2+1-1/2=1 (32)

Extracted values of (K|)gz at p =28 and as p — oo for different values of R are listed in Tables 2 and 3,
respectively, together with the Richardson extrapolated values as R — 0. (K;;)pg is 0.000000000 for all cases. By
the mathematical analysis, the error in (K))q. and (K;;)g: behaves like R' as R —0. This power is used for
Richardson extrapolation. Extraction of (K,).. at the smallest integration radius R = 0.3 is the least accurate
because the integration path is the closest to the first layer of elements surrounding the singular point, therefore

Table 1
Convergence of the FE solution for mode I loading—center crack
p-level Thermal analysis Elasticity analysis
DOF Estimated DOF Estimated
llellyes, (%) llell gy (%)
1 12 30.55 45 73.23
2 44 12.31 129 18.81
3 81 8.15 223 10.28
4 137 5.61 355 6.42
5 212 443 525 4.50
6 306 3.69 733 3.53
7 419 3.18 979 2.89
8 551 2.80 1263 242
Table 2
(K})gp at various values of R, p =8, for mode I center crack problem and the extrapolated values as R —0
R K)o d;fKim K;” K:ZA K;”
0.9 1.7506058183
0.8192715659
0.7 1.5436426511 0.8001684752
”
05 13342536946 ppeadisceon 07922180471 07882428331
0.3 1.1206217081 )
Table 3
(K} )pe at various values of R, p — o, for mode I center crack problem and the extrapolated values as R —0
R (K = K" K} K
0.9 1.7522014811
0.7 1.5460100080 8:?;‘:;22;35 0.7997843595
0.5 1.3367003771 '

The value of R = (0.3 was not considered because it was away from the value obtained at p = 8, therefore the extrapolated value is not
accurate enough.
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contains the largest numerical error. One may gain further accuracy by adding an additional layer of elements.
Numerical experiments support the last statement.

Tables 2 and 3 clearly demonstrate that the thermal stress intensity factor is extrapolated with high accuracy,
even though the relative errors at finite values of R are very large. The significant reduction in the error already
at the first step of the Richardson algorithm, and the similarity of the results in each column, strongly support
the mathematical analysis.

The extrapolated value is in excellent agreement with [4,11.19]. A summary of results obtained by other
numerical methods compared with the extrapolated K| is given in Table 7.

Mode II thermal loading

This subsection summarizes the TSIFs obtained when the domain is loaded by mode II thermal loading. The
quality of the finite element solution is summarized in Table 4. Extracted values of (K, )pe at p =8 and as p —» @
for different values of R are listed in Tables 5 and 6, respectively, together with the Richardson extrapolated
values as R —0. (K,): 1s 0.000000000 for all cases. Again, the error in (K;; )z behaves like R' as R —0. This
power is used for Richardson extrapolation. Tables 5 and 6 present a picture very similar to that of the
corresponding Tables 2 and 3 of the previous mode | problem. Again, one may notice the convergence achieved
by the extrapolation algorithm, although the TSIFs at the various Rs are of very low accuracy. The very similar
values in Tables 5 and 6 demonstrate that the numerical error in (K|, ). is small at the given radii, thus high
confidence in the extrapolated results is achieved.

In Table 7 we summarize the results obtained, compared to those reported previously for the mode I and
mode II loadings. The results obtained herein show a good accuracy compared with those reported previously.

Table 4
Convergence of the FE solution for mode II loading—center crack
p-level Thermal analysis Elasticity analysis
DOF Estimated DOF Estimated
llefl, (%) llele.o, (%)
1 21 8.98 45 669.68
2 62 4.44 129 35.11
3 108 272 223 30.03
4 173 202 355 7.72
5 257 1.58 525 5.65
6 360 1.32 733 4.39
7 482 113 979 3.66
8 623 0.99 1263 3.13
Table 5
(K, ) at various values of R, p =8, for mode II center crack problem and the extrapolated values as R-—>0
det <0y (BB} 2 R
R Kidpe = Kr: K, K Ky
0.9 —0.0693129872
. . 4
07 ~0.0261998324 PO 01219032328 0121223541
0.5 0.0165586587 L . 0.1214501053 ) R
(0.1223092972
0.3 0.0588589141
Table 6
(K})yi: at various values of R, p— 2, for mode Il center crack problem and the extrapolated values as R — 0
del o 2 :
R Ky = K;;J Knl Ky K(I1
0.9 —0.0693143367
0.1248325230
0.7 ~0.0261705901 oo 0.1229332211
123988 b
0.5 0.0167319753 0. 1239883888 0.1216678030 01210350940

5
0.3 0.0591041211 0-1226623398
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Table 7

Summary of mode I and mode II TSIFs

Ref. Tsai et al. [S] Lee et al. [20] Prasad et al. [19] Sumi et al. [4] Liu et al. [21] Yosibash [11] Present

Meth. Weight fnen BEM BEM Complex var. BEM Compl. Enrg. method
& FEM & collocation w/o Rich. Ext.

K, 0.8036 0.8593 0.7759 0.7759 0.7784 0.7998

Ky 0.1317 0.1207 0.1185 0.1324 0.1214 0.1210

The number of degrees of freedom in the FE model is half of those needed in [11] for obtaining similar accuracy
in the TSIFs.

4.2. Slant crack in a rectangular plate

A rectangular plate with a central crack slanted at an angle 60° to the x-axis is considered. The geometry and
temperature boundary conditions are shown in Fig. 4. The rectangular plate of width 2W =2 with L/W=2.0
and a/W=0.3 is solved for a temperature loading which gives rise to mixed mode. The heat conduction
coefficients are taken to be a@,, = a,, = |, a,, = 0, and the mechanical material properties are: Young’s modulus
E=2184X 105; Poisson’s ratio » = 0.3; and the coefficient of linear thermal expansion @« = 1.67 X 10 “* Plane
stress condition is assumed.

The results are compared with those obtained by Nakanishi et al. [22] by the complex variable method, and
reported in [23, pp. 1063-1067]. The finite element mesh surrounding the crack tip contains several layers
graded in a geometric progression in the vicinity of the singular point with the grading factor 0.15. The finite
element mesh is presented in Fig. 5. The finite element discretization error in energy norm at p = 8 (1834 dof)
for the thermal analysis is 0.18%, and for the thermo-elastic analysis (3797 dof) is 1.15%. This model problem
is used to demonstrate that the number of terms used to represent 3" has minor influence on the extracted
TSIFs. Also, we show that Richardson extrapolation for K, assumes that the error is O(R' ™ ') wheres for K|, is
O(R'"#1~ ). For the slant crack configuration @, = @, = 8, = 1/2, thus y in (30) is either 1/2 or 1. Extracted
values of (K} at p — o for different values of R are listed in Table 8 when N =2, 4,6 with y = 1/2, and in
Table 9 with y = 1, together with the Richardson extrapolated values as R — 0. This is to demonstrate that the
error in (K;)g behaves like R''* as R—0. Table 9 demonstrates that the coefficient C,#0 in (29) for K,

T:-—Io

Qn'a

2L
.. =0 x

N

&
[ |
[ p—

11-10
2N

Fig. 4. Geometry and boundary conditions of a rectangular plate with a slanted crack.
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Fig. 5. The finite element mesh for the rectangular plate with a slant crack.

Table 8
(K| )gg at various values of R, at p — = taking y = 1/2 for a plate with a slant crack with N =2, 4,6, and extrapolated values as R —0
R X def K k" K'Y Pl K

(Kee = Ky 1 1 [ 1

N=2 N=4 N=6 N=2 N=4 N=6 N=2 N=4 N=6 N=2 N=4 N=6 N=2 N=4 N=6
0.085 —2995 -2536 ~—1.962

0.2071  0.2222  0.0261

0.04 -1.990 ~-1.670 —1.338 =0.0305 -0.0345 0.0230
002 1382 —Lise 0939 O0MT OO0 04 o051 00037 00234 OB 00230 D016 g 0p3s1 002388 0.02342
0.01 -0964 -0.802 —0.657 0'0“0 0:0?]8 ():()237 0.0171 0.0167 0.0235
0.005 -0.673 —0.624 -0457 :
Table 9
(K}, at various values of R, at p — o taking y = | for a plate with a slant crack with N =2, 4, 6, and extrapolated values as R —0
R Kpre ";'K:o; K([" K;Z’ Ki“' Kia

N=12 N=4 N=6 N=2 N=4 N=6 N=2 N=4 N=6 N=2 N4 N=6 N=2 N=4 N=6
0.085 -2995 -2536 —1.962

-109 090 ~0.78
004 —1990 —1.670 —1.338 ~0.676 -0.558 —0465 _
002 -1382 -11s4 0939 07T OO TOM o430 —o3ss -0320 e T -0297 -0243 -0.199
0.01 —-0964 -0802 —0.657 70"7';) 70'3; 7()‘56 —0.326 —0268 —0.258 N o o
0.005 -0.673 -0.624 —0457 o o -
Table 10
(K, )ge at various values of R, at p — « for a plate with a slant crack with N =2.4,6, and extrapolated values as R —0
, det 0) M 2 I @
R (Kige = Ky Ky Ky Ky Ky
N=2 N=4 N=6 N=2 N=4 N=6 N=2 N=4 N=6 N=2 N=4 N=6 N=2 N=4 N=6

D04 01909 04909 0303 ~UOH3 00 08KO g geanr
002 —0.5667 ~0.5667 ~0.5728 _ "/t e dige —06455 —0.6455 —06452 _ 70, T U T 00 —0.6422 ~06422 ~0.6423
0.01  —0.6057 —0.6057 —0.6086 —0'6433 —0'64?3 -*0.6428 —0.6428 —0.6428 -—0.6428 ’ . T
0.005 —0.6245 —0.6245 --0.6259 T T :

whereas, as will be shown in Table 10, C, = 0 for K,;. This is possible because C, represents an integral of the
corresponding eigen-stress multiplied by the particular stress vector, and for some cases these are orthogonal.
The similarity of the results along the columns in Table 8, starting at X 53) , and the convergence of Richardson
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extrapolation to the same value for N = 2,4 and 6 reassures that accurate and reliable results are obtained.
Although at finite radii of integration R, the extracted TSIFs are extremely inaccurate, the extrapolation
approximation K, = 0.0238, 0.0234 is in excellent agreement with the value K, =~ 0.023 given in {22] in a graph.

The value K, is extrapolated at the limit R — 0 with y in (30) being 1. Extracted values of (K, )y at p—
for different values of R are listed in Table 10 when N = 2, 4, 6 together with the Richardson extrapolated values
as R — 0. The values in Table 10 clearly demonstrate the convergence of K;; to —0.6428, —0.6433 which is in
excellent agreement with the value —0.64 reported in [22].

4.3. Rectangular plate with cracks at an internal hole

A rectangular plate of width 2W, length 2L with a circular hole of radius p and two cracks emanating from it
is considered, and shown in Fig. 6. Dimensions of the analyzed problem are defined by L /IW=1,a=04W=1,
and two different radii p/a =0.25 and p/a = 0.75. The material properties are identical to those described in
Subsection 4.1. This problem is analyzed for one set of thermal boundary conditions, representing mode |
loading, namely, 7, = 0 on cracks and circular hole and 7, = 100 on the outer boundary. Due to the symmetry
only half of the model has been considered, and the finite element meshes for the two different radii p are
shown in Fig. 7. The finite element mesh surrounding the crack tip contains two layers graded in a geometric
progression in the vicinity of the singular point with the grading factor 0.15. The quality of the finite element
solution is summarized in Table 11. Extracted values of (K,)r at p =8 and as p — = for different values of R

1,100
YT

T,=0 T,=0
1,=100 | 2L T,=0

17,2100

2w

17,2100

Fig. 6. Geometry and boundary conditions of a rectangular plate with a crack at an internal hole.

Mesh for p/a = 0.25 Mesh for p/a = 0.75—“

Fig. 7. Finite element meshes for the rectangular plate with a crack at an internal hole.
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Table 11

Convergence of the FE solution for a plate with a crack at an internal hole

p-level pla =025 pla=10.75
Thermal analysis Elasticity analysis Thermal analysis Elasticity analysis
DOF Estimated DOF Estimated DOF Estimated DOF Estimated

‘("\l/nm (%) i“"‘n“.m (%) lif’}mm (%) ”"'”um (%)

1 27 18.34 91 73.09 27 1983 91 102.20

2 97 5.58 267 15,18 97 6.56 267 33.31

3 179 3.66 467 11.31 179 515 467 21.71

4 203 2.32 751 4.70 303 211 751 9.94

5 469 1.65 1119 3.00 469 1.28 1119 4.60

6 677 1.30 1571 2.15 677 0.95 1571 2.38

7 927 1.07 2107 1.62 927 0.76 2107 1.47

8 1219 0.90 2727 1.26 1219 0.63 2727 0.96

Table 12

(K| )y at various values of R, p =8 and p — = (in parenthesis), tor a plate with a crack at an internal hole. p/a = 0.25, and extrapolated
values as R—0

det oy i = Cin
k (KD = K, KII K, K,
05 14822 (1.4823) ,
0.8184 (0.8255) ,

03 12167 (1.2196) 5 0.8018 (0.7997)

8051 (0. 0.7950 (0.8011
0.1 0.9423 (0.9431) g :3;1 :8:8?2; 0.7957 (0.8010) (08011
(.05 0.8698 (0.8724) 913 (0.
Table 13

(K)),y: at various values of R, p =8 and p—> = (in parenthesis), for a plate with a crack at an internal hole, p/a = 0.75, and extrapolated
values as R—0

e

R K = K" K. K Ky
0.35 1.4083 (1.4084) .
. 0.9523 (0.9532)
0.15 1.1477 (1.1483) 0.9381 (0.9428)
).9: 9452 ) 93 9342
0.08 1.0514 (1.0535) 0.9414 (0.9452) 0.9322 (0.9349) 09317 (0.9342)

0,93 .9370)
0.03 0.9781 (0.9807) V341 10.9370)

are listed in Table 12 for p/a = 0.25 and in Table 13 for p/a = 0.75 together with the Richardson extrapolated
values as R — 0. Again, the error in (K,),, behaves like R' as R—0 and this power is used for Richardson
extrapolation. (K )pe is 0.000000000 for all cases. The approximated K, for the case p/a = 0.25 obtained by the
BEM and reported in [19] is 0.806 which is in good agreement with our extrapolated value of 0.8011. For the
case pf/a = 0.75 we obtain K, = 0.9342 which is again in good agreement with the value 0.941 reported in [19].

5. Numerical examples of singular points associated with multi-material interfaces

Composite bodies consisting of two dissimilar isotropic, homogeneous and elastic wedges, perfectly bonded
along all their interfaces (or some), are studied. Two examples are provided: an inclusion problem subjected to a
temperature field which exhibits singular behavior of the temperature flux, and a body consisting of two
dissimilar materials subjected to a uniform elevated temperature field.

35.1. Inclusion problem

Consider the unit circle domain (2, divided into two sectors: {2, occupying the sector —5m/6<6<5m/6
and {2, occupying the sector 5w/6<6=<7mw/6, see Fig. 8. The heat conduction coefficients in {2, are
a,, =a,,=10,a,,=0, and in {2, are a,; =a,, = 1, a,, = 0. Plane strain condition is assumed with vo=p, =
0.3. E, =10, £, =1, and the coefficient of linear thermal expansion is « = 0.1 in 2, and & = 0.01 in {2,.
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a"//

Fig. 8. Domain configuration of the inclusion probiem.

The stress tensor in the domain is singular at r = 0, and can be written in the form

Al a, =1 (1) AZ a1 (1) 1+€ .y
@)=z " FPO = RO -0 =600, (33)
"y VLT

)

where F };’(0) and F i!' Y(#) are eigen-stresses given in [24]. The domain {2 is discretized by employing the finite
element mesh shown in Fig. 9, having several radial layers graded geometrically toward the singular point with
a grading factor 0.15. The error in energy norm for the thermal analysis at p = 8 (1244 dof) is ls:{s{s than 0.4%
and in the thermo-elastic analysis (2474 dof) is less than 1.6%. Using two terms for spanning 3, N =2, the
error in the first two TGSIFs for any given radius R converges to zero as p is increased, with a relative error at
p = 8 which is less than 0.01%.

The temperature distribution is first computed when applying temperature boundary conditions on the
boundary of {2,

(5m/6—16))

—_— s .
5776 , Smie<#=<5u/6,

7(6) =100

Inshusion_r. 1 BOME 11481

Fig. 9. Finite element mesh for inclusion problem.
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and flux boundary condition on the boundary of (2,

a7 5 - (57/6—8)5n/6+6)
or @)= (5m/6)°

—5n/6=0=-mSn/6<O<m.

]

The temperature distribution is then applied as a thermal load in the thermo-elastic analysis, imposing fixed
boundary conditions at r = |

uir=160)=0, 0=0=<2w.

For this problem we obtain a, = 0.6900333 and «, = 0.7940938, and since the temperature field in the vicinity
of the singular point is of the form (2), with 7,0, we use for Richardson extrapolation the power
l—a = e(2.3()99667 for A,. A, is 0.00000000, and we report in Table 14 the normalized values of A, defined
by: A% = —0.1040854A, obtained from the FE analysis corresponding to p-»o and the Richardson
extrapolation. Unlike in [I1], where this example problem demonstrated that no convergence was visible
(without extrapolation) even at a radius of R = 0(10 ), herein, the proposed extrapolation methodology
provides good results with integration radii which are much larger.

The examine the influence of N on the extrapolated value of A% we summarize in Table 15 the extrapolated
values obtained with N =2, 4, 6. This again demonstrates that A% is virtually independent of V.

5.2. Two 90° dissimilar bonded wedges

Two isotropic, homogeneous rectangular blocks of length L =10, L/h, =10, L/h, =35, having different
material properties are bonded together and clamped at their left boundary as shown in Fig. 10. Starting from a
uniform reference temperature, the body is heated uniformly by A7 = 100. Due to mismatch of the coefficients
of thermal expansion of the two materials, the thermo-elastic stress field is singular at point P (there are other
singular points at the left boundary which are not of primary interest). Under the assumption of plane stress, a

Table 14
A* at various values of R, p — =, for inclusion problem, and the extrapolated values as R —0

de P f 2y : (4 5
R (AT)FE :'(AT)(()] (A,Ql‘)f (Af)u (AT)}J (A}k,) (Aﬁ;)(.)
0.9 0.001209

0.055176

0.5 0.010198 0.101188
0.1 0.036791 88;;28; 0.094183 ggg??;g 0.091774 0.091785
0.05 0.046346 ().089‘];98 0.092068 0.09163;; 0.091782 '
0.01 0.063177 0'090“9 0.091807 ’ :
0.005 0.068466 Rt
Table 15
Extrapolated A% for different Ns
N=2 N=4 N=6
0.091785 0.091510 0.091792
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E =10, V.=0.4, o =0.01% Ph l

U R U IV v UL U B UL S U v o v v AR 2
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Fig. 10. Domain configurtion of 90° dissimilar bonded wedges.
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Joim 20N 130T
Fig. 11. Finite element mesh for 90° dissimilar bonded wedges.

thermo-elastic finite element analysis was performed, imposing a uniform temperature field over the domain.
The domain is discretized by employing the finite element mesh shown in Fig. 11, having several radial layers
graded geometrically toward the singular point P with a grading factor 0.15.

The eigenvalues and eigen-stresses are extracted by the modified Steklov method. Only the first eigenvalue
associated with point P, a, = 0.8446825 imposes a weak singularity (@, = 1), and the x- and y-components of
the homogeneous first eigen-stress vector (i.e. (F,,),(8) and (F,,),(#)) are given in Fig. 12. A uniform
temperature distribution over the whole domain, not being influenced by the presence of the singular point P,
results in a particular stress field as presented in (14). Thus, we use for Richardson extrapolation the power
1 — a, =0.1553175 for finding A .

In Table 16 the values A, obtained from the FE analysis with N =2, corresponding to p-> and the
Richardson extrapolation, are summarized. Comparing the extrapolated value of A, with those obtained at any
finite R we notice that the value obtained even at R = 0.01 is off by more than 30%.

E-stresses associated with first QSIFs
. First elgenvaiue -  0.9440824070

130 1
110 .
opo eI
070 T
; — Sx_1
050 T i e Sy

90 120 150 180 210 29 270

Theta
Angle {deg)

Fig. 12. (F,)),(#) and (F,,) (8) for 90° dissimilar bonded wedges.
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Table 16
A, at various values of R, p— oo, for 90° dissimilar bonded wedges, and the extrapolated values as R —0
R (Al,)Fp_d;'(Ax)ml (AI)(la (Al)\zl (Al)ul (AI](M
0.2 1.345310

2.581315

. 3

0.1 1.471463 2 779589 : 604857 2 810813
0.05 1.604977 2.896100 3.385695 5 827397 2.855389
0.025 1.736848 ;'96796] 3.217832 '
0.01 1.900159 -

6. Discussion and conclusions

A technique for extracting thermal generalized stress intensity factors in two-dimensional domains is
presented. It is based on the modified Steklov formulation for computing the eigen-pairs, the minimum
complementary weak form, Richardson’s extrapolation and the p-version of the finite element method. The
results obtained are shown to be accurate and the technique being efficient, and most importantly, applicable to
singularities associated with re-entrant corners, multi-material interfaces and anisotropic materials.

An important step in the development of the overall technique is understanding the structure of the particular
stress tensor (due to the thermal loading), and its influence on the TGSIFs. The recognition of the behavior of
the error in computing the TGSIFs when the particular stress tensor is not included in the statically admissible
space enabled a simplified approach for extracting the TGSIFs in a limiting process. Otherwise, one had to
explicitly compute o, and o, and add them to the statically admissible space, resulting in a complicated and
cumbersome numerical procedure.

Numerical experiments for crack-tip singularities, and singularities associated with multi-material interfaces
are presented. All experiments demonstrate that accurate TGSIFs can be extracted although the integration radii
are large and away from the singular point. Thus, a strong mesh refinement in the vicinity of the singular point
is not necessary for obtaining good results, enabling an efficient numerical procedure.
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