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Abstract 

A superconvergent method for the computation of the derivatives of the solution and the coefficients of the 
asymptotic expansion at singular points is presented for the Laplace problem in two dimensions. The algorithm 

utilizes the complementary weak form on a localized small domain. Mathematical analysis demonstrates the super- 
convergent behavior, and numerical experiments support our analysis. This method is well suited for anisotropic 
multi-material singular interface problems. 

1. Introduction 

The problem of quality control in finite element computations has been the subject of many recent 
investigations. Most of the work has been concerned with estimation and control of error in energy 
norm (see [l, Chapters 4 and lo] and the references therein). These are average measures, however. In 
most cases, determination of the location and magnitude of the largest first derivative (flux for example 
in heat transfer problem), or flux intensity factors (in the vicinity of singular points) is of interest. These 
are pointwise quantities. 

This paper presents a superconvergent method for the extraction of these quantities from finite element 
solutions. This is a post-solution operation over a localized small subdomain. The advantages of the new 
approach over existing ones are due to its generality in the sense that it is applicable to all parts of 
the solution domain, interior points as well as the boundary points, and also in the neighborhood of 
singularities. We demonstrate the method on the basis of the two-dimensional Laplace problem. This 
problem has been chosen because it is simple enough for demonstration purposes, yet contains all 
essential properties which are common to elliptic boundary value problems. The p-version of the finite 
element method is employed. 
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1.1. Flux intensity factors 

The behavior of the solution for the Laplace equation (V*u = 0) in a two-dimensional domain in the 
vicinity of a singular point is best understood and is given by (see [2-51) 

u = F 5 $Fl Ci&& (0)ral+m In”(r), (1) 
i=l s=o m=O 

r and 8 being the polar coordinates of a system located in the singular point. (Y~ are the eigenvalues 
(real numbers in case of the Laplace problem) and f&,, (t9) are the eigenfunctions which are analytical. 
Except for special cases, S = 0. M is either 0, or a positive integer when the boundary near the singular 
point (at the vertex) is curved. Note that the eigenpairs are uniquely determined by the geometry and 
material data. 

Methods for the computation of the eigenpairs are presented in [3,4, 61. 
Notice that if ai < 1, the corresponding ith term in the expansion equation (1) for Vu is unbounded 

as r --f 0. We can think of the coefficients C,,,, of these terms as analogous to the stress intensity 
factors of elasticity. We generalize this terminology, and refer to all coefficients C,,, whether or not the 
corresponding terms in Eq. (1) are singular, as generalized flux intensity factors (GFIFs). The analogous 
coefficients in elasticity are called generalized stress intensity factors (GSIFs). The GSIFs are very 
important from the engineering point of view because they are related to failure theories. 

Many methods exist for the extraction of stress intensity factors associated with cracks from finite 
element solutions. For example, the J-integral method, the energy release rate method, the stiffness 
derivative method, the contour integral method (CIM), the cutoff function method (CFM), the singular 
superelement method, etc. (see [7-lo] and references therein). Most of the methods, however, are appli- 
cable to crack singularities in isotropic materials only and do not provide any desired number of stress 
intensity factors. 

One of the most efficient ways for extracting the GSIFs in a superconvergent manner is by indirect 
extraction procedure using the CIM and the CFM presented in [7, 91. These efficient procedures use 
specially constructed extraction functions. Assume that a desired functional value Y(U) (for example the 
ith GFIF) is to be computed from the finite element solution, then an expression which is of the form 

Y(u,,) = &FE, u) + Q<u> (2) 

is constructed, where u is a suitably chosen test function, called the extraction function, B(u,, , v) is the 
bi-linear form of the finite element method and Q(u) is a given functional. The error in the functional 
value computed by indirect methods can be written as 

IY(u)- Y(%)l < II~--UFEIlHy~) II~--w,llHyn, (3) 

where w,, is the finite element solution of an auxiliary problem, the exact solution of which is w. 
Specifically, w is the projection of u onto the space of admissible functions. In many cases it is possible 
to select the extraction function u so that 11 w - w,, I IH1caj --+O not slower, and possibly much faster, than 

lb - %IIffqn, + 0 as the number of degrees of freedom approaches infinity, in an orderly extension 
process. Therefore, functional values computed by these kind of indirect methods have the same order 
of accuracy as the square of the error measured in the natural norm of the formulation or better. The 
extraction function for the ith GFIF are chosen to be the eigenfunctions in Eq. (1) which correspond to 
the negative ith eigenvalue. 

These methods have three major drawbacks. First, the CIM is not directly applicable to anisotropic 
multi-material interfaces1 because the eigenfunctions are not orthogonal with respect to the bilinear 
form. Second, a large number of extraction functions must be devised. Third, in the general elliptic 

‘The PDE in an anisotropic domain is given by c%=, aii a*~/(&, ax,) = 0. Laplace’s equation is an isotropic case where 

aI1 = az2 = 1, aI = 0. A multi-material interface situation is when nij change abruptly within the domain. 



B.A. Szabd, Z. Yosibash/Comput. Methorls Appl. Mech. Engrg. 129 (1996) 349-370 151 

problems these auxiliary functions are considerably less smooth, so that they cannot be approximated 
by the finite element method as well as the eigenfunctions corresponding to positive eigenvalues. 

The method presented in the following has the advantages of these superconvergent methods, without 
the drawbacks. Numerical examples on the performance of the proposed method for anisotropic domains 
and multi-material interfaces can be found in [l 11. 

1.2. Extraction of the first derivatives 

Typically, first derivatives are extracted from finite element solutions by the direct method. The direct 
method of extraction is described in detailed in [l, Section 11.4.11. In the case of elasticity, for example, 
the strains are computed from the displacement components and the stresses from the appropriate 
stress-strain law. 

The pointwise derivatives extracted by the direct method from the finite element solution do not 
(in general) converge monotonically (even though the error in energy norm does), and their rate of 
convergence is usually dependent on the smoothness of the exact solution. In the first element adjacent 
to a singular point, for example, the derivatives oscillate with high amplitudes as the p-level is increased. 
Only when the exact solution is relatively smooth do the derivatives extracted by the direct method 
converge in a satisfactory manner, and their rates of convergence for high p-levels are similar to the error 
in the energy norm. This behavior is demonstrated in [12]. As the exact solution becomes progressively 
less smooth, the performance of the direct method deteriorates, and indirect extraction methods should 
be sought. 

Indirect computation of stresses has been shown to be superior to direct methods (see for example [13- 
161). The methods presented in [13-151 are based on same idea presented in Eq. (2) so that some measure 
of artificial intelligence should be applied in general purpose computer programs in the sense that the 
proper extraction functions must be selected automatically, depending on the problem parameters and 
the type and location of output information required. We do not know of any practical implementation 
of indirect extraction techniques for the derivatives, even though the method has been known for almost 
ten years. The patch recovery method, in [16], does not perform satisfactorily in the neighborhood of 
singular points. 

The method presented in this paper, on the other hand, is superconvergent, fully general and may be 
implemented in any finite element code. 

The outline of the paper is as follows. The notations and the general formulation and description 
of the suggested extraction method is followed. In Section 3 we present the weak formulation for the 
extraction of the GFIFs. A mathematical analysis is presented which demonstrates that the method 
exhibits superconvergence. Numerical experiments are presented in Section 4 on the basis of two model 
problems, a crack in a circular domain and an L-shaped domain. We also provide numerical examples 
for the case where the eigenpairs are approximated by the modified Steklov method. In Section 5 we 
provide the weak formulation for extracting the first derivatives when the solution is analytical inside 
the domain. It is shown also that our method is equivalent to one shown to be superconvergent in [9]. 
Section 6 contains the formulation for the extraction of the derivatives on curved boundaries. 

2. Extraction procedures using the complementary weak form 

Notation: Let 0 be a simply connected domain with boundaries 80 = ui& which are analytic simple 
arc curves called edges. These edges intersect at points called vertices. The Laplace problem V*u = 0 is 
prescribed over 0, with Dirichlet boundary conditions u = li on p and Neumann boundary conditions 
du/ dv = t^ on 80 - co. Newton (also known as mixed) boundary conditions may be prescribed as well, 
but will not be considered here. Define the space Hi,(n) = {u E H’(O) 1 u = 0 on co}. 

In the displacement formulation, the exact solution of the problem is defined by the weak form (the 
primal weak form): 
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z4 E H’(0), u=fi onTD 
that L3(U, u) = 3(u) vu E H;(n), 

bilinear form is 

(4) 

Z?(u,u) = 

and the linear form is 

3(u) = 
J 

hds. 
X-P 

(5) 

BY IIull~=d~ d U, u we enote the energy norm of U. Note that it is equivalent to the H’(0) seminorm. 
The exact solution u is analytic in 0, except in the vicinity of the singular points (at the vertices), 

where the solution is given by the asymptotic expansion (1). 
We use the p-version of the finite element method for approximating the solution of the weak form, 

i.e. we use a hierarchic sequence of finite element spaces S,(n) c . . . c S,(O) c H’(f2). These finite 
element spaces consist of continuous piecewise polynomials of degree p on the elements of the mesh, 
such that the degree of the polynomial is increased as we go from St to Si+i. 

For the p-version it was shown in [17] that the error between the approximated finite element solution 
to the weak form (4), u!; E Sj, and the exact solution u is given by 

lIelIE Ef IIf. - di)II 
FE 

E G Cpi2minbn) M o(N-miM*n)), 
(7) 

where C is a constant, N is the total number of degrees of freedom and p2 =:N. With a proper (known) 
mesh refinement towards the singular point, the error in energy norm was shown to converge exponen- 
tially 

]]+ 6 Cexp(-yN’/3), Y > 0. (8) 

It has been proven also that in the asymptotic range the estimates are sharp, meaning that the 6 sign 
may be replaced by ‘approximately equal’ (M). 

The polynomial approximation obtained by the finite element method does not account for the special 
form of the exact solution as being a span of harmonic functions in the interior of the domain, or 
eigenpairs near singular points, so that the approximation of the derivatives and the GFIFs may not be 
accurate at all. In the vicinity of point 0, interior point (see Fig. l), or point Q (laying on the smooth 
boundary), the exact solution u is analytical and can be expanded as an infinite sum: 

u= F&z’ * u = cn,r’(siniB +cosie), (9) 
id i=o 

where r and 13 are the polar coordinates of a system located in the points 0 or Q. The infinite series 
Eq. (9) converges absolutely. In the vicinity of the singular point P, the exact solution u can be expanded 
as shown in Eq. (1) ( we exclude for the moment the special cases where the In r terms appear) 

In the case of the Laplace equation, aj and fi(0) can be computed exactly using analytic methods 
(where in the general case numerical approximations have to be sought). Both Eqs. (9) and (10) can be 
represented by Eq. (lo), where &i(0) are analytic functions. 

The following procedure is proposed: Assume that the first derivatives are sought in the points 0 or 
Q or the GFIFs corresponding to the point F! First we solve the problem over the entire domain 0 
by means of the finite element method on the basis of the primal weak form (4), thus obtaining @. 
Second, a small subdomain around the point of interest is constructed. Define SR as a circle of radius R 
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Fig. 1. Typical points of interest in a domain. 

centered at points 0, P or Q. The subdomain 0~ is defined by R n SR. The flux vector is computed on 
SR using the complementary weak form. 

For the complementary weak form the trial and test spaces are chosen to be linear combinations of the 
derivatives of the eigenfunctions. 

The approximated finite element solution, uFE, @) is applied on the boundary 80~ as the natural boundary 
conditions for the complementary problem. The finite element solution corresponding to the comple- 
mentary weak form maximizes the complementary energy in &. Solving the finite element system of 
equation over OR, one obtains an approximation for the series coefficients, thus, also the derivatives. 

2.1. The complementary weak form 

We define the vector space EC(6&) as follows: 

(11) 

We define by r, that part of the boundary of OR where essential boundary condition for the comple- 

mentary weak form (q,, = 4) is prescribed. The space of admissible fluxes is denoted by &(C&) and is 
defined by 

EC(&) = { (& qy), I(& qy) E &(aR), qn = 4 onq} . (12) 

Note that if (qx,qY) = (au/&,&/~y), the condition aqx/& + aqr/dy = 0 is nothing more than the 
Laplace equation itself. The complementary weak form is stated as follows: 

Find 
Such that 

where 

&(q, 1) = II q.’ df2= (q+-b +q,,l,)rdrdO , f2 R IJ f& (14) 
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and 
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FJl) - J i.i(l v) ds = J L(IXcos8+1,sin8)ds. 
fi I;i 

(15) 

Detailed discussion on the complementary weak form and its relation to the primal weak form is given 
in [18], where it is shown that the exact energy can by bounded from below as well as from above by 
the approximated energy computed using the two weak forms. These bounds have been widely used for 
electromagnetic problems in which two finite element solutions were obtained over the same domain 
using both forms. The error in the energy was bounded by the finite element solutions (see [19] and 
references therein). These bounds, however, are global measures, which provide no information about 
the quality of the solution and its derivatives in specific points, and furthermore, each problem has to 
be solved twice which is not practical in general. 

Our method is different from the method discussed above in that it is aimed at finding pointwise 
quantities in the post-solution phase. 

2.2. Sources qf discretization errors 

We use only a finite number of approximated eigenpairs in the general case (except when the exact 
solution is analytical, where the eigenvalues are integers and the eigenfunctions are known exactly) 
instead of the infinite number of exact eigenpairs. As a result, the extraction method described herein 
has three sources of discretization errors: 

(1) The fluxes are represented by a finite series of N terms. The exact representation is an infinite 
series. 

(2) The eigenpairs are only an approximation of the exact values (except when the exact solution is 
analytical). In the general case, therefore, we do not satisfy the condition of static admissibility 
exactly. 

(3) The boundary conditions are an approximation of the exact solution. 
The first source of discretization error does not exist in the Laplace problem because the eigenpairs 

are orthogonal with respect to the bilinear form on OR. 
The second source of discretization error does not exist in case of the Laplace problem since the 

eigenpairs can be found analytically, thus do not have to be approximated. However, we shall demonstrate 
that an approximation of the eigenpairs (obtained by the modified Steklov method) is so accurate that 
the error is negligible for practical purposes. 

REMARK 2. When the solution is smooth and analytical, we have shown in [12] that the direct method 
provides a good approximation to the derivatives, therefore indirect extraction may not be necessary. 

REMARK 2. The proposed method does not distinguish between cases when the derivatives are sought 
oy1 the boundaries or in the interior of the domain. Moreover, the proposed method is equally well 
suited for anisotropic domains [ll]. Therefore, it may be implemented in any finite element code. 

3. Extraction procedures in the vicinity of singular points 

First we describe the computation of the coefficients of the asymptotic expansion in the vicinity of 
a reentrant corner using the exact eigenpairs. This eliminates the second source of discretization error. 
Consider, for example, a reentrant corner of (27~ - w) degrees, where (qX, qy) are computed in terms of 
the exact eigenpairs: 
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(16) 

where u is given for ‘free-free’ boundary conditions (i.e. q,, = 0 on the reentrant straight boundaries) 

by 

u= 2 A/,, cos(cu,0), cu, $5 n7r/w , (17) 
n=o 

therefore, Eq. (16) becomes 

The elements of the compliance matrix [B,], which correspond to the bilinear form &(q, l), are given 

by 

(B,)ii = l’ 1” ~~~jTal+a/-l cos[(aj - ai)0] dr d0 s 

Finally, after integrating, we have the following: 

(19) 

olI+ai sin[(LYi - CXj)O] i #j 

i=j. 
(20) 

REMARK 3. The compliance matrix is diagonal, (BJij = 0, i # j. For proof see [l, Section 12.1.21. 

Consider now the expression for the linear form 3c. This can be divided into two terms: One corre- 
sponding to the circular boundary called I& the other corresponding to the straight boundaries r~ and 
I” which intersect in the singular point. 

Assume that the solution on I” is given by ujr, = L;(0): 

ii(tl)(f,cos8 +I,sin8)RdB. 

After substituting 1, which is in the form Eq. (18), Eq. (21) becomes 

(21) 

(39 (1) =i:B,~~R’~~cos(u,R)li(“)dH. 
n=O 

(22) 

The elements of the load vector {F‘?}, which correspond to the linear form 
( > 
3T3 (I) can be evaluated 

explicitly: 

(F?)j = aiRa 
J 

wcos(criB)Li(B)dA. (23) 
0 

For the case of ‘free-free’ boundary condition, qn = 0 on rr and r2. This condition, in the framework 
of the maximum complementary energy formulation, has to be treated by constraining the admissible 
trial function field. However, by using the exact eigenpairs in constructing the trial space, the constrains 
are automatically satisfied because the chosen q in Eq. (18) satisfies the condition qn = 0 on rr and r2. 

In case of a ‘fixed-free’ boundary conditions (i.e. u = 0 on I’, and qn = 0 on &), u is given by 

u= gA,Psin(a,B), cu, dzf (2n - 1)7r/2w. (24) 
n=l 
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The expression for (B,)ij is identical to the one presented in Eq. (20), and the expression for (F?)i 
becomes 

(F$)i = aiRa’ 
/ 

w sin(cwi t9);( 0) do. (25) 
0 

THEOREM 1. The error in the load vector due to replacing uEx with UFE is bounded by the error in 
energy norm. F,(e) 6 C(R)IIeIjE. 

PROOF Consider a typical term in F, corresponding to the kth eigenpair associated with 3c: 

(F,(e)), -L?(u - LL_)~(~~,(‘)) ds 

=J 
0 

e(B)a~R”k-‘$~(0)RdO 
0 

J w = C,(R) e(~M,(~) de. 
0 

(26) 
C/+,(O) are analytic continuous functions on a&, therefore they are bounded, ]&k(0)] < M, and Eq. (26) 
becomes 

(K(e)), 6 CAR) J w4e) de = G(R)ll4~,~~,~ 
0 

Recall that ]]f]]~, 6 Cs]]f]]t,, s 2 r 2 1 we obtain 

(F,(e)), 6 GVWl~,~~~ 6 GWI~L,~M~~~~ 
We use the trace theorem now to obtain 

PC(e)), 6 G(R)l141~~pR) G G(R)ll41~~(~) . (27) 

Using Friedrich’s inequality, it is shown that the H1(O~) norm is equivalent to the H’(&) seminorm 
for the Laplace problem, so we finally obtain 

(F,(e)), < CVW4~. 0 (28) 

REMARK 4. When the compliance matrix is formulated using the exact eigenpairs, no discretization 
errors are associated with the compliance matrix of the complementary weak form. In view of Re- 
mark 3 (which holds true for singular points as well as points within the domain) we conclude that the 
convergence rate of the GFIFs and first derivatives at internal points is at least as fast as the energy 
norm. 

The following numerical data indicate that errors in the computed GFIFs can converge much faster 
than the error in energy norm. 

4. Numerical examples 

The first numerical example is the same as the example in [9]. This particular example problem 
was chosen to demonstrate that the proposed method has the same superconvergent properties as the 
extraction method proposed by BabuSka et al. [9]. The advantages of the proposed method are its 
generality with respect to its applicability to any singular point, and we do not have to construct a new 
auxiliary function to be tailored to the specific problem to be solved. 
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Fig. 2. The domain and notation for BabuSka’s model problem. 

Fig. 3. The finite element mesh for BabuSka’s model problem. 

Let J2 be the unit circle slit along the positive x axis. See Fig. 2. Consider the following model problem: 

v2Ll = 0 in 0 

u=o on ri 
au 

qn = z = 0 on r, 

qn = 2 = y on r,,, . 

The first three exact GFIFs (correct to six significant figures) to this problem are Al =-1.35812, A2 = 
0.970087 and A3 = 0.452707. The exact energy being sn JVuI’ dA = 4.52707. 

This problem has been solved using the p-version of the finite element method over the mesh shown 
in Fig. 3, having 2 refinements toward the singular point. The trunk space was used as the trial function 
space in all computations. 
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Table 1 
Computed values of the first three GFIFs, R = 0.9 and N = 10 

p=l p=2 p=3 p=4 p=5 p=6 p=7 p=8 p=cc 
DOF 12 j6 64 104 156 220 296 384 03 

lIelIE (%) 34.5 16.7 12.8 11.3 10.3 9.5 8.9 8.4 0 

Al -1.106022 -1.26095 -1.28694 -1.30458 -1.31351 -1.31990 -1.32479 -1.32849 -1.35812 

ea, (%) -18.56 -7.15 -5.24 -3.94 -3.28 -2.81 -2.45 -2.18 0 

A2 0.892975 0.970822 0.969563 0.970206 0.970089 0.970075 0.970091 0.970084 0.970087 

e,& (%) -7.9 0.075 -0.05 0.012 0.0002 -0.0012 0.0004 -0.0003 0 

A3 0.378148 0.445853 0.452560 0.452493 0.452697 0.452704 0.452706 0.452707 0.452707 
ea (%) -16.4 -1.5 -0.03 -0.047 -0.002 -0.0007 -0.0002 0 0 

Table 2 
Computed values of the first derivative, R = 0.9 and N = 10 

p=l p=2 p=3 p=4 p=5 p=6 p=7 p=8 p=KJ 

DOF 12 36 64 104 156 220 296 384 

ll4E @I 34.5 16.7 12.8 11.3 10.3 9.5 8.9 8.4 $ 
Direct: 
au/ax (0.01, -0) 19.18514 22.3081 18.4573 13.0017 11.8175 14.1345 15.5786 14.4513 12.8536 

eaUjax (%) 49.2 73.6 43.6 1.15 8.1 9.9 21.2 12.4 0 

ASPP: 
au/ax (0.01, -0) 10.7082 12.0901 12.2897 12.4307 12.5009 12.5513 12.5901 12.619289 12.8536 

eaujax (%) -16.7 -5.94 -4.4 -3.3 -2.74 -2.35 -2.05 -1.8 0 

Once the approximated GFIFs are obtained, the derivatives of the solution at any point in the vicinity 
of the singularity can be calculated using the asymptotic series. This method for calculating the derivatives 
will be called in the following ASPP (asymptotic series post-processing) method in contrast with the direct 
method. 

Using the shown mesh, we extract the GFIFs on the path R = 0.9 having 10 terms in the series. 
In Table 1 we summarize the approximated first three GFIFs, the corresponding number of degrees 
of freedom, the relative error in energy norm, and in Table 2 the first derivative &/8x in the point 
(X, y) = (0.01) -0.0) using both the direct and the AS post-processing methods. 

The following conclusions may be drawn from the results shown in Tables 1 and 2 and other numerical 
experiments uerformed: 

(1) 

(2) 

I 

Despite the presence of a strong (r ‘i4-type) singularity, a, appears to be converging at a rate 
which is at least twice as compared with the convergence rate of the error in energy norm. This 
rate of convergence is approximately the same as that reported in [9]. 
The GFIFs a2 and As are much more accurate than Ai (the error is smaller than that reported 
in [9]), and the observed convergence rate is considerably faster when compared with the conver- 
gence of the error in energy norm. 

(3) 

(4) 

(5) 

(6) 

For path radii taken far enough from the singular point, R > 0.5 in this example problem, the 
accuracy of the GFIFs is almost independent of R. 
As expected, the number of terms considered in the series has no influence on the accuracy of the 
GFIFs. 
The pointwise first derivative (au/&) in the vicinity of the singular point computed by the ASPP 
method converge at least twice as fast as the error in the energy norm, while the direct method 
produces results of relatively low quality. See Fig. 4. 
The accuracy of the ASPP approximation for du/& is affected by both the accuracy of the 
GFIFs used and the truncation error made by only considering the first N terms of the asymptotic 
expansion. However, the proposed method provides any number of N terms as desired, thus, N 
can be taken sufficiently large so that the truncation error is negligible. 

We present in Fig. 5 the convergence of the GFIFs as compared with the- relative error in energy 
norm and the relative error in strain energy. Note that the rate of convergence in the first GFIF is 
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Fig. 4. Convergence of the relative error in energy norm and the first derivative (x = 0.01,~ = -0) for BabuSka’s problem. 

faster than the rate of convergence of the energy norm, and at p > 4 is virtually the same as the rate 
of convergence of the strain energy. The second and third GFIFs converge much faster. This is because 
the corresponding eigenfunctions are much smoother. 

It is seen that the first GFIF and the first pointwise derivatives converge monotonically, which should 
not be expected in general. 

4.1. The approximated asymptotic expansion 

In general scalar elliptic problems the exact eigenpairs are not known, and the Steklov method or the 
modified Steklov method [20] has to be applied over 0~, so that an approximation of the eigenpairs 
is obtained. The finite element solution for each p level, u,,, can then be represented by the linear 
combination with unknown coefficients Aj: 

50) 

The functions $j(0) are given in terms of the shape function on the edge as 
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H Energy norm. 
1 O- -a d&ix - ASPP method. 1: : iii / 

. . . O- - 4 dufdx - Direct method. 

10 100 

DOF 

Fig. 5. Convergence of the relative error in energy norm, strain energy and the GFIFs for BabuSka’s problem. 

4j<e (5)) = C CijNi(S) T 
i=l 

where Ni(t) are integrals of Legendre polynomials for i 3 3. 
The Steklov method solved by the finite element method ensures the convergence of the eigenpairs 

with respect to increasing degrees of freedom (DOF): 

(31) 

so that the flux vector computed from the approximated eigenpairs, in the limit, belongs to the space 
&(J&). It is not difficult to show that the resulting flux vectors are square integrable. 

In the following, we formulate the complementary weak form for the case where the eigenpairs 
are only an approximation of the exact values. These approximations are obtained using the modified 
Steklov method reported in [6], where we show that an excellent approximation can be achieved with a 
small effort. We examine this case since in general elliptic problems, including the elasticity problems, the 
eigenpairs cannot by computed analytically for general singular points when the materials are anisotropic. 

We now formulate the variational formulation explicitly. Based on Eq. (30), we obtain 
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I &jNi(e) COS 8 - ~ 
dNi(e) sine 

de 

’ 
&jNi(e) sin 8 + ~ dn5(0) cos e 

d0 

(32) 

The expression for the complementary bilinear form is based on Eq. (14), and after substituting Eq. (32) 
we obtain 

w R 

Nq, 4) = JJ (q; + q,“)r dr do 
6 a 

(33) 

Assume that the finite element mesh used for computing the eigenpairs has nG elements in the 
circumferential direction and a polynomial degree p. Using a Gauss quadrature of No points, the explicit 
expression for each term in the compliance matrix is given by 

&) ; e,(n) 2 ~mNk(s;II)Ne(~mm) 

m=l 

WnN,X&)N;(&n) , )I (34) 

where I+‘, and & are the weights and abscissas of the Gauss quadrature and nG is the number of 
partitions used for computing the approximated eigenpairs (see [ll] for details). 

REMARK 5. (B,)ij = ci6ij, therefore only the diagonal terms are to be computed. The values (B,-)ij, i # 
j are computed also, to assess the accuracy of the approximated eigenpairs. 

We proceed now to the evaluation of the linear form corresponding to the principle of maximum com- 
plementary energy. Consider first the term corresponding to rs. 

Substituting Eq. (32) in Eq. (15) the linear form corresponding to rs becomes 

cw = cAj&jR'J EciiN,(i)) de. 

j=l i=l 1 

The explicit expression for each term in the load vector is given by 

(36) 
n=l k=l fTl=l 

The boundary conditions on rt and rZ are fulfilled automatically because the approximated eigenpairs 
satisfy them. 

Note that the finite element discretization over the domain a may be different from the one used for 
the modified Steklov problem. 



362 B.A. Szabd, Z. Yosibash/Comput. Methods Appl. Mech. Engrg. 129 (1996) 349-370 

1 
_.-_-_- 

1.1 

- -A’ -._ 

X 
- 

-. 

Fig. 6. The L-shaped example problem and the finite element mesh. 

4.2. Numerical example 

The example discussed in this subsection is constructed so that the exact solution is known. It demon- 
strates: (a) the influence of the approximated eigenpairs, obtained using the modified Steklov method, 
on the accuracy of the extracted GFIFs; (b) the performance and efficiency of the proposed extraction 
method. 

We consider a 90” V-notch in an infinite domain. We ‘remove’ the L-shaped domain shown in Fig. 6, 
and impose on its boundaries the Neumann boundary conditions corresponding to the exact analytic 
solution, which is known. The exact asymptotic solution for this free-free V-notch is given by Eq. (17) 
and the derivatives in x and y directions (q,., qy) to be imposed on the boundaries of the L-shaped 
domain are given by Eq. (18). 

First, an approximation to the eigenpairs has to be obtained. The modified Steklov method is used 
over a mesh containing two elements shown in Fig. 7. As the p-level of the shape functions is increased 
over the mesh in Fig. 7, a better approximation of the eigenpairs is obtained. We will use the eigenpairs 
obtained when assigning p-levels 4, 5, 6, 7 and 8 for the computation of the approximated GFIFs. 

Once the approximated eigenpairs are available, a finite element solution is sought for the L-shaped 
domain. We construct a mesh containing the minimum possible number of elements over the L-shaped 
domain without any refinements in the vicinity of the singular point, as shown in Fig. 6. The boundary 
conditions in Eq. (18) were imposed on the L-shaped boundaries, with the GFIFs chosen to be: AI = 1, 
A2 = l/2, A3 = l/3, Aa = l/4, A5 = l/5 and Ai = 0, (i = 6,7,. . .). The GFIFs were then extracted using 
our proposed method, taking R to be 0.9. The results of these computations are displayed in Table 3. 
The following conclusions may be drawn from the results shown in Table 3: 

(1) The errors in the approximated ith eigenpair do not influence the accuracy of the jth GFIF. This 
is because the eigenfunctions are orthogonal. 

(2) The error in the GFIFs is always bounded by the error in energy norm when the error in the 
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Fig. 7. Mesh for the computation of the approximated eigenpairs. 

eigenpairs is less than 0.1%. Moreover, in this case the error in the GFIFs is virtually the same as 
if the exact eigenvalues had been used to extract the GFIFs. 

(3) Using the coarsest mesh possible for the extraction of both the eigenpairs and the GFIFs, excellent 
results have been obtained. The relative error in the first 5 eigenpairs is less than 0.007%) and the 
relative error in the first 5 GFIFs is less than 0.7% when the relative error in energy norm is 2.6%. 

The eigenpairs together with the computed GFIFs can be used for computing the solution and the 
first derivatives in the neighborhood of the singular point. The procedure is straightforward and is based 
on Eq. (32) for the derivatives and on Eq. (30) for the solution. This extraction method was denoted 
in the previous section as the ‘ASPP’ method. The eigenpairs corresponding to p-level = 8 were used 
in our computation, and we examine the values at the point (x, y) = (O.l,O). The exact values are 
uEX = 0.242616185 and (&/&)nx = 1.8298530. Th e error in the computed values is compared with the 
error in the values computed directly in Table 4. The values in Table 4 are shown graphically in Figs. 8 
and 9. The derivatives obtained by the ASPP method using the approximated eigenpairs, have the same 
convergence properties as in the previous section, namely, convergence is much faster than the error in 
energy norm and the extracted values using the direct method. 

5. Extraction procedures when the solution is analytic 

In this section we provide the explicit formulation for the complementary weak form to be used for 
extracting the first derivatives at interior points, and show that our method yields the same formulation 
as presented in [13]. Therefore, our method is superconvergent. 

The solution is analytical in the neighborhood of the point 0 (see Fig. 1). In this case, the solution 
for V2u = 0, can be expanded in an infinite series of the form: 

u = e A,m[sin(n@) + cos(ne)] , (37) 
n=O 

where r, 0 are polar coordinates of a system located in point 0. In this case if we take (qx, qY) = 

(Wax, Way), then (qx, qY) E &(%). 
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Table 3 
Relative error (%) in computed GFIFs for the L-shaped domain 

p=4 p=5 p=6 
6.02 4.65 3.74 

p=7 

3.10 

p=8 
2.62 

Extrapolated 

p-level 
for eigenvalue 
computation 

GFIF 
# 

Error in 
eigen- 
value 

p=4 

Al 0.0002 

A2 0.03 

A3 0.39 

A4 0.73 

A5 17 

p=5 

p=6 

p=7 

p=B 

Al 3 10-s -1.62 -0.73 -0.36 -0.43 -0.30 -0.48 

A2 3 10-s 0.12 -0.064 -0.064 0.001 -0.0096 -0.016 

A3 0.035 0.54 0.63 0.61 0.61 0.61 0.62 

A4 0.71 7.2 7.76 7.72 7.6 7.64 7.6 

A5 2.4 29.5 26.65 27.5 28.7 28.1 28.35 

Al 4.5 10-s -1.62 -0.73 -0.37 -0.43 -0.29 -0.48 

A2 2.25. 10m5 0.122 -0.058 -0.058 0.0066 -0.0044 -0.01 

A3 0.0018 -0.216 -0.135 -0.138 -0.160 -0.17 -0.147 

A4 0.0084 -0.52 0.009 -0.044 -0.136 -0.112 -0.116 

AS 0.49 6.2 3.6 4.19 5.05 4.69 4.77 

AI 
A2 

‘43 
^. 

A4 

A5 

< 10-9 -1.62 -0.73 -0.37 -0.43 -0.29 -0.48 
3 10-s 0.13 -0.05 -0.05 -0.016 0.005 -0.001 
7.8 10-Z -0.08 -0.01 -0.0048 -0.027 -0.037 -0.037 

0.0069 -0.71 -0.184 -0.235 -0.326 -0.302 -0.304 

0.063 1.235 -1.235 -0.639 -0.212 -0.173 -0.0825 

Al < 10-9 -1.62 -0.73 -0.37 -0.43 -0.30 -0.48 

A2 < 10-s 0.13 -0.05 -0.05 0.016 0.0046 -0.0015 

A3 2.3 10-h -0.058 0.021 0.027 0.004 -0.0055 0.009 

A4 3.7 10-s -0.427 0.099 0.047 -0.044 -0.021 -0.022 

A5 0.0064 2.07 -0.436 0.155 1.0 0.63 0.715 

-1.63 -0.75 -0.38 -0.45 -0.31 -0.5 
0.54 0.36 0.36 0.42 0.41 0.4 
6.79 6.84 6.87 6.87 6.84 6.87 

7.12 7.68 7.64 7.52 7.56 7.56 
28.5 25.55 26.15 34.4 26.8 26.85 

-1.63 -0.73 -0.36 -0.43 -0.30 -0.48 

-1.34 -0.05 -0.05 -0.014 -0.004 -0.016 

0 0 0 0 0 0 

-0.41 0.108 0.056 -0.03 -0.0096 -0.011 

A5 0 1.5 -0.92 -0.33 0.49 0.105 0.207 

Table 4 
Relative error (%) in u and i3uld.r at the point (O.l,O) for the L-shaped domain 

p=4 p=5 p=6 

ileiiE 6.02 4.65 3.74 
Direct: ll -22.3 -16.8 -11.8 

&dJ~X 1.63 6.66 9.67 

p=7 p=8 

3.10 2.62 
-7.9 -4.95 
10.72 10.25 

ASPP: cl -1.42 -0.66 -0.33 -0.38 -0.26 
au/ax -1.25 -0.58 -0.29 -0.18 -0.23 
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..: 10 - -+ u - Direct method. 
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Fig. 8. Convergence of the relative error in energy norm and u at (O.l,O) for the L-shaped problem. 

If we follow the same steps as presented through Eqs. (16)-(23) we obtain the compliance matrix 
entries to be 

(38) 

and the entries of the load vector are explicitly evaluated: 

(F,); = iR’ 12” [sin(iO) + cos(iO)] S(O) de. (39) 

The compliance matrix is diagonal, so the coefficients of the series can be evaluated explicitly: 

1 

I 

2Tr 
Ai = - 

2rrR’ ” 
[sin(iO) + cos(iO)] S(O) d0. 

5.1. Superconvergent property 

(40) 

In the following we prove that the extraction of the coefficient Al by the complementary energy 
method (when the solution is analytical) is identical to the superconvergent extraction method, using 
auxiliary functions, proposed by BabuSka et al. in [13]. Therefore, the complementary energy method 
has same convergence properties, i.e. is superconvergent. 
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Fig. 9. Convergence of the relative error in energy norm and au/ax at (O.l,O) for the L-shaped problem. 

Given the domain 0, let us choose the circular subdomain L& of radius R around the point of interest 
PO obtaining the following problem: 

V2U = 0 in 0i , (41) 

and 

U = ii(O) on dQ. (42) 

Define now a circular subdomain S, of radius E around the point of interest Pa, as shown in Fig. 10. 
Multiply Eq. (41) by a function 4, and integrate over 4 - S, 

/ 
C##udA =o, (43) 

oj-s, 

or 

J q&dA - J ~V2udA =o. (44) 
.n, SC 

Using Green’s theorem 

J fv*gdA = 
J 

gVf dA + 
A A 

J, (fg -~g) ds, 
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Fig. 10. The domain and notation for the extraction method based on an auxiliary function 

for both terms in Eq. (44), we obtain 

We choose an auxiliary function (also called the extraction function) to be 

4 _ 1 g(O) 
2+lr r ) 

(46) 

so that 

02d)=~{f$(~~)+~~}=~18(8)+gl(8)]. (47) 

If g(8) = cos 8 or sin 8 then V2+ = 0, and the first and third expression in Eq. (45) vanish. Evaluating 
now the integrand of the second and fourth terms of Eq. (45) we obtain 

#J% - U$ = & F&(n + l)F2g(6) [sin(&) + cos(n6)] (48) 
n=O 

Substituting Eq. (48) in Eq. (45) and taking the limit as E --f 0 we obtain 

lim J 
6’0 as, 

(g$.-u$) ds=!$& {J 0 

2”Aoe-‘g(B)dB+ J2~2~tg(~)lsin~+cos~]dR 
0 

+ eefl J 
27T (49) 

A&8) [sinno + cosne)] de . 
n=2 

0 

The first term in Eq. (49) vanishes because Jo2”g(e) de = 0 for g(B) = sin 8 or g(B) = cos 8. The last 
term in Eq. (49) vanishes because E” = 0 for E + 0, IE 2 2, so that Eq. (49) becomes 

1 J 
2T 

- 

= 0 
A,g(e) [sin 8 + cos e] de = A,, forg(e)=sin8 org(e)=cose. (50) 
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Examine now the first part of the second term of Eq. (45): 

which after some algebraic manipulations becomes 

J 
ao(bgdS=+ 

for either g( 0) = sin 0 or g( 0) = cos 0. 
Substituting Eqs. (50) and (52) in Eq. (45) we finally get 

AI _- 
2 J 

u%ds-A =0 
80 an 

1 > 

or 

A, = -2 J u?k & = -!- J 2n an 8t-t ,rR o g(O)l;(O) de. 

Letting g(0) = cos 8 + sin 8 we finally obtain: 

A, = -I!- J 2rrR c 
2p[sine +cose]qe)de, 

(51) 

(52) 

(53) 

(54) 

which is identical to the expression obtained for Al, using our method. 

REMARK 6. The same procedure can be used to show that our expression for the GFIFs (at point 0) is 
identical to the one presented by the contour integral method in [l]. In this case the extraction function 
for the ith GFIF is taken to be the ith eigenfunction with the -(Y~ eigenvalue. 

6. First derivatives on curved edges 

The method presented in previous section can by used for extracting the first derivatives at points on 
the boundaries. Let us attach a coordinate system in the point of interest Q, which lies on the boundary 
of the domain a, such that the x axis coincides with the normal vector and the y axis coincides with the 
tangential vector, see Fig. 11. The domain & is defined as SR n R n {x 3 O}. 

Assume that no abrupt changes occur in the boundary conditions in the vicinity of the point Q. 
Therefore, the solution in the neighborhood is analytical and can be expanded as in Eq. (37). Take again 

4 d”f (qx,qJT = (du/dx, du/$J), we may represent the space of kinematically admissible functions as 
follows: 

+A,{~~i~e,}+A~{~:~~~n~e}+A,{~~tt::”,J--- 

The bilinear form &(q, q) can be evaluated by 

LX [( 
+ A3r cos 8 + Asr sin 0 + Agr2 cos 28 + A7r2 sin 28 + . . . > 2 

A, 

( A2+A4rsine -A5rcos0 -A6r2sin20 +A7r2cos20 +... 
2 

+ )I rdrde. 

(55) 

(56) 
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Fig. 11. Notations for derivatives extraction on curved boundaries. 

369 

The compliance matrix corresponding to the bilinear form consists of nothing more than integrals over 
trigonometric monomial functions, and is no longer diagonal because the trigonometric monomial func- 
tions are not orthogonal with respect to this specific bilinear form. 

Assume that the solution on 80~ is given by L;(e), then the expression for the linear form FC is given 

by 

(.F,)(q)=~~~r(R,H)[(q~c~sH+q~sinR)]RRdR 

J 

0 

J 

R 

_ 
h(l, --7FP) [q&p) dr - r=O 4r, r/2) M (,+) dr. (57) 

r=-R 

As previously explained, fi(f3) is replaced by the finite element solution u,,, and the linear form FC can 
be computed by a Gauss quadrature. The overall system is then solved to obtain the coefficients A;, 
thus the derivatives at the point Q. 

REMARK 7. The first derivatives in point Q are easily obtained because they are represented by the 
constants A, and A2 alone, and the rest of the series (55) vanishes at r = 0. 

REMARK 8. The accuracy of the coefficients A,, i > 3, depends on the number of terms considered 
in the series Eq. (55). This is because the compliance matrix is fully populated. However, numerical 
experiments reported in [S] show that for relatively small number of coefficients good accuracy can be 
achieved. 

7. Summary and conclusions 

A superconvergent method for the computation of the GFIFs and first derivatives from finite element 
solutions was presented on the basis of the Laplace problem in two dimensions. Mathematical analysis 
and numerical examples demonstrated the efficiency and accuracy of the results. It was demonstrated 
that the computed values converge to the exact ones as fast as the energy norm, or faster. 

The major advantages of the proposed method over the existing ones are as follows: 
(1) The error in the pointwise data of interest exhibits superconvergence. 
(2) The method is general, in the sense that it is applicable to any point of the domain using the same 

algorithm. 
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(3) The method is applicable to anisotropic materials, and any type of singularities. Numerical exam- 
ples demonstrating the superconvergent behavior for anisotropic materials can be found in [ll]. 

(4) Mathematical analysis and numerical experiments for the Steklov method applied to vertex singu- 
larities for Laplace’s problem in three dimensions is provided in [5]. Therefore, the extension of 
the present method, for extracting GFIFs, to three dimensions is straightforward. 

(5) The method can be used in conjunction with any finite element analysis program. 
One obvious application of this method is to compute the error indicators in adaptive processes. The 

error indicators can be computed element by element, or for any group of elements. The indicators 
based on the difference between the complementary energy and the strain energy are expected to show 
relative error contributions for elements. 
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