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Abstract. Approximate eigenpairs (quasimodes) of axisymmetric thin elastic domains with laterally clamped boundary con-
ditions (Lamé system) are determined by an asymptotic analysis as the thickness (2ε) tends to zero. The departing point is
the Koiter shell model that we reduce by asymptotic analysis to a scalar model that depends on two parameters: the angular
frequency k and the half-thickness ε. Optimizing k for each chosen ε, we find power laws for k in function of ε that provide
the smallest eigenvalues of the scalar reductions. Corresponding eigenpairs generate quasimodes for the 3D Lamé system by
means of several reconstruction operators, including boundary layer terms. Numerical experiments demonstrate that in many
cases the constructed eigenpair corresponds to the first eigenpair of the Lamé system.

Geometrical conditions are necessary to this approach: The Gaussian curvature has to be nonnegative and the azimuthal
curvature has to dominate the meridian curvature in any point of the midsurface. In this case, the first eigenvector admits
progressively larger oscillation in the angular variable as ε tends to 0. Its angular frequency exhibits a power law relation of the
form k = γ ε−β with β = 1

4 in the parabolic case (cylinders and trimmed cones), and the various βs 2
5 , 3

7 , and 1
3 in the elliptic

case. For these cases where the mathematical analysis is applicable, numerical examples that illustrate the theoretical results
are presented.
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1. Introduction

Shells are three-dimensional thin objects widely addressed in the literature in mechanics, engineering
as well as in mathematics. According to any classical definition, a shell is determined by its midsurface
S and a thickness parameter ε: The shell denoted by �ε is obtained by thickening S on either side by ε

along unit normals to S. Like most of references, we assume that �ε is made of a linear homogeneous
isotropic material and we furthermore consider clamped boundary conditions along its lateral boundary.

In this paper, the behavior of the fundamental vibration mode of such a shell is investigated as ε

tends to 0. We consider free vibration modes, that is, eigenpairs (λ, u) of the 3D Lamé system L in �ε

complemented by suitable boundary conditions. Here λ is the square of the eigenfrequency and u the
eigen-displacement. The thin domain limit ε → 0 pertains to “shell theory”.
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Shell theory consists of finding surface models, i.e., systems of equations posed on S, approximating
the 3D Lamé system L on �ε when ε tends to 0. This approach was started for plates (the case when S
is flat) by Kirchhoff, Reissner and Mindlin see for instance [25,30,34] respectively. When the structure
is a genuine shell for which the midsurface has nonzero curvature, the problem is even more difficult
and was first tackled in the seminal works of Koiter, John, Naghdi and Novozhilov in the sixties [24,26–
28,31,32]. A large literature developed afterwards aimed at laying more rigorous mathematical bases
to shell theory see for instance the works of Sanchez-Palencia, Sanchez-Hubert [35–38], Ciarlet, Lods,
Mardare, Miara [12–14,29] and the book [10], and more recently Dauge, Faou [16,21,22]. Most of these
works apply to the static problem, and the results strongly depend on the geometrical nature of the shell
(namely parabolic, elliptic or hyperbolic according to the Gaussian curvature K of S being zero, positive
or negative).

Much fewer works were devoted to free vibrations of thin shells. Plates were addressed beforehand,
see [11,15]. For shells and more general thin structures, let us quote Soedel [39,40]. To the best of our
knowledge, theoretical works devoted to the asymptotic analysis of eigenmodes in thin elastic shells
were associated with a surface model, such as the Koiter model.

Recall that the Koiter model [26,27] takes the form:

K(ε) = M + ε2B, (1.1)

where M is the membrane operator, B the bending operator, and ε the half-thickness of the shell. These
two operators are 3×3 systems posed on S, acting on 3-component vector fields ζ . When these fields are
represented in surface fitted components ζα and ζ3 (the tangential and normal components), these two
operators display special structures. For plates, they uncouple: M amounts to a 2×2 Lamé system acting
on tangential components ζα and B is a multiple of the biharmonic operator 	2 acting on the sole normal
component ζ3. For general shells, the membrane operator M is of order 2 on tangential components ζα,
but of order 0 on the normal component ζ3. The bending operator B has a complementary role: It is
order 4 on ζ3.

In [35], the essential spectrum of the membrane operator M (the set of λ’s such that M − λ is not
Fredholm) was characterized in the elliptic, parabolic, and hyperbolic cases. The series of papers by
Artioli, Beirão Da Veiga, Hakula and Lovadina [2,3,7] investigated the first eigenvalue of models like
K(ε). Effective results hold for axisymmetric shells with clamped lateral boundary: Defining the order
α of a positive function ε �→ λ(ε), continuous on (0, ε0], by the conditions

∀η > 0, lim
ε→0+ λ(ε)ε−α+η = 0 and lim

ε→0+ λ(ε)ε−α−η = ∞ (1.2)

they proved that α = 0 in the elliptic case, α = 1 for parabolic case, and α = 2
3 in the hyperbolic case.

1.1. Axisymmetric shells

Besides their natural interest in structural mechanics, isotropic axisymmetric shells have the nice prop-
erty that all 3D Lamé eigenpairs (λ, u) can be classified by their azimuthal frequency k (aka angular
frequency). Indeed, the 3D Lamé system L as well as the membrane and bending operators M and B

can be diagonalized by Fourier decomposition with respect to the azimuthal angle ϕ, see [9] for exam-
ple. So, in particular, the azimuthal frequency k(ε) of the first eigenvector makes sense. Based on some
analytical calculations it was known that k(ε) may have a non trivial behavior: Quoting W. Soedel [39]
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Fig. 1. Axisymmetric shell �ε with Cartesian and cylindrical coordinates (left) and the meridian domain ωε with its midcurve
C parametrized by the equation r = f (z) (right).

“[We observe] a phenomenon which is particular to many deep shells, namely that the lowest natural
frequency does not correspond to the simplest natural mode, as is typically the case for rods, beams,
and plates.” In other words, k(ε) is not zero as it would be for a simpler operator like the Laplacian, see
also [9].

For axisymmetric shells Beirao et al. and Artioli et al. [2,3,7] investigated by numerical simulations
the azimuthal frequency k(ε) of the first eigenvector of K(ε): Like in the phenomenon of sensitivity
[35], the lowest eigenvalues are associated with eigenvectors with growing angular frequencies and k(ε)

exhibits a negative power law of type ε−β , for which [3] identifies the exponents β = 1
4 for cylinders

(see also [6] for some theoretical arguments), β = 2
5 for a particular family of elliptic shells, and β = 1

3
for another particular family of hyperbolic shells.

Similarly to the aforementioned publications, we consider here axisymmetric shells whose mid-
surface S is parametrized by a smooth positive function f representing the radius as a function of the
axial variable:

F : I × T −→ S

(z, ϕ) �−→ (
f (z) cos ϕ, f (z) sin ϕ, z

)
.

(1.3)

Here I is the parametrization interval and T is the torus R/2πZ. In Fig. 1 are represented an instance
of 3D shell �ε, together with its meridian domain ωε. The 2D domain ωε has the meridian set C of the
midsurface S as meridian curve.

We focus on cases when sensitivity may show up, i.e., when the azimuthal frequency k(ε) of the first
eigenvector is likely to tend to infinity as the thickness tends to 0. As will be shown, the rules driving
this phenomenon are far to be straightforward, and depend in a non trivial manner on the geometry of
the shell: In the sole elliptic case, we show that there exist at least three distinct power laws for k(ε).
This is the expression of some bending effects and may sound as a paradox since for elliptic shells the
membrane is an elliptic system in the sense of Agmon, Douglis and Nirenberg [1], see [23]. However,
there also exist elliptic shells for which k(ε) remains constant, see the computations for a spherical cap
in [17].

1.2. High frequency analysis

Our departing point is a high frequency analysis (in k) of the membrane operator M on surfaces S
with a parametrization of type (1.3). By the Fourier decomposition naturally induced by the cylindrical
symmetry, we define Mk as the membrane operator acting at the frequency k ∈ N and we perform a
scalar reduction of the eigenproblem by a special factorization in a formal series algebra in powers of
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the small parameter 1
k
. This mathematical tool, developed for cylindrical shells in the PhD thesis [5] of

the first author, reduces the original eigenproblem (which is a 3 × 3 system) to a scalar eigenproblem
posed on the transverse component of the displacement. This way, we can construct in a variety of
parabolic and elliptic cases a new explicit scalar differential operator Hk whose first eigenvalue λ1[Hk]
has a computable asymptotics as k → ∞

λ1
[
Hk
] = h0 + h1k

−η1 + O
(
k−η2

)
, 0 < η1 < η2. (1.4)

In (1.4) all coefficients and exponents depend on shell’s geometry, i.e. on the function f in (1.3). This
leads to a quasimode construction for Mk that is valid for all parabolic shells of type (1.3) and all elliptic
shells with azimuthal curvature dominating. The operator Hk strongly depends on the nature of the shell:{

Hk = k−4H4 in the parabolic case (i.e., when f ′′ = 0),

Hk = H0 + k−2H2 in the elliptic case (i.e., when f ′′ < 0).
(1.5)

with explicit operators H0, H2 and H4, cf. Section 6.1 for formulas. Let us mention at this point that for
hyperbolic shells such a suitable scalar reduction Hk cannot be found.

This membrane scalar reduction induces a Koiter-like scalar reduced operator A(ε) for the shell that
we define at the frequency k by

Ak(ε) = Hk + ε2k4B0 (1.6)

where the function B0 is positive and explicit (k4 corresponding to the leading order in the Fourier
expansion of the bending operator B). Then the lowest eigenvalue of A(ε) is the infimum on all angular
frequencies of the first eigenvalues of Ak(ε):

λ1
[
A(ε)

] = inf
k∈N

λ1
[
Ak(ε)

]
. (1.7)

In all relevant parabolic cases (i.e., cylinders and cones) and a variety of elliptic cases, we prove in this
paper:

(i) The infimum in (1.7) is reached for k = 	k(ε)
, the nearest integer from k(ε), with k(ε) satisfying
a power law of the form

k(ε) = γ ε−β + O
(
ε−β ′)

, 0 � β ′ < β, (1.8)

with β depending only on f and γ positive. The exponent β is calculated so to equilibrate k−η1

(cf. (1.4)) and ε2k4 ≡ k4−2/β , which yields:

β = 2

4 + η1
. (1.9)

(ii) The smallest eigenvalue of the reduced scalar model A(ε) has an asymptotic expansion of the
form, as ε → 0

λ1
[
A(ε)

] = a0 + a1ε
α1 + O

(
εα2
)
, 0 < α1 < α2, (1.10)
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where a0 coincides with the coefficient h0 present in (1.4) and α1 is given by the formula (replace
k with ε−β into the term k−η1 in (1.4))

α1 = η1β = 2η1

4 + η1
. (1.11)

(iii) The corresponding eigenvector η0[A(ε)] has a multiscale expansion in variables z and ϕ that
involves 1 or 2 scales in z (including or not boundary layers), depending on the parametrization
f , i.e. on the geometry of S.

Once the asymptotic expansions for the Koiter scalar reduced operator A(ε) is resolved we construct
quasimodes for the full Koiter model K(ε). Then, by energy estimates linking surfacic and 3D models
similar to those of [16], we find a sort of quasi-eigenvector uε whose Rayley quotient provides an
asymptotic upper bound m1(ε) for the first eigenvalue λ1[L(ε)] of the 3D Lamé system L in the shell �ε.
This upper bound is given by the first two terms in (1.10):

m1(ε) = a0 + a1ε
α1 . (1.12)

To make the analysis more complete, we perform numerical simulations. They aim at comparing true
eigenpairs with quasimodes (m1(ε), uε). To this end computations are performed at three different lev-
els:

(1D) We calculate a0, a1 of (1.10) and γ of (1.8). We either use explicit analytical formulas when
available, or compute numerically the spectrum of the 1D scalar reduced operators Ak(ε)

through a 1D finite element method applied to an auxiliary operator.
(2D) The Fourier decomposition of the 3D Lamé system L in the shell �ε provides a family Lk,

k ∈ N, of 3 × 3 systems posed on the 2D meridian domain ωε. We discretize these systems
by a 2D finite element method in ωε for collections of integers k ∈ {0, 1, . . . , Kε} depending
on the thickness ε, and compute the lowest eigenvalue λ1[Lk(ε)]. This procedure provides an
approximation of λ1[L(ε)] and of k(ε) through the formula

λ1
[
L(ε)

] = Kε

min
k=0

λ1
[
Lk(ε)

]
and k(ε) = arg

Kε

min
k=0

λ1
[
Lk(ε)

]
.

This method is a Fourier spectral discretization of the 3D problem. Note that in [3] a 1D Fourier
spectral method is used for the discretization of the surfacic Koiter and Naghdi models.

(3D) We compute the first eigenvalue λ1[L(ε)] of the 3D Lamé system L in the shell using directly a
3D finite element method in �ε.

This combination of simulations show that, in a number of cases, the theoretical quasimode (m1(ε), uε)

is a good approximation of the true first eigenpair of L(ε).

1.3. Specification in the parabolic and elliptic cases

In the Lamé system we use the engineering notations of the material parameters: E is the Young
modulus and ν is the Poisson ratio. The shells to which our analysis apply are uniquely defined by the
function f and the interval I in (1.3). The inverse parametrization (the axial variable function of the
radius) would not provide distinct cases where our analysis is applicable.



AUTHOR  C
OPY

6 M. Chaussade-Beaudouin et al. / Free vibrations of axisymmetric shells: Parabolic and elliptic cases

• The parabolic cases are those for which f ′′ = 0 on I. So f is affine. The midsurface S is devel-
opable. We classify parabolic cases in two types:

(1) ‘Cylinder’ f is constant;
(2) ‘Cone’ f is affine and not constant.

• The elliptic cases are those for which f ′′ < 0 on I. To conduct our analysis, we assume moreover
that the azimuthal curvature dominates the meridian curvature (admissible cases), which amounts
to

1 + f ′2 + ff ′′ � 0. (1.13)

We discriminate admissible elliptic cases by the behavior of the function H0 that is the first term of the
scalar reduction Hk, cf. (1.5),

H0 = E
f ′′2

(1 + f ′2)3
, (1.14)

classifying them in three generic types:

(1) ‘Toroidal’ H0 is constant.
(2) ‘Gauss’ H0 is not constant and reaches its minimum at z0 inside I and not on its boundary ∂I,

with the exception of cases for which H′′
0 or 1 + f ′2 + ff ′′ are zero at z0.

(3) ‘Airy’ H0 is not constant and reaches its minimum at z0 in the boundary ∂I, with the exception of
cases for which H′

0 or 1 + f ′2 + ff ′′ are zero at z0.

We summarize in Table 1 our main theoretical results on the exponents η1, β, α1, on the azimuthal
frequency k(ε), and on the quasi-eigenvalue (qev) m1(ε). The exponents α of [2] are confirmed (1 in the
parabolic cases and 0 in the elliptic cases). Inspired by [3], we mention in the table the factor R repre-
senting the ratio (Bending Energy)/(Total Energy). This ratio is asymptotically represented by, cf. (1.6)

R = ε2k4〈B0η0, η0〉
〈Ak(ε)η0, η0〉 for k = k(ε) and η0 the corresponding eigenvector of Ak(ε). (1.15)

The names of models used for numerical simulations are also mentioned in this table, whereas in Fig. 2
we represent these models in their 3D version for ε = 0.2.

Table 1

Summary of exponents η1, β, α1, frequency k(ε), qev m1(ε) and ratio of energies R (1.15). Coefficients γ and δ are determined
by the 1D reduction

Type (Model) η1 β α1 a0 a1 k(ε) m1(ε) R

PARABOLIC

‘Cylinder’ (A) 4 1
4 1 0 explicit wrt 1D ev’s γ ε−1/4 a1ε

1
2

‘Cone’ (B) 4 1
4 1 0 optimization of 1D ev’s γ ε−1/4 a1ε

1
2

ELLIPTIC

‘Toroidal’ (D) 2 1
3

2
3 H0 optimization of 1D ev’s γ ε−1/3 a0 + a1ε

2/3 δε2/3

‘Gauss’ (H) 1 2
5

2
5 H0(z0) explicit γ ε−2/5 a0 + a1ε

2/5 δε2/5

‘Airy’ (L) 2
3

3
7

2
7 H0(z0) explicit γ ε−3/7 a0 + a1ε

2/7 δε2/7
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Fig. 2. The five models A, B, D, H, L, used for computations (here ε = 0.2).

1.4. Overview of main notation. Plan of the paper

To relieve the complexity of notation, we gather here some definitions relating to coordinate systems,
operators, and spectrum, before presenting the plan of the paper.

1.4.1. Coordinates
We use three systems of coordinates:

• Cartesian coordinates t = (t1, t2, t3) ∈ R
3 with coordinate vectors Et1 , Et2 , Et3 .

• Cylindrical coordinates (r, ϕ, τ ) ∈ R
+ × T × R related to Cartesian coordinates by relations

(t1, t2, t3) = T (r, ϕ, τ ) with t1 = r cos ϕ, t2 = r sin ϕ, t3 = τ. (1.16)

The coordinate vectors associated with the transformation T are Er = ∂rT , Eϕ = ∂ϕT , and Eτ =
∂τT . We have

Er = Et1 cos ϕ + Et2 sin ϕ, Eϕ = −rEt1 sin ϕ + rEt2 cos ϕ and Eτ = Et3 . (1.17)

• Normal coordinates (x1, x2, x3), specified as (z, ϕ, x3) in our case. Such coordinates are related to
the surface S and a chosen unit normal field N to S. The variable x3 is the coordinate along N. The
variables (x1, x2), specified as (z, ϕ) in our case, parametrize the surface. The full transformation
F : (z, ϕ, x3) �→ (t1, t2, t3) sends the product I × T × (−ε, ε) onto the shell �ε and is explicitly
given by

t1 =
(

f (z)+x3
1

s(z)

)
cos ϕ, t2 =

(
f (z)+x3

1

s(z)

)
sin ϕ, t3 = z−x3

f ′(z)
s(z)

, (1.18)

where s = √
1 + f ′2. The restriction of F on the surface S (corresponding to x3 = 0) gives back

F (1.3). The coordinate vectors associated with the transformation F are ∂zF =: Ez, ∂ϕT that
coincides with Eϕ above, and ∂3F =: E3. On the surface S, x3 = 0 and E3 coincides with N,
whereas Ez and Eϕ are tangent to S.

These three systems of coordinates determine the contravariant components of a displacement u in
each of these systems by identities

u = ut1Et1 + ut2Et2 + ut3Et3 = urEr + uϕEϕ + uτ Eτ = uzEz + uϕEϕ + u3E3. (1.19)
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The cylindrical and normal systems of coordinates are suitable for angular Fourier decomposition
T � ϕ �→ k ∈ Z. The Fourier coefficient of rank k of a function u is denoted by uk

uk = 1

2π

∫ 2π

0
u(ϕ)e−ikϕ dϕ. (1.20)

For functions on �ε, the Fourier coefficients are defined on the meridian domain ωε ⊂ R
2 of �ε.

Concerning 3D displacements u defined on �ε or surface displacements ζ defined on S, we have
first to expand them in a suitable system of coordinates (cylindric or normal) and then calculate Fourier
coefficients of their components, see [9]: for instance

uk = (ur
)k

Er + (uϕ
)k

Eϕ + (uτ
)k

Eτ with
(
ur
)k

(r, τ ) = 1

2π

∫ 2π

0
ur (r, ϕ, τ )e−ikϕ dϕ, . . .

ζ k = (ζ z
)k

Ez + (ζ ϕ
)k

Eϕ + (ζ 3
)k

N with
(
ζ z
)k

(z) = 1

2π

∫ 2π

0
ζ z(z, ϕ)e−ikϕ dϕ, . . .

(1.21)

1.4.2. Operators
We manipulate a collection of operators and their Fourier symbols. The Lamé system L acting on 3D

displacements u defined on the shell �ε is particularized as L(ε). After angular Fourier decomposition,
we obtain the family of 3 × 3 operators Lk(ε) defined on the meridian domain ωε. On the surface
S we have the membrane, bending and Koiter operators M, B and K(ε). They act on 3-component
surface displacements ζ . On the meridian curve C of S, we have the corresponding families Mk, Bk

and Kk(ε). Finally, on the meridian curve C, we have our scalar reductions Hk and Ak(ε) = Hk +
ε2k4B0 acting on functions η. We go from a higher model to a lower one by reduction, and the converse
way by reconstruction. For instance we go from u to ζ by restriction to S. The converse way uses the
reconstruction operator U (2.12). For any chosen integer k, we go from ζ k to ηk by selecting the normal
component of ζ k. The converse way uses the reconstruction operators V[k] that we will construct.

1.4.3. Spectrum
We denote by σ(A) and σess(A) the spectrum and the essential spectrum of a selfadjoint operator A,

respectively, which means the set of λ’s such that A− λ is not invertible and not Fredholm, respectively.
If moreover, A is non-negative we denote by λ1[A] its lowest eigenvalue.

1.4.4. Outline
After the present introduction, we revisit in Section 2 the linear shell theory in general with a brief

introduction of 3D (Lamé) and surfacic (Koiter, membrane, bending) problems, and in Section 3 we
particularize formulas for axisymmetric shells. In Section 4 we set the principles of the high frequency
analysis, in Section 5 and 6 we address more particularly the parabolic and elliptic cases, respectively. In
Section 7 we present numerical experiments addressing a model for each of the five main types described
above. We conclude in Section 8. We provide in Appendix A details on the factorization in formal series
leading to the scalar reduction and in Appendix B variational formulations in the meridian domain ωε of
the Fourier operator coefficients Lk of the 3D Lamé system.
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2. Essentials on shell theory

Recall that Cartesian coordinates of a point P ∈ R
3 are denoted by t = (t1, t2, t3). A shell �ε is a

three-dimensional object defined by its midsurface S and its thickness parameter ε in the following way:
We assume that S is smooth and orientable, so that there exists a smooth unit normal field P �→ N(P) on
S and so that for ε > 0 small enough the following map is one to one and smooth

� : S × (−ε, ε) → �ε

(P, x3) �→ t = P + x3N(P).
(2.1)

The boundary of �ε has two parts:

(1) Its lateral boundary ∂0�
ε := �(∂S × (−ε, ε)).

(2) The rest of its boundary (natural boundary) ∂1�
ε := ∂�ε \ ∂0�

ε.

2.1. 3D vibration modes

On the domain �ε, we consider the Lamé operator associated with an isotropic and homogeneous
material with Young coefficient E and Poisson coefficient ν. This means that the material tensor is given
by

Aijk� = Eν

(1 + ν)(1 − 2ν)
δij δk� + E

2(1 + ν)

(
δikδj� + δi�δjk

)
. (2.2)

For clamped boundary conditions the variational space is

V
(
�ε
) := {u = (ut1, ut2, ut3) ∈ H 1

(
�ε
)3

, u = 0 on ∂0�
ε
}
. (2.3)

For a given displacement field u let eij (u) = 1
2(∂iutj + ∂j uti ) be the strain tensor, where ∂i stands for the

partial derivative with respect to ti . The Lamé energy scalar product between two displacements u and
u∗ is given by

aε
L

(
u, u∗) =

∫
�ε

Aijk�eij (u)ek�

(
u∗) d�ε, (2.4)

using the summation convention of repeated indices. The three-dimensional modal problem can be writ-
ten in variational form as: Find (u, λ) in V (�ε) × R with u �= 0 such that

∀u∗ ∈ V
(
�ε
)
, aε

L

(
u, u∗) = λ

∫
�ε

uti u∗
ti

d�ε. (2.5)

The strong formulation of (2.5) can be written as L(ε)u = λu, where L(ε) is the Lamé system

L = − E

2(1 + ν)(1 − 2ν)

(
(1 − 2ν)	 + ∇ div

)
(2.6)
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set on �ε and associated with Dirichlet BC’s on ∂0�
ε and natural BC’s on the rest of the boundary.

Its spectrum σ(L(ε) is discrete and positive. Let λ1[L(ε)] be its first eigenvalue. It is obtained by the
minimum Rayleigh quotient

λ1
[
L(ε)

] = min
u∈V (�ε)

aε
L(u, u)

‖u‖2
L2(�ε)

.

2.2. Surfacic shell models

The key operators of the reduction to the midsurface S, namely the membrane and bending opera-
tors, are defined via intrinsic geometrical objects attached to S. To introduce them, we need generic
parametrizations F : (xα)α∈1,2 → t acting from maps neighborhoods V into the midsurface S. Associ-
ated tangent coordinate vector fields are

Eα = ∂αF , α = 1, 2 with ∂α = ∂

∂xα

.

Completed by the unit normal field N they form a basis {E1, E2, N} in each point of S. The metric tensor
(aαβ) and the curvature tensor (bαβ) are given by

aαβ = 〈Eα, Eβ〉 and bαβ = 〈∂αβF , N〉.

Denoting by (aαβ) the inverse of (aαβ), the curvature (symmetric) matrix is defined by(
bα

β

)
with bα

β = aαγ bγβ.

The eigenvalues κ1 and κ2 of the matrix (bα
β) are called the principal curvatures of S and their product

is the Gaussian curvature K . Here comes the classification of shells: If K ≡ 0, the shell is parabolic, if
K > 0, the shell is elliptic, if K < 0, the shell is hyperbolic. Finally let R denote the minimal radius of
curvature of S

R = inf
P∈S
{
min
{∣∣κ1(P)

∣∣−1
,
∣∣κ2(P)

∣∣−1}}
. (2.7)

The basis {Eα, N} determines contravariant components (ζ α, ζ 3) of a vector field ζ on S:

ζ = ζ ti Eti = ζ αEα + ζ 3N.

The covariant components are (ζα, ζ3) with ζα = aαβζ β and ζ3 = ζ 3. The surfacic rigidity tensor on S
is given by

Mαβσδ = νE

1 − ν2
aαβaσδ + E

2(1 + ν)

(
aασ aβδ + aαδaβσ

)
.

Note that, even if S is flat (aαβ = δαβ), M is different than the 3D rigidity tensor A.
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2.2.1. Membrane operator
The variational space associated with the membrane operator is

VM(S) = H 1
0 (S) × H 1

0 (S) × L2(S). (2.8)

For an element ζ = (ζα, ζ3) in VM(S), the change of metric tensor γ = γαβ(ζ ) is given by

γαβ(ζ ) = 1

2
(Dαζβ + Dβζα) − bαβζ3,

where Dα is the covariant derivative on S, see [19,20,41]. The membrane energy scalar product is defined
as

aM

(
ζ , ζ ∗) =

∫
S

Mαβσδγαβ(ζ )γσδ

(
ζ ∗) dS.

Here the volume form dS is
√| det(aαβ)| dx1 dx2. The variational formulation of the modal problem

associated with the membrane operator M is given by
Find (ζ , �) with ζ ∈ VM(S) \ {0} and � ∈ R such that for all ζ ∗ ∈ VM(S),

aM

(
ζ , ζ ∗) = �

∫
S

(
ζ βζ ∗

β + ζ 3ζ ∗
3

)
dS. (2.9)

2.2.2. Bending operator and Koiter model
The variational space associated with the bending operator is

VB(S) = H 1
0 (S) × H 1

0 (S) × H 2
0 (S). (2.10)

For an element ζ = (ζα, ζ3) in VB(S), the change of curvature tensor ρ = ραβ(ζ ) is given by

ραβ(ζ ) = DαDβζ3 + Dα

(
bδ

βζδ

)+ bδ
αDβζδ − bδ

αbβδζ3.

The bending operator B acts on the variational space VB(S) and its energy scalar product is

aB

(
ζ , ζ ∗) = 1

3

∫
S

Mαβσδραβ(ζ )ρσδ

(
ζ ∗) dS.

For any positive ε, the Koiter operator K(ε) is defined as M+ ε2B. It can be shown, see [8], that K(ε)

is elliptic with multi-order on VB(S) in the sense of Agmon–Douglis–Nirenberg [1]. The corresponding
Koiter energy scalar product is

aε
K

(
ζ , ζ ∗) = 2εaM

(
ζ , ζ ∗)+ 2ε3aB

(
ζ , ζ ∗). (2.11)



AUTHOR  C
OPY

12 M. Chaussade-Beaudouin et al. / Free vibrations of axisymmetric shells: Parabolic and elliptic cases

2.3. Reconstruction operators from the midsurface to the shell

The parametrizations of the midsurface induce local system of normal coordinates (xα, x3) inside the
shell and, correspondingly, the covariant components uα and u3 of a displacement u. The rationale of
the shell theory is to deduce by an explicit procedure a solution u of the 3D Lamé system posed on the
shell from a solution ζ of the Koiter model posed on the midsurface. This is done via a reconstruction
operator U, cf. [27,28] and [16]. With any displacement ζ (xα) defined on the midsurface S, U associates
a 3D displacement u depending on the three coordinates (xα, x3) in �ε. The operator U is defined by

U = T ◦ W (2.12)

where W is the shifted reconstruction operator

Wζ =
{

ζσ − x3(Dσ ζ3 + bα
σ ζα),

ζ3 − ν
1−ν

x3γ
α
α (ζ ) + ν

2−2ν
x2

3ρ
α
α (ζ ),

(2.13)

and T : ζ �→ Tζ is the shifter defined as (Tζ )σ = ζσ − x3b
α
σ ζα and (Tζ )3 = ζ3, see [31]. The Koiter

elastic energy of ζ is a good approximation of the 3D elastic energy of Uζ , cf. [16, Theorem A.1]: For
any ζ ∈ (H 2 × H 2 × H 3) ∩ VB(S), there holds, with non-dimensional constant A

∣∣aε
K(ζ , ζ ) − aε

L(Uζ , Uζ )
∣∣ � Aaε

K(ζ , ζ )

(
ε

R
+ ε2

L2

)
, (2.14)

where R is the minimal radius of curvature (2.7) of S, and L is the wave length for ζ defined as the
largest constant such that the following “inverse estimates” hold

L|γ |H 1(S) � ‖γ ‖L2(S) and L|ρ|H 1(S) � ‖ρ‖L2(S). (2.15)

Note that for ζ ∈ VB(S), the first two components of Uζ satisfy the Dirichlet condition on ∂0�
ε, whereas

the third one does not need to satisfy it. In order to remedy that, we add a corrector term ucor to Wζ to
compensate for the nonzero trace g = − ν

1−ν
x3γ

α
α (ζ ) + ν

2−2ν
x2

3ρ
α
α (ζ )|∂S . This corrector term is con-

structed and its energy estimated in [16, Section 7]. It has a simple tensor product form and exhibits the
typical 3D boundary layer scale d/ε with d = dist(P, ∂0�

ε):

ucor =
(

0, 0, gχ

(
d

ε

))�
with χ ∈ C∞

0 (R), χ(0) = 1.

“True” boundary layer terms live at the same scale, decay exponentially, but have a non-tensor form in
variables (d, x3), see [15,18] for plates and [22] for elliptic shells. Nevertheless this expression for ucor

suffices to obtain good estimates: There holds

aε
L

(
ucor, ucor

)
� Aaε

K(ζ , ζ )

(
ε

�
+ ε3

�3

)
,

for � the lateral wave length of ζ defined as the largest constant such that

�|γ |2
L2(∂S)

+ �3|γ |2
H 1(∂S)

� ‖γ ‖2
L2(S)

and �|ρ|2
L2(∂S)

+ �3|ρ|2
H 1(∂S)

� ‖ρ‖2
L2(S)

. (2.16)
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Example 2.1. Let G in H 2(R+) be such that G ≡ 0 for t � 1. Let k ∈ N and 0 < τ < τ0 for τ0 small
enough. The function g(z, ϕ) defined on S as

g(z, ϕ) = eikϕG

(
d

τ

)
satisfies the estimates L|g|H 1(S) � ‖g‖L2(S) and �|g|2

L2(∂S)
+ �3|g|2

H 1(∂S)
� ‖g‖2

L2(S)
for L and � larger

than c(G) min{τ, k−1} where the positive constant c(G) is independent of τ and k.

In the present work, we are interested in comparing surfacic and 3D Rayleigh quotients so we intro-
duce the following notations

Qε
L(u) = aε

L(u, u)

‖u‖2
L2(�ε)

and Qε
K(ζ ) = aε

K(ζ , ζ )

2ε‖ζ‖2
L2(S)

.

By similar inequalities as in [16] we can prove the following relative estimate

Theorem 2.2.

(i) For all ζ ∈ (H 2 × H 2 × H 3) ∩ VB(S) and with U defined in (2.12) we set

◦
Uζ = Uζ − ucor.

Then
◦
Uζ belongs to the 3D variational space V (�ε). With L and � the wave lengths (2.15) and

(2.16), let us assume ε � L and ε � �. We also assume Qε
K(ζ ) � EM for a chosen constant

M � 1 independent of ε. Then we have the relative estimates between Rayleigh quotients for ε

small enough

∣∣Qε
K(ζ ) − Qε

L(
◦
Uζ )

∣∣ � A′Qε
K(ζ )

(
ε

R
+ ε2

L2
+
(

ε

�

)1/2

+ ε
√

M

)
, (2.17)

with a constant A′ independent of ε and ζ .
(ii) If ζ belongs to (H 2

0 × H 2
0 × H 3

0 )(S), the boundary corrector ucor is zero and the above estimates
do not involve the term

√
ε/� any more.

This theorem allows to find upper bounds for the first 3D eigenvalue λε
1 if we know convenient energy

minimizers ζ ε for the Koiter model K(ε) and if we have the relevant information about their wave
lengths.

3. Axisymmetric shells

An axisymmetric shell is invariant by rotation around an axis that we may choose as t3. Recall that
(r, ϕ, τ ) ∈ R

+ ×T×R denote associated cylindrical coordinates satisfying relations (1.16) and coordi-
nate vectors are Er , Eϕ , and Eτ given by (1.17). Accordingly, the (contravariant) cylindrical components
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of a displacement u = uti Eti are (ur , uϕ, uτ ) so that u = urEr + uϕEϕ + uτ Eτ . In particular the radial
component of u is given by

ur = ut1 cos ϕ + ut2 sin ϕ. (3.1)

The components uϕ and uτ are called azimuthal and axial, respectively.
An axisymmetric domain � ⊂ R

3 is associated with a meridian domain ω ⊂ R
+ × R so that

� = {x ∈ R
3, (r, τ ) ∈ ω and ϕ ∈ T

}
. (3.2)

3.1. Axisymmetric parametrization

For a shell �ε that is axisymmetric, let ωε be its meridian domain. The midsurface S of �ε is axisym-
metric too. Let C be its meridian domain. We have a relation similar to (2.1)

� : C × (−ε, ε) � ((r, τ ), x3
) �−→ (r, τ ) + x3N(r, τ ) ∈ ωε. (3.3)

The meridian midsurface C is a curve in the halfplane R
+ × R.

Assumption 3.1. Let I denote any bounded interval and let z be the variable in I.
(i) The curve C can be parametrized by one map defined on I by a smooth function f :

I −→ C

z �−→ (r, τ ) = (f (z), z
) with f : z �→ r = f (z). (3.4)

(ii) The shells are disjoint from the rotation axis, i.e., there exists Rmin > 0 such that f � Rmin.

Remark 3.2. We impose condition (ii) to avoid technical difficulties due to the singularity at the origin.
We have observed that, if we keep this condition, the inverse parametrization z = g(r) does not bring
new examples in the framework that we investigate in this paper. For instance annular plates pertain to
this inverse parametrization, but they fall in [15] that provides a complete eigenvalue asymptotics.

The parametrization (3.4) of the meridian curve C provides a parametrization of the meridian domain
ωε by I × (−ε, ε): Let us introduce the arc-length

s(z) =
√

1 + f ′(z)2, z ∈ I. (3.5)

The unit normal vector N to C at the point (r, τ ) = (f (z), z) is given by ( 1
s(z)

, −f ′(z)
s(z)

) and the
parametrization by

I × (−ε, ε) � (z, x3) �−→
(

f (z) + x3
1

s(z)
, z − x3

f ′(z)
s(z)

)
∈ ωε.

The parametrization (3.4) also induces the parametrization F (1.3) of the midsurface S by the variables
(z, ϕ) ∈ I × T. The unit normal vector N to S at the point F(z, ϕ) is given by

N = s(z)−1
(
Er − f ′(z)Eτ

)
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while tangent coordinate vectors are Ez = ∂zF and Eϕ = ∂ϕF , i.e.

Ez = f ′(z)Er + Eτ

while Eϕ coincides the coordinate vector of same name corresponding to cylindrical coordinates (1.17).
The metric tensor (aαβ) is given by 〈Eα, Eβ〉 with α, β ∈ {z, ϕ}, i.e.(

azz azϕ

aϕz aϕϕ

)
(z) =

(
s(z)2 0

0 f (z)2

)
. (3.6)

The curvature tensor and Gaussian curvature K are respectively given by(
bz

z bz
ϕ

bϕ
z bϕ

ϕ

)
(z) =

(
f ′′(z)s(z)−3 0

0 −f (z)−1s(z)−1

)
and K(z) = − f ′′(z)

f (z)s(z)4
. (3.7)

So the curvature tensor is in diagonal form, and K is simply the product of its diagonal elements.

Definition 3.3. We call bz
z the meridian curvature and bϕ

ϕ the azimuthal curvature.

Since we have assumed that f � R0 > 0, all terms are bounded and we find that

(1) If f ′′ ≡ 0, i.e. f is affine, the shell is (nondegenerate) parabolic. If f is constant, the shell is a
cylinder, if not it is a truncated cone (without conical point!).

(2) If f ′′ < 0, the shell is elliptic.
(3) If f ′′ > 0, the shell is hyperbolic.

3.2. Surfacic axisymmetric models in normal coordinates

Relations (1.3) and (2.1) define normal coordinates (z, ϕ, x3) in the thin shell �ε. For example when
the midsurface S is a cylinder (f constant), the normal coordinates are a permutation of standard coordi-
nates: (z, ϕ, x3) = (τ, ϕ, r). The associate (contravariant) decomposition of surface displacement fields
ζ is written as ζ = ζ zEz + ζ ϕEϕ + ζ 3N, where ζ 3 is the component of the displacement in the normal
direction N to the midsurface, ζ z and ζ ϕ the meridian and azimuthal components respectively, defined
so that there holds

ζ t1Et1 + ζ t2Et2 + ζ t3Et3 = ζ zEz + ζ ϕEϕ + ζ 3N.

Note that the azimuthal component is the same as defined by cylindrical coordinates. The covariant
components are

ζz = s2ζ z, ζϕ = f 2ζ ϕ, and ζ3 = ζ 3.

The change of metric tensor γαβ(ζ ) has the expression in normal coordinates

γzz(ζ ) = ∂zζz − f ′f ′′

s2
ζz − f ′′

s
ζ3
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γzϕ(ζ ) = 1

2
(∂zζϕ + ∂ϕζz) − f ′

f
ζϕ (3.8)

γϕϕ(ζ ) = ∂ϕζϕ + ff ′

s2
ζz + f

s
ζ3,

while the change of curvature tensor ραβ(ζ ) is written as

ρzz(ζ ) = ∂2
z ζ3 − f ′′2

s4
ζ3 + 2f ′′

s3
∂zζz + f ′′′s2 − 5f ′f ′′2

s5
ζz

ρϕϕ(ζ ) = ∂2
ϕζ3 − 1

s2
ζ3 − 2

f s
∂ϕζϕ − 2f ′

s3
ζz (3.9)

ρzϕ(ζ ) = ∂zϕζ3 + f ′′

s3
∂ϕζz − 1

f s
∂zζϕ + 2f ′

f 2s
ζϕ.

4. Principles of construction: High frequency analysis

The construction is based on the following postulate:

Postulate 4.1. The eigenmodes associated with the smallest vibrations are strongly oscillating in the
angular variable ϕ and this oscillation is dominating.

This means that if this postulate happens to be true for certain families of shells, our construction
will provide rigorous quasimodes and, moreover, these quasimodes are candidates to be associated with
lowest energy eigenpairs. We may notice that Postulate 4.1 is wrong for planar shells. But it appears to
be true for nondegenerate parabolic shells and some subclasses of elliptic shells.

4.1. Angular Fourier decomposition

We can perform a discrete Fourier decomposition in the shell �ε ≡ ωε × T and in its midsurface
S ≡ C × T ∼= I × T. For a displacement u defined on �ε, and its Fourier coefficient of order k ∈ Z is
denoted by uk and defined on ωε, see (1.21). Likewise, a surface displacement ζ defined on S, and its
Fourier coefficient of order k is denoted by ζ k and defined on the curve C. This Fourier decomposition
diagonalizes the Lamé system L with respect to the angular modes eikϕ , k ∈ Z, due to the relation:

(Lu)k = Lkuk.

Similar properties hold with the membrane and bending operators M and B defined on the spaces
VM(S) and VB(S), composing the Koiter operator K(ε). Recall from Section 1.4.2 that Lk(ε), Mk, Bk

and Kk(ε), are the angular Fourier decomposition of L(ε), M, B and K(ε), respectively.
The (non decreasing) collections of the eigenvalues of Lk(ε) for all k ∈ Z gives back all eigenvalues

of L(ε). Note that since L is real valued, the eigenvalues for k and −k are identical. Thus λ1[L(ε)] =
infk∈N λ1[Lk(ε)] and we denote by k(ε) the smallest natural integer k such that

λ1
[
L(ε)

] = λ1
[
Lk(ε)(ε)

]
.

Postulate 4.1 means that k(ε) → ∞ as ε → 0.
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4.2. High frequency analysis of the membrane operator

The eigenmode membrane equation (2.9) at azimuthal frequency k takes the form

Mkζ k = �kAζ k (4.1)

where A is the mass matrix

A =
⎛⎝azz 0 0

0 aϕϕ 0
0 0 1

⎞⎠ =
⎛⎝s−2 0 0

0 f −2 0
0 0 1

⎞⎠ . (4.2)

We construct quasimodes for Mk as k → ∞, i.e. pairs (�̆k, ζ̆ k) with ζ̆ k in the domain of the operator
Mk and satisfying the estimates∥∥(Mk − �̆k

)
ζ̆ k
∥∥

L2(S)
� δ(k)

∥∥ζ̆ k
∥∥

L2(S)
with δ(k)/�̆k → 0 as k → ∞.

Now we consider the membrane operator as a formal series with respect to k

Mk = k2M0 + kM1 + M2 ≡ M[k], with M[k] = k2
∑
n∈N

k−nMn, (4.3)

and try to solve (4.1) in the formal series algebra:

M[k]ζ [k] = �[k]Aζ [k]. (4.4)

Here the multiplication of formal series is the Cauchy product: For two formal series a[k] = ∑n k−nan

and b[k] = ∑
n k−nbn, the coefficients of the series a[k]b[k] = ∑

n k−ncn are given by cn =∑
�+m=n a�bm.
The director M0 of the series M[k] is given in parametrization r = f (z) by

M0 = E

1 − ν2

⎛⎝ 1−ν

2f 2s2 0 0

0 1
f 4 0

0 0 0

⎞⎠ . (4.5)

Its kernel is given by all triples ζ of the form (0, 0, ζ3)
�. This is the reason why we look for a reduction

of the eigenvalue problem for M to a scalar eigenvalue problem set on the normal component ζ3. The key
is a factorization process in the formal series algebra proved in [5, Chap. 3],

M[k]V[k] − �[k]AV[k] = V0 ◦ (H[k] − �[k]). (4.6)

Here V[k] is a (formal series of) reconstruction operators whose first term V0 is the embedding V0η =
(0, 0, η)� in the kernel of M0, and H[k] is the scalar reduction.
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Theorem 4.2. Let be a formal series with real coefficients:

�[k] =
∑
n�0

k−n�n.

For n � 1, there exist operators Vn,z, Vn,ϕ : C∞(I) → C∞(I) of order n − 1, polynomial in �j , for
j � n − 3, and for n � 0 scalar operators Hn : C∞(I) → C∞(I) of order n, polynomial in �j , for
j � n − 2 such that if we set:

V[k] =
∑
n�0

k−nVn with Vn = (Vn,z, Vn,ϕ, 0)� and H[k] =
∑
n�0

k−nHn

we have (4.6) in the sense of formal series.

See Appendix A for more details on this theorem.
With the scalar reduction H[k] is associated the formal series problem

H[k]η[k] = �[k]η[k] (4.7)

where η[k] = ∑
n�0 k−nηn is a scalar formal series. The previous theorem shows that any solution to

(4.7) provides a solution ζ [k] = V[k]η[k] to (4.4).
The cornerstone of our quasimodes construction for Mk as k → ∞ is to construct a solution η[k] of

the problem (4.7). This relies on the possibility to extract an elliptic operator Hk with compact resolvent
from the first terms of the series H[k] as we describe in several geometrical situations later on.

Remark 4.3. The essential spectrum σess(M
k) of the membrane operator Mk at frequency k can be

determined explicitly thanks to [4, Th. 4.5]. It depends only on its principal part, which coincides with the
(multi-degree) principal part of M2, and is given by the range of E

f (z)2s(z)2 for z ∈ I, see [5, Section 2.7]
for details. With formula (3.7), we note the relation with the azimuthal curvature

σess

(
Mk

) = {Ebϕ
ϕ(z)2, z ∈ I

}
. (4.8)

As a consequence of Assumption 3.1, the minimum of σess(M
k) is positive.

4.3. High frequency analysis of the Koiter operator

Similar to the membrane operator M[k], the bending operator expands as

Bk = k4B0 +
4∑

n=1

k4−nBn ≡ B[k],

with first term

B0 =
⎛⎝0 0 0

0 0 0
0 0 B0

⎞⎠ with B0 = E

1 − ν2

1

3f 4
. (4.9)
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We notice that we have the commutation relation

B0V[k] = V0B0.

Therefore the identity (4.6) implies for all ε the identity(
M[k] + ε2k4B0

)
V[k] − �[k]AV[k] = V0 ◦ (H[k] + ε2k4B0 − �[k]). (4.10)

Thus the same factorization as for the membrane operator will generate the quasimode constructions
for the Koiter operator as soon as the higher order terms of Bk correspond to perturbation terms. This
is related to Postulate 4.1. The identity (4.10) motivates the formula (1.6) defining the reduced Koiter
operator Ak(ε) = Hk+ε2k4B0. In the following two sections we provide Ak(ε) and its lowest eigenvalues
in several well defined cases.

5. Nondegenerate parabolic case

We assume in addition to Assumption 3.1

f (z) = T z + R0, z ∈ I, with R0 > 0, T ∈ R. (5.1)

If T = 0, the corresponding surface S is a cylinder of radius R0 and the minimal radius of curvature
R (2.7) equals to R0. So we write f = R in the cylinder case. If T �= 0, the surface S is a truncated
cone. The arc length (3.5) is s = √

1 + T 2. In this section, we address successively the membrane scalar
reduction, the Koiter scalar reduction, and finally the reconstruction of quasimodes into the shell �ε,
providing an upper bound for λ1[L(ε)].
5.1. Membrane scalar reduction in the parabolic case

The first terms Hn of the scalar formal series reduction of the membrane operator have been explicitly
calculated in [5] in the cylindrical case T = 0 and have the following expression in the general parabolic
case:

H0 = H1 = H2 = H3 = 0 and H4(z, ∂z) = E

(
f 2

s6
∂4
z + 6f ′f

s6
∂3
z + 6f ′2

s6
∂2
z

)
. (5.2)

It is relevant to notice that H4 is selfadjoint on H 2
0 (I) with respect to the natural measure dI =

f (z)s(z) dz, since there holds

〈
H4η, η∗〉

I = E

(1 + T 2)3

∫
I

f (z)2∂2
z η∂2

z η
∗ dI. (5.3)

This also proves that H4 is positive. The Dirichlet boundary conditions η = ∂zη = 0 on ∂I are the right
conditions to implement the membrane boundary condition ζα = 0 on ∂I through the reconstruction op-
erators Vn, see (A.6)–(A.7). The eigenvalue formal series �[k] starts with �4 that is the first eigenvalue
of H4:

�0 = �1 = �2 = �3 = 0 and �4 > 0. (5.4)
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The pair (�̆k, ζ̆ k)

ζ̆ k =
∑

0�n+m�6

k−n−mVnηm and �̆k = k−4�4 (5.5)

with (�4, η0) an eigenpair of H4, and ηm (m = 1, . . . , 6) constructed by induction so that the membrane
boundary conditions ζ̆ k

α = 0 are satisfied, is a quasimode for Mk. For instance, in the cylindrical case
f = R, the triple ζ̆ k takes the form

ζ̆ k =
⎛⎝ 0

0
η0

⎞⎠+ i

k

⎛⎝ 0
Rη0

0

⎞⎠+ 1

k2

⎛⎝−Rη′
0

0
η2

⎞⎠+ i

k3

⎛⎝ 0
−νR3η′′

0 + Rη2

η3

⎞⎠
− 1

k4

⎛⎝(ν + 2)R3η′′′
0 + Rη′

2
Rη3

η4

⎞⎠+ · · · (5.6)

and the boundary conditions are, for z ∈ ∂I

η0(z) = 0, η′
0(z) = 0, η2(z) = νR2η′′

0(z),

η′
2(z) = (ν + 2)R2η′′′

0 (z), η3(z) = 0, . . . .
(5.7)

Recall that the minimum of the essential spectrum of Mk is positive by Remark 4.3. For |k| large
enough, Mk has therefore at least an eigenvalue ∼= �4k

−4 under its essential spectrum and

dist
(
k−4�4, σ

(
Mk

))
� k−5, k → ∞. (5.8)

5.2. Koiter scalar reduction in the parabolic case

The leading term of the series H(k) is Hk = k−4H4, as mentioned in the introduction, see (1.5). So, the
leading term of the scalar reduction of the Koiter operator is, cf. (4.10)

Ak(ε) = k−4H4 + ε2k4B0 = k−4H4 + ε2

3

E

1 − ν2

k4

f 4
. (5.9)

The operator Ak(ε) is a priori defined for integers k, nevertheless it makes sense for any real number
k, like all the other operators Mk, Bk and Kk(ε). We keep this extended framework all along this
subsection. All functions and vector fields are defined on the parametric interval I with variable z.

5.2.1. Optimizing k

The operator Ak(ε) is self-adjoint on H 2
0 (I) real-valued and positive. Let λ1[Ak(ε)] denote its smallest

eigenvalue. For any chosen ε we look for kmin = k(ε) realizing the minimum μA
1 (ε) of λ1[Ak(ε)] if it

exists:

μA
1 (ε) = λ1

[
Ak(ε)(ε)

] = min
k∈R+

λ1
[
Ak(ε)

]
.
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To “homogenize” the terms k−4 and ε2k4 let us define γ (ε) by setting

γ (ε) = ε1/4k(ε), (5.10)

so that we look equivalently for γ (ε). There holds

Ak(ε)(ε) = k(ε)−4H4 + ε2k(ε)4B0 = ε

(
1

γ (ε)4
H4 + γ (ε)4B0

)
.

Therefore γ (ε) does not depend on ε. Let μ1(γ ) be the first eigenvalue of the operator

1

γ 4
H4 + γ 4B0. (5.11)

The function γ �→ μ1(γ ) is continuous and, since H4 and B0 are positive, it tends to infinity as γ tends to
0 or to +∞. Therefore we can define γmin as the (smallest) positive constant such that μ1(γ ) is minimum

μ1(γmin) = min
γ∈R+

μ1(γ ) =: a1. (5.12)

Thus k(ε) satisfies a power law that yields a formula for the minimal first eigenvalue μA
1 (ε):

k(ε) = ε−1/4γmin and μA
1 (ε) = a1ε. (5.13)

Let η0 be a corresponding eigenvector. By definition

η0 ∈ H 2
0 (I) first eigenvector of

1

γ 4
min

H4 + γ 4
minB0 = ε−1Ak(ε)(ε). (5.14)

Note that μ1(γmin) coincides with the minimum of the Rayleigh quotients associated with η0:

μ1(γmin) = min
γ∈R+

〈γ −4H4η0 + γ 4B0η0, η0〉
〈η0, η0〉 (5.15)

Therefore γmin equilibrates the two terms in the numerator, which proves that the ratio R (1.15) between
bending energy and total energy is equal to 1

2 :

R = 〈γ 4
minB0η0, η0〉

〈γ −4
minH4η0 + γ 4

minB0η0, η0〉
= 1

2
. (5.16)

5.2.2. Case of cylinders
In the cylindrical case T = 0, formulas are more explicit because f is constant. So everything can be

written as a function of the first Dirichlet eigenvalue μ
bilap
1 of the bilaplacian operator 	2 on H 2

0 (I) as
we explain now. We have

H4 = ER2	2 and B0 = E

1 − ν2

1

3R4
.
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So the eigenvalue of 1
γ 4 H4 + γ 4B0 is

μ1(γ ) = 1

γ 4
ER2μ

bilap
1 + γ 4 E

1 − ν2

1

3R4
. (5.17)

It is minimum for γmin such that

γ 4
min = R3

√
3
(
1 − ν2

)
μ

bilap
1 (5.18)

and we find that the minimum eigenvalue (5.12) is

μ1(γmin) = 2E

R

√
μ

bilap
1

3(1 − ν2)
=: a1. (5.19)

Thus

k(ε) = ε−1/4R3/4
(
3
(
1 − ν2

)
μ

bilap
1

)1/8
. (5.20)

Remark 5.1. Denote by μbilap the first eigenvalue of 	2 on the unit interval (0, 1). We have the relation
μ

bilap
1 = μbilapL−4 with the length L of the interval I.

5.2.3. Reconstruction of vectors from scalars. Membrane boundary conditions
In order to reconstruct fields ζ k from the scalar eigenvector η0 (5.14), we convert the law (5.13) giving

k as a function of ε into a law giving ε as a function of k

ε = k−4γ 4
min (5.21)

and insert it into the identity (4.10). We obtain(
M[k] + γ 8

mink
−4B0

)
V[k] − �[k]AV[k] = V0 ◦ (H[k] + γ 8

mink
−4B0 − �[k]). (5.22)

So the series �[k] starts with the first eigenvalue �4 = γ 4
mina1 of the operator H4+γ 8

minB0. Then η0 (5.14)
is an associated eigenvector. Like before, but now with this new η0, and k = k(ε), there exist further
terms η1, . . . , η6 such that the pair (�̆k, ζ̆ k) defined by (5.5) is a quasimode for Mk + γ 8

mink
−4B0 =

Mk +ε2k4B0 with membrane boundary conditions. Since with law (5.21) the terms ε2(Bk(ε) −k(ε)4B0)

are of order k(ε)−5 or higher, the same pair

�̆k(ε) = k(ε)−4γ 4
mina1 = εa1 and ζ̆ k(ε) = (0, 0, η0)

� + higher order terms in k(ε)−1 (5.23)

is a quasimode for the full Koiter operator Kk(ε)(ε), but still with the sole membrane boundary condi-
tions.
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5.2.4. Quasimodes for the Koiter model at angular frequency k(ε). Bending boundary layers
The full bending boundary conditions ζ3 = 0 and ζ ′

3 = 0 on ∂I cannot be implemented in general for
the quasimodes (�̆k(ε), ζ̆ k(ε)). The singularly perturbed nature of the Koiter operator causes the loss of
these boundary conditions between the bending and membrane operator. Solutions of the Koiter model,
just as eigenvectors, incorporate boundary layer terms. In all cases investigated in this paper, these terms
exist at the scale d/

√
ε with d = dist(z, ∂I). Such a scaling appears in [33] in a variety of nondegenerate

cases (the boundary of ∂S is noncharacteristic for the curvature). It is rigorously analyzed in [22] in the
case of static clamped elliptic shells.

More precisely, the scaled variable is (for I = (z−, z+))

Z = d√
ε

with d = z+ − z or z − z−, (5.24)

according as we consider the localization at the end z0 = z+ or z0 = z− of the interval I. In view of
law (5.13), we can write the operator Kk(ε)(ε) as a series in powers of ε1/4. In the rapid variable Z, there
holds ∂zG(Z) = ε−1/2G′ for any profile G(Z), which provides a new formal series K[ε1/4]. Its leading
term K0 is compatible with the full bending boundary conditions at Z = 0. It has the following form in
the cylindrical case f = R

K0 = E

1 − ν2

⎛⎝ −∂2
Z 0 ν

R
∂Z

0 − 1−ν

2R2 ∂2
Z 0

− ν
R
∂Z 0 1

R2 + 1
3∂

4
Z

⎞⎠ .

It allows to construct a series of exponentially decreasing vector functions G[ε1/4] satisfying a formal
series relation of the type K[ε1/4]G[ε1/4] = �[ε1/4]G[ε1/4], that compensate for the missing traces of
ζ̆ k(ε), see [5, Section 5.6]. Our “true” quasimode has now the form (�k(ε), ζ k(ε)(ε)) with

�k(ε) = �̆k(ε) = a1ε and ζ k(ε)(ε)(z) = ζ̆ k(ε)(z) + χ(d)

6∑
n=2

εn/4Gn(Z). (5.25)

Here χ is a smooth cut-off that localizes near the boundary ∂I. The outcome is the spectral estimate

dist
(
a1ε, σ

(
Kk(ε)(ε)

))
� ε5/4 with k(ε) = ε−1/4γmin, as ε → 0. (5.26)

5.3. 3D reconstruction and Rayleigh quotients

We construct a three-component vector field on the surface S by setting in normal coordinates

ζ ε(z, ϕ) = eikϕζ k(z) with ζ k = ζ k(ε)(ε) (5.25), (5.23) and k = ⌊k(ε)
⌉ = ⌊ε−1/4γmin

⌉
.

By construction, ζ ε belongs to the variational space VB(S), and by the elliptic regularity of the Koiter
problem, it also belongs to (H 2 ×H 2 ×H 3)(S). So we may apply the reconstruction operator introduced
in Theorem 2.2: Set

uε = ◦
Uζ ε.
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To take advantage of the comparison (2.17) between the Rayleigh quotients of ζ ε and uε, we have to
exhibit the behavior of the wave lengths L = Lε (2.15) and � = �ε (2.16) of ζ ε as ε → 0. Following the
construction of the fields ζ ε, we see that they all originate from an eigenfunction η0 that does not depend
on ε. The nontrivial behavior of Lε and �ε arises from, cf. Example 2.1:

• The Koiter boundary layer terms Gn(Z) = Gn(d/ε1/2) that contribute a term in ε1/2,
• The azimuthal oscillation eikϕ that contributes a term in k−1 � ε1/4.

As a result we find in the nondegenerate parabolic case Lε, �ε � ε1/2. So the assumptions of Theorem 2.2
are uniformly satisfied for the family (ζ ε)ε and the estimate (2.17) reads now∣∣Qε

K

(
ζ ε
)− Qε

L

(
uε
)∣∣ � ε1/4Qε

K

(
ζ ε
)
� ε5/4.

Stricto sensu, we have at hand a family of 3D displacements uε with azimuthal frequency 	k(ε)
 ≡
ε−1/4γmin such that∣∣Qε

L

(
uε
)− a1ε

∣∣ � ε5/4.

So, with a1 and γ = γmin defined in (5.12), we have proved the results summarized in the first two lines
of Table 1. By construction, in normal coordinates:

uε|S(z, ϕ) = ei	k(ε)
ϕ (0, 0, η0(z)
)�

modulo higher order terms as ε → 0, (5.27)

with η0 the generating scalar eigenvector (5.14). Our numerical experiments (Model A, Section 7.1, and
Model B, Section 7.2) suggest that, in fact, (a1ε, uε) is an approximation of the first 3D eigenpair.

6. Elliptic case (small meridian curvature)

The elliptic case in parametrization r = f (z), z ∈ I, corresponds to the situation f ′′ < 0 on I. After
an exposition of the general principles of scalar reduction in the elliptic case, we address separately three
different families of axisymmetric shells: Gaussian, Airy and toroidal.

6.1. Membrane scalar reduction in the general case

When the parametrizing function f is not affine, i.e., when f ′′ �≡ 0, the scalar reduction of the mem-
brane operator has non-vanishing first terms as follows:

H0(z, ∂z) = E
f ′′2

s6
, H1(z, ∂z) = 0, H2(z, ∂z) = H(2)

2 (z)∂2
z + H(1)

2 (z)∂z + H(0)

2 (z) (6.1)

with⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

H(2)

2 (z) = 2E(
ff ′′
s6 + f 2f ′′2

s8 )

H(1)

2 (z) = 2E(
2f ′f ′′

s6 + ff ′′′
s6 − 2ff ′f ′′2

s8 + 2f 2f ′′f ′′′
s8 − 7f 2f ′f ′′3

s10 )

H(0)

2 (z) = E(− 10f ′2f ′′2
s8 + 4f ′f ′′′

s6 + 2f ′2f ′′
f s6 − (ν−2)ff ′2f ′′3

s10 − 5ff ′f ′′f ′′′
s8

+ ff (4)

s6 + 2f 2f ′′f (4)

s8 + 36f 2f ′2f ′′4
s12 + (ν−2)ff ′′3

s8 − 6f 2f ′′4
s10

− 20f 2f ′f ′′2f ′′′
s10 ) − �0(

1
s
− νf ′′f

s3 )2.

(6.2)
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The rank-3 operator in the formal series H[k] is given by

H3(z, ∂z) =
(

− 1

s2
+ 2νff ′′

s4
− ν2f 2f ′′2

s6

)
�1, (6.3)

and the rank-4 operator can be written as

H4(z, ∂z) =
4∑

j=0

H(j)

4 (z)∂j
z , with H(4)

4 (z) = E

(
4f 3f ′′

s8
+ 3f 4f ′′2

s10
+ f 2

s6

)
(6.4)

where the other terms H(j)

4 (z) are smooth functions of z.
So, H0(z, ∂z) = H0(z) is the multiplication by a function (which can be seen as a potential) and

we check that H2 is a selfadjoint operator of order 2 on H 1
0 (I) with respect to the natural measure

dI = f (z)s(z) dz:

〈
H2η, η∗〉

I =
∫
I

(−H(2)

2 (z)∂zη∂zη
∗ + H(0)

2 (z)ηη∗) dI. (6.5)

We recall from (3.7) that the principal curvatures are bz
z = f ′′

s3 and bϕ
ϕ = − 1

f s
. Note that both are

negative in the elliptic case.

Remark 6.1. (i) The function H0/E coincides with the square of the meridian curvature

H0 = E
(
bz

z

)2
.

(ii) There holds the following relation between H(2)

2 and the principal curvatures

−H(2)

2 = 2E
f 2

s2
bz

z

(
bϕ

ϕ − bz
z

)
. (6.6)

(iii) Similarly

H(4)

4 = E
f 4

s4

(
bϕ

ϕ − 3bz
z

)(
bϕ

ϕ − bz
z

)
. (6.7)

6.2. High frequency analysis of the membrane operator in the elliptic case

As mentioned above, we have to select one or several terms starting the series H[k] that will play the
role of an engine to work out a recurrence and allow to solve the formal series problem (4.7). In the
parabolic case, this engine is h4H4. In the elliptic case, H0 is the multiplication by the positive function
E(bz

z)
2. Its spectrum is essential and its bottom determines �0

�0 = E min
z∈I

(
bz

z

)2
. (6.8)
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We have to complete H0 by further terms so that to obtain an operator with discrete spectrum close to
the minimum energy �0. This will be the case for the operator

Hk = H0 + k−2H2 (6.9)

if, cf. condition (1.13),

−H(2)

2 � 0 on I, i.e.
∣∣bϕ

ϕ

∣∣ � ∣∣bz
z

∣∣ on I, (6.10)

(use (6.6)), with strict inequalities for the values of z where H0 attains its minimum �0. It is interesting
to note that the latter condition implies that, cf. (6.8) and (4.8),

min
z∈I

(
bz

z

)2
< min

z∈I

(
bϕ

ϕ

)2
, i.e. �0 < min σess

(
Mk

)
,

which means that the expected limit at high frequency will be attained by eigenvalues below the essential
spectrum.

Remark 6.2. We note that in the hyperbolic case, f ′′ > 0, so bz
z > 0. Hence the coefficient −H(2)

2 is
always negative and our analysis never applies in the hyperbolic case. Besides, in this case, �0 is not the
membrane high frequency limit, that is indeed 0 (recall that the exponent in (1.2) is α = 2

3 in hyperbolic
case).

From now on, we assume that (6.10) holds and we discuss the lowest eigenpairs of the operators Hk

defined in (6.9) and

Ak(ε) = H0 + k−2H2 + ε2k4B0, where B0 = 1

3

E

1 − ν2

1

f 4
(6.11)

in relation with properties of the “potential” H0. For simplicity we denote

g(z) := −H(2)

2 (z), (6.12)

and consider successively the cases when H0 has a non-degenerate minimum inside or on the boundary
of the interval I, or when it is constant.

6.3. Internal minimum of the potential (Gaussian case)

Besides (6.10), we assume that H0 has a (unique) nondegenerate minimum in z0 ∈ I. Thus

�0 = H0(z0) and ∂2
z H0(z0) > 0.

We assume moreover g(z0) > 0.
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6.3.1. High frequency analysis for the membrane operator
Then the lowest eigenpairs of the membrane reduction Ak = H0 + k−2H2 as k → ∞ are driven by the

harmonic oscillator

−g(z0)∂
2
Z + Z2

2
∂2
z H0(z0). (6.13)

Here, the new homogenized variable Z spans R and is linked to the physical variable z by the relation

Z = √
k(z − z0). (6.14)

This change of variable can be applied to the formal series reduction (4.6) as follows: Let L[k] =∑
k�0 k−nLn(z, ∂z) be a formal series such that Ln is an operator of order n. By Taylor expansion around

z0, we can expand for all n the operator Ln(z, ∂z) =∑j�−n k−j/2Ln,j (Z, ∂Z). By reordering the powers
of k−j/2, we thus see that we can write

L[k] ≡ L
[
k1/2
] =

∑
n�0

k−n/2Ln(Z, ∂Z),

where the operators Ln have polynomial coefficients in Z. Applying this change of variable to the formal
series reduction given in Theorem 4.2, we obtain the new identity

M
[
k1/2
]
V
[
k1/2
]− �

[
k1/2
]
AV
[
k1/2
] = V0 ◦ (H[k1/2

]− �
[
k1/2
])

, (6.15)

where M[k1/2], V[k1/2] and H[k1/2] are the formal series induced by the formal series M[k], V[k] and
H[k] respectively. V0 is still the embedding η �→ (0, 0, η)�. We also agree that �[k1/2] is related with
the old series �old[k] = ∑

n�0 k−n�n,old by the identities �n = 0 if n is odd, and �n = �n/2,old if n is
even. Moreover, we calculate that

H0 = H0(z0), H1 = 0 and H2 = −g(z0)∂
2
Z + Z2

2
∂2
z H0(z0).

Like for (4.7), the previous reduction leads to consider the formal series problem

H
[
k1/2
]
η
[
k1/2
] = �

[
k1/2
]
η
[
k1/2
]
. (6.16)

The first equation induced by this identity is H0η0 = �0η0, hence we have found again �0 = H0 =
H0(z0). Since for any η we have now H0η = �0η, the next equations yield

H1η0 = �1η0 and H2η0 = �2η0.

Therefore �1 = 0 (which is coherent with what was agreed in identity (6.15)) and η0 is an eigenvector
of the harmonic oscillator (6.13). The eigenvalues of this latter operator are

(2� − 1)c, � = 1, 2, . . . with c = 1√
2

√
g(z0)∂2

z H0(z0) (6.17)
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and the corresponding eigenvectors are Gaussian functions. Taking η0(Z) as the first eigenmode (� = 1)
we can construct the first terms η1, η2, . . . of the formal series problem (6.16). As the coefficients of the
operators Hj depend polynomially on Z, these terms are exponentially decreasing with respect to Z. We
can then define the pair (�̆k, ζ̆ k) by the formula

ζ̆ k = χ(z)

(
V0η0 +

∑
1�n+m�6

k−(n+m)/2Vnηm

)(√
k(z − z0)

)
�̆k = H0(z0) + k−1c,

(6.18)

where χ ∈ C∞
0 (I) is identically equal to 1 in a neighborhood of z0. This pair is a quasimode for the full

membrane operator Mk as k → ∞, and we obtain that

dist
(
H0(z0) + k−1c, σ

(
Mk

))
� k−3/2, k → ∞. (6.19)

Note that in this case, the boundary conditions are automatically fulfilled as the quasimode constructed
is localized near z0.

6.3.2. High frequency analysis for Koiter and Lamé operators
Now we consider the operator Ak(ε) defined in (6.11). We define its smallest eigenvalue λ1[Ak(ε)]

and for each ε > 0 small enough, look for k(ε) such that λ1[Ak(ε)] is minimum. Setting δ := ε2k4, we
see that the operator Ak(ε) has the form

W + k−2H2 with W = H0 + δB0.

If δ is small enough, the function W has the same property as H0, i.e., it has a (unique) nondegenerate
minimum. Let z0(δ) be the point where this minimum is attained. By implicit function theorem, the
correspondence δ → z0(δ) is smooth for δ small enough and there holds, cf. (6.17)

λ1
[
Ak(ε)

] = H0
(
z0(δ)

)+ δB0
(
z0(δ)

)+ k−1

√
2

√
g
(
z0(δ)

)
∂2
z (H0 + δB0)

(
z0(δ)

)+ O
(
k−3/2

)
But

H0
(
z0(δ)

) = H0(z0) + O
(
δ2
)
, ∂2

z H0
(
z0(δ)

) = ∂2
z H0(z0) + O(δ),

B0
(
z0(δ)

) = B0(z0) + O(δ), g
(
z0(δ)

) = g(z0) + O(δ).

Hence

λ1
[
Ak(ε)

] = H0(z0) + δB0(z0) + k−1

√
2

√
g(z0)∂2

z H0(z0) + O
(
δ2
)+ O

(
k−1δ

)+ O
(
k−3/2

)
.

Let us set

b = B0(z0) and c = 1√
2

√
g(z0)∂2

z H0(z0). (6.20)
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So, replacing δ by its value ε2k4, we look for k = k(ε) such that ε2k4b + k−1c is minimum and such that
δ = ε2k4 is small.1 We homogenize the powers of k by letting γ (ε) = k(ε)ε2/5, and setting μA

1 (ε) =
λ1[Ak(ε)(ε)] we find

k(ε) = γ ε−2/5 and μA
1 (ε) = H0(z0) + a1ε

2/5 + O
(
ε3/5
)
, (6.21)

with the explicit constants γ and a1:

γ =
(

c

4b

)1/5

and a1 = (4bc4
)1/5
(

1 + 1

4

)
. (6.22)

We find that the ratio R of energies (1.15) is

R � ε2k4b

H0(z0) + a1ε2/5
� b

H0(z0)

(
c

4b

)4/5

ε2/5. (6.23)

Along the same lines as in the parabolic case, we convert the power law for k (6.21) into the power
law ε = (γ /k)5/2. We can then consider a formal series reduction as in (5.22) and combine it with the
change of variable Z = √

k(z − z0). The same analysis as before yields quasimodes (�̆k(ε), ζ̆ k(ε)). Here
�̆k(ε) = μA

1 (ε) and ζ̆ k(ε) has a form similar to (6.18), with k = k(ε). Note that these quasimodes remain
localized around z0 and hence bending boundary layers do not show up as they did in the parabolic case.
We thus obtain

dist
(
m1(ε), σ

(
Kk(ε)(ε)

))
� ε3/5 with m1(ε) = H0(z0) + a1ε

2/5. (6.24)

Remark 6.3. If H0 attains its minimum a0 in a finite number of points z
(i)

0 , we can construct quasimodes
attached to each of these points of the same form as above, and with disjoint supports. The associated
quantities obey to the same formulas as in (6.21)–(6.24)

k(i)(ε) = γ (i)ε−2/5 and m(i)

1 (ε) = a0 + a(i)

1 ε2/5,

with γ (i) and a(i)

1 defined by (6.22) with the values of quantities b and c at point z
(i)

0 . Then m1(ε) =
mini m(i)

1 (ε) and k(ε) = k(i0)(ε) for i0 such that the previous minimum is attained.

6.3.3. 3D reconstruction and Rayleigh quotients
As in the parabolic case, we construct a three-component vector field on the surface S by setting in

normal coordinates

ζ ε(z, ϕ) = eikϕζ k(z) with ζ k given in (6.18) and k = ⌊ε−2/5γmin
⌉
,

and by setting

uε = ◦
Uζ ε.

1We check that δ = O(ε2/5).
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Since all traces of any order of ζ ε vanish on ∂I, there is no boundary corrector and we are in case (ii)
of Theorem 2.2. So we only have to estimate the behavior of the wave length L = Lε (2.15) of ζ ε as
ε → 0. We note the influence of:

• The profiles Gn(
√

k(z − z0)) with k � ε−2/5, that contribute a term in 1/
√

k � ε1/5,
• The azimuthal oscillation eikϕ that contributes a term in k−1 � ε2/5.

As a result we find in the nondegenerate parabolic case

Lε � ε2/5.

So the assumptions of Theorem 2.2 are uniformly satisfied for the family (ζ ε)ε and the estimate (2.17)
reads now∣∣Qε

K

(
ζ ε
)− Qε

L

(
uε
)∣∣ � εQε

K

(
ζ ε
)
� ε.

Thus, we have exhibited a family of 3D displacements uε with azimuthal frequency k(ε) ≡ ε−2/5γ such
that ∣∣Qε

L

(
uε
)− m1(ε)

∣∣ � ε3/5 with m1(ε) = H0(z0) + a1ε
2/5.

So we have proved the results summarized in the third line of Table 1. In normal coordinate system,
there holds:

uε|S(z, ϕ) = ei	k(ε)
ϕ (0, 0, η0
(√

k(ε)(z − z0)
))�

mod. higher order terms as ε → 0, (6.25)

with η0 the first eigenvector of the harmonic oscillator. So, the principal term of uε displays a meridian
concentration at scale

√
k(ε) ∼ ε−1/5. The numerical experiments (Model H, Section 7.4) suggest that

(m1(ε), uε) is indeed an approximation of the first 3D eigenpair.

6.4. Minimum of the potential on the boundary (airy case)

We assume that H0 attains its minimum at a point z0 ∈ ∂I with ∂zH0(z0) �= 0. Let us agree that z0 is
the left end of I, i.e., z0 = z−, so that we have

�0 = H0(z0) and ∂zH0(z0) > 0.

We still assume g(z0) > 0. The analysis is somewhat similar to the previous case, though a little more
tricky.

6.4.1. High frequency analysis for the membrane operator. membrane boundary layers
We meet the Airy-like operator

−g(z0)∂
2
Z + Z∂zH0(z0) (6.26)

on H 1
0 (R+) instead the harmonic oscillator (6.13). The homogenized variable Z is given by

Z = (z − z0)k
2/3. (6.27)
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We can perform an analysis very similar to the previous case by doing a change of variable in the formal
series reduction. This yields formal series problem in powers of k−1/3 whose first terms are given by
H0 + k−2/3H2 where H0 = H0(z0) and H2 is the operator (6.26). The eigenvalues of the model operator
(6.26) are given by

z(�)
Airy

(
g(z0)

)1/3(
∂zH0(z0)

)2/3
, � = 1, 2, . . . (6.28)

where z(�)
Airy is the �th zero of the reverse Airy function Ai. We find that the first eigenvalue of the mem-

brane reduction Hk satisfies

μH
1 (k) = H0(z0) + k−2/3c + O

(
k−1
)

with c = z(1)
Airy

(
g(z0)

)1/3(
∂zH0(z0)

)2/3
. (6.29)

Using the reconstruction operators V[k1/3] in the scaled variable allows to construct displacement ζ̆ k

from an eigenfunction profile η0(Z) of the Airy operator. However, the first terms of the reconstruction
take the form:⎛⎝k−4/3ζ k

z

k−1ζ k
ϕ

ζ k
3

⎞⎠ where

⎛⎝ζ k
z

ζ k
ϕ

ζ k
3

⎞⎠ =
⎛⎝f 2(bϕ

ϕ − (ν + 2)bz
z)∂Zη0

−if 2(bϕ
ϕ + νbz

z)η0

η0

⎞⎠+ O
(
k−1/3

)
.

While we can impose η0(0) = 0 to ensure that ζ k
ϕ = 0 at first order, we see that we have in general

ζ k
z �= 0. To construct a quasimode, we have to add new boundary layer terms to ζ̆ k.
To determine such boundary layers near z0 = z−, we introduce the scaled variable Z = kd with

d = z − z−. Like already seen for the Koiter operator (Section 5.2.4), the formal series operator M[k] is
changed to a new formal series M[k] whose first term is given by

M0 =
⎛⎜⎝− 1

s4 ∂
2
Z + 1−ν

2 (bϕ
ϕ)2 − 1+ν

2 i(bϕ
ϕ)2∂Z

1
s2 (b

z
z + νbϕ

ϕ)∂Z

− 1+ν
2 i(bϕ

ϕ)2∂Z − 1−ν
2 (bϕ

ϕ)2∂2
Z + 1

f 4 i 1
f 2 (b

ϕ
ϕ + νbz

z)

− 1
s2 (b

z
z + νbϕ

ϕ)∂Z −i 1
f 2 (b

ϕ
ϕ + νbz

z) (bϕ
ϕ + νbz

z)
2

⎞⎟⎠
where the quantities are evaluated in z0 = z−. We can prove that this operator yields boundary layer
profiles G(Z) exponentially decreasing with respect to Z = kd, and satisfying Gz(0) = az for any given
number az, which allows to compensate for the trace of the first term of ζ k

z .
We obtain a compound quasimode combining terms at scale k2/3d and terms at scale kd, and deduce

in the end

dist
(
H0(z0) + k−2/3c, σ

(
Mk

))
� k−1, k → ∞. (6.30)

6.4.2. High frequency analysis for Koiter operator
The Koiter scalar reduction operator Ak(ε), see (6.11) is still an Airy-like operator because the min-

imum of H0 + ε2k4 is still z0 for ε2k4 small enough. We look for k = k(ε) such that ε2k4b + k−2/3c is
minimum. We homogenize ε2k4 with k−2/3. We find

k(ε) = γ ε−3/7 and μA
1 (ε) = H0(z0) + a1ε

2/7 + O
(
ε3/7
)
, (6.31)
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with the explicit constants γ and a1, with b = B0(z0) and c defined in (6.29):

γ =
(

c

6b

)3/14

and a1 = (6bc6
)1/7
(

1 + 1

6

)
. (6.32)

The ratio of energies R (1.15) is equivalent to δε2/7 with an explicit constant δ, compare with (6.23).
Note that in this case, two types of boundary layer terms are present: the one constructed above (mem-
brane boundary layer) and the bending boundary layers terms associated with the Koiter operator, see
Section 5.2.4. We obtain

dist
(
m1(ε), σ

(
Kk(ε)(ε)

))
� ε3/7 with m1(ε) = H0(z0) + a1ε

2/7.

At this point, the reconstruction operator
◦
U is not precise enough to allow us to conclude as in the

parabolic and Gaussian cases. Using more elaborate reconstruction as in [22] we would find a 3D vector
field uε with elastic energy � m1(ε) and expression in normal coordinate system

uε|S(z, ϕ) = ei	k(ε)
ϕ (0, 0, η0
(
k(ε)2/3(z − z0)

))�
mod. higher order terms as ε → 0, (6.33)

with η0 the first eigenvector of the Airy operator. The dominant meridian concentration scale is k(ε)2/3 ∼
ε−2/7. Numerical experiments (Model L, Section 7.5) tend to confirm that the first eigenmode of the
Lamé operator L(ε) behaves like (m1(ε), uε).

6.5. Constant potential (toroidal case)

Let us assume that H0 is constant. We recall that H0 = E(bz
z)

2. But bz
z coincides with the curvature of

the arc C of equation r = f (z) in the meridian plane. So, bz
z is constant if and only if C is a circular arc.

Let R be its radius and (r◦, z◦) ∈ R
2 be its center. Notice that the center of the circular arc may be at

negative r◦. Then, in the elliptic case f ′′ < 0,

f (z) = r◦ +
√

R2 − (z − z◦)2, (6.34)

and the principal curvatures are given by

bz
z = − 1

R
and bϕ

ϕ(z) = − 1

R

(
1 − r◦

f (z)

)
. (6.35)

So in this case, we have

H0 = E

R2
= �0 and g = −H(2)

2 = −2E
f

s2

r◦
R2

. (6.36)

Now the Koiter scalar reduction operator Ak(ε) is H0 + k−2H2 + ε2k4B0 where H0 is a constant function
acting as a simple shift on the spectrum. In this case, no concentration occurs, and we have simply to
come back to the approach used for the parabolic case mutatis mutandis, with k−2 instead of k−4.
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6.5.1. Membrane scalar reduction
We assume the sharp version of condition (6.10) (strict inequalities) that ensures that H2 has a compact

resolvent and is semibounded from below. Thanks to (6.36), we find that such condition is equivalent to

r◦ < 0. (6.37)

Let �2 be the first eigenvalue of H2. Then the first eigenvalue of the membrane scalar reduction operator
Hk = H0 + k−2H2 is �0 + k−2�2 and we can deduce that

dist
(
�0 + k−2�2, σ

(
Mk

))
� k−5/2, k → ∞. (6.38)

6.5.2. Koiter scalar reduction
The operator Ak(ε) = H0 + k−2H2 + ε2k4B0 is self-adjoint on H 1

0 (I). Its first eigenvalue is denoted
by λ1[Ak(ε)]. For any chosen ε we look for k(ε) ∈ R

+ realizing the minimum of λ1[Ak(ε)]. We set

γ (ε) = k(ε)ε1/3 (6.39)

so that our operator becomes

H0 + ε2/3

(
1

γ (ε)2
H2 + γ (ε)4B0

)
.

Therefore γ does not depend on ε. Let μ1(γ ) be the first eigenvalue of the operator

1

γ 2
H2 + γ 4B0. (6.40)

The function γ �→ μ1(γ ) is continuous. At this point we need the following extra assumption:

�2 > 0, i.e. H2 > 0. (6.41)

Then the same argument as in the parabolic case allows to define γmin as the (smallest) positive constant
such that μ1(γ ) is minimum

μ1(γmin) = min
γ∈R+

μ1(γ ) =: a1. (6.42)

As an illustration of the non-trivial behavior of the quantities �2, γmin and a1, we plot them versus r◦
in Fig. 3 (we choose R = 2 and z◦ = 0). Thus k(ε) satisfies a power law that yields a formula for the
minimal first eigenvalue μA

1 (ε):

k(ε) = ε−1/3γmin and μA
1 (ε) = m1(ε) = H0 + ε2/3a1, (6.43)

and after adding membrane and bending boundary layer terms as in the Airy case we arrive to

dist
(
m1(ε), σ

(
Kk(ε)(ε)

))
� ε with m1(ε) = H0 + ε2/3a1.
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Fig. 3. With I = (−1, 1), R = 2 and z◦ = 0: Quantities �2, γmin and a1 vs r◦.

The ratio of energies R (1.15) is equivalent to δε2/3. We note that, in contrast with the two previous cases
(Gauss and Airy) when H0 is not constant, the lower order term H(0)

2 of the operator H2 is involved in the
asymptotics. Finally, like in the Airy case, we would need a more complete reconstruction operator to
conclude the construction of 3D minimizers or 3D quasimodes. The resulting “quasimode” uε has the
same structure (5.27) as in the cylindrical case. Moreover, numerical experiments (Model D, Section 7.3)
prove that, at least for some values of r◦, the lowest 3D eigenpairs fit the asymptotics λ1[L(ε)] �
H0 + ε2/3a1 and k(ε) � ε−1/3γmin.

7. Models

We present in this section five models: cylinders (Model A: f (z) = 2, z ∈ (−1, 1)), cones (Model
B: f (z) = 3

2z − 1
2 , z ∈ (−1, 1)), “toroidal barrels” (Model D: f (z) = −1 + √

4 − z2, z ∈ (−1, 1)),

“Gaussian barrels” (Model H: f (z) = 1 − z2

8 − z4

16 , z ∈ (−1, 1)), and “Airy barrels” (Model L: f (z) =
1 − z2

8 − z4

16 , z ∈ ( 1
2 ,

3
2)), representing each of the five types that we could investigate from a theoretical

point of view. We choose for all models

E = 1 and ν = 0.3

and perform 1D, 2D and 3D computations for each model. The 2D and 3D computations are performed
with finite element codes (MÉLINA2 for 2D and STRESSCHECK3 for 3D) and for a finite set of values
of ε ranging from 0.2 to 10−4 (in general this set contains the values 0.2, 0.1, and 5 · 10−j , 2 · 10−j ,
10−j for j = 2, 3, 4). Let us mention that in our other paper [9] we present a more synthetic view of our
theory together with a numerical study of two cases, a cylinder and an Airy barrel which coincide exactly
with two models investigated in [3]. The agreement between our theory, our 2D-3D computations, and
the computations presented in [3] is remarkable. Here we solve five different models to illustrate more
completely the different cases pertaining to our approach.

The 1D calculations consist in computing the coefficients a0, a1 of (1.10) and γ of (1.8). For Gaussian
and Airy barrels we use our explicit formulas (6.22) and (6.32). For cones and toroidal barrels, we

2Mélina is an open source finite element library, see https://anum-maths.univ-rennes1.fr/melina/.
3Stress Check 9.0 is a trade mark of Engineering Software Research and Development, Inc., St. Louis, MO 63141, U.S.A.

https://anum-maths.univ-rennes1.fr/melina/
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compute with MATLAB the spectrum of the one dimensional reduced operators (5.11) and (6.40) and
optimize with respect to the parameter γ , whereas for cylinders, we calculate the eigenvalue μbilap of the
	2 operator by a semi-analytic method [5, Ch. 4].

The 2D calculations solve the Lamé system Lk at azimuthal frequency k on meridian domains ωε, see
the corresponding variational formulations in Appendix B. For each thickness parameter ε, any integer
value of k from 0 to a certain cut-off frequency kmax = kmax(ε) is used. The cut-off frequency kmax is
determined so that we can observe a minimum for the first eigenvalue depending on k. This provides
the numerical value k̃(ε) for k(ε). The domain ωε is meshed by curvilinear quadrilaterals of geometric
degree 3. The meshes contain 2 elements in the thickness direction, and 8, 12 or 16 in the meridian
direction. The polynomial interpolation degree of the FEM is 6 in each direction.

The 3D calculations solve the Lamé system L on the 3D shells �ε. The azimuthal frequency k(ε) is
observed by counting the oscillations of the radial component (3.1) of the first eigenmode.

We represent in Figs 4, 7 and 10, the meridian domains ωε in the (r, z) plane for models A, B and
D, respectively. The curve C is dotted. Figures 15 and 18 provide ωε for ε = 0.2 for models H and L.
Figures 5, 8, 11, 13, and 16 show the lowest computed eigenvalue λ̃ε

1 and the associated azimuthal
frequency k(ε) versus ε in loglog scale (in base 10). For elliptic models D, H and L, the difference λ̃ε

1−�0

is plotted. The 1D asymptotics is the line ε �→ m1(ε) (1.12) (or ε �→ m1(ε) − �0 in elliptic models).
Figures 6, 9, 12, 14, and 17 show the radial component of the first 3D computed eigenvector ũε for

three values of ε and the five models, respectively. We note that this radial component has the same
behavior as predicted for our quasimode uε, cf. (5.27) for models A, B, D, and (6.25), (6.33) for models
H, L. Figures 15 and 18 are surface plots on the meridian domain ωε of the first 2D eigenvectors of the
operator L	k(ε)
 in Gaussian and Airy barrels, respectively, They clearly exhibit the meridian concen-
tration of the modes as ε decreases, cf. the behavior in z-variable in (6.25), (6.33). For visibility, they
are scaled with respect to the width in order to be represented on the meridian domain with thickness
parameter ε = 0.2. The observable concentration scale is compatible with the theoretical scale induced
from (6.25), (6.33). We summarize in Table 2 the numerical values of the asymptotic quantities m1(ε)

and k(ε), as well as the observed asymptotics for the remainder λ̃ε
1 − m1(ε) for each of the five models.

In Table 3 we list computed and theoretical values of k(ε) for the four models B, D, H, and L (Model A
is ommited because of its great similarity with Model B).

The formulas providing parameters γ , a0 and a1 are given in the following equations: (5.12)–(5.20)
for models A and B, (6.34), (6.42) for model D. Concerning models H and L, the function H0/E = f ′′2

s6

is equal to ( 1
4 + 3

4z
2)2/(1 + ( 1

4z + 1
4z

3)2)3 and reaches its minimum in the interior point z0 = 0 for
model H, and in the boundary point z0 = 0.5 for model L. Formulas for γ and a1 are given in (6.22)
with (6.20), and (6.32) with (6.29) for models H and L, respectively.

7.1. Model A: Cylindrical shells

The midsurface parametrization, cf. (5.1), is given by

f (z) = R, z ∈ (−1, 1), R = 2.

7.2. Model B: Conical shells

The midsurface parametrization, cf. (5.1), is given by

f (z) = T z + R, z ∈ (−1, 1), T = −0.5, R = 1.5.
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Fig. 4. Model A: Meridian domains for several values of ε.

Fig. 5. Model A: First eigenvalue λ̃ε
1 and associated azimuthal frequency k(ε).

Fig. 6. Model A: First eigenmode (radial component) for ε = 10−2, 10−3, 10−4.

7.3. Model D: Toroidal barrels

The midsurface parametrization is, cf. (6.34)

f (z) = r◦ +
√

R2 − z2, z ∈ (−1, 1), R = 2 and r◦ = −1
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Fig. 7. Model B: Meridian domains for several values of ε.

Fig. 8. Model B: First eigenvalue λ̃ε
1 and associated azimuthal frequency k(ε).

Fig. 9. Model B: First eigenmode (radial component) for ε = 10−2, 10−3, 10−4.

7.4. Model H: Gaussian barrel

The midsurface parametrization is

f (z) = 1 − z2

8
− z4

16
, z ∈ (−1, 1).
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Fig. 10. Model D: Meridian domains for several values of ε.

Fig. 11. Model D: Difference λ̃ε
1 − �0 and associated azimuthal frequency k(ε).

Fig. 12. Model D: First eigenmode (radial component) for ε = 10−2, 10−3, 10−4.

7.5. Model L: Airy barrel

The midsurface parametrization is

f (z) = 1 − z2

8
− z4

16
, z ∈ (0.5, 1.5).
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Fig. 13. Model H: Difference λ̃ε
1 − �0 and associated azimuthal frequency k(ε).

Fig. 14. Model H: First eigenmode (radial component) for ε = 10−2, 10−3, 10−4.

Fig. 15. Model H: 2D first eigenmode (radial component) for ε = 10−3 and k = 12, ε = 3 · 10−4 and k = 19, ε = 10−4 and
k = 30. Represented on ω0.2.

8. Conclusion

For five categories of clamped axisymmetric shells, we have exhibited a scalar 1D operator that de-
termines the asymptotic expansion of the azimuthal frequency k(ε) of the first vibration mode, and a
two-term asymptotic expansion for m1(ε) = a0 + a1ε

α1 for the first eigenvalue of the full 3D Lamé sys-
tem in the shell. These five categories are the cylinders and the trimmed cones (parabolic shells), as well
as what we denote toroidal, Gaussian and Airy barrels (elliptic shells). The most striking outcome of
our analysis is the extremely good agreement of the three computation methods (3D, 2D and 1D) in all
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Fig. 16. Model L: Difference λ̃ε
1 − �0 and associated azimuthal frequency k(ε).

Fig. 17. Model L: 3D first eigenmode (radial component) for ε = 10−2, 10−3, 10−4.

Fig. 18. Model L: 2D first eigenmode (radial component) for ε = 10−3 and k = 15, ε = 3 · 10−4 and k = 26, ε = 10−4 and
k = 43. Represented on ω0.2.

the five cases described above, strengthening the relevance of our constructions. The presented methods
demonstrate that the smallest eigenpairs for the Lamé system can be estimated for specific shells by the
reduced 1D model. Furthermore, the spreading or the concentration of the first eigenmode can be pre-
dicted accurately: The cases for which concentration occurs are the Gauss and Airy barrels and for those
shells, the first eigenmode concentrates around a ring whose location (f (z0), z0) is analytically known.

Another interesting observation is the comparison with the computations in [3]. The elliptic case that
is considered there is f (z) = 1 − 1

2z
2 on the interval I = (−a, a) with a = 0.892668. For this example
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Table 2

Numerical values for asymptotic quantities k(ε) and m1(ε). Observed asymptotics for the remainder λ̃ε
1 − m1(ε) (with λ̃ε

1
obtained by 2D computations on the meridian domain ωε)

Model k(ε) γ m1(ε) a0 a1 Remainder
PARABOLIC

A / Cylinder γ ε−1/4 2.9323 a1ε 0 3.3852 15 ε3/2 (asymptotics)
B / Cone γ ε−1/4 2.1247 a1ε 0 3.4464 15 ε3/2 (asymptotics)

ELLIPTIC

D / Toroidal γ ε−1/3 0.85935 a0 + a1ε
2/3 0.25000 0.71500 0.2 ε (upper bound)

H / Gauss γ ε−2/5 0.75901 a0 + a1ε
2/5 0.06250 0.60785 0.05 ε3/5 (asymptotics)

L / Airy γ ε−3/7 0.85141 a0 + a1ε
2/7 0.17804 1.55472 2.9 ε4/7 (asymptotics)

Table 3

For a collection of values of ε, observed azimuthal frequency k̃ = k̃(ε) versus theoretical value k = k(ε) provided by our
asymptotic formulas for models B (cone), D (toroidal barrel), H (Gaussian barrel), and L (Airy barrel)

Model B Model D Model H Model L

ε k̃ k k̃ k k̃ k k̃ k

0.20000 2 3.2 1 1.5 1 1.4 1 1.7
0.10000 2 3.8 2 1.8 2 1.9 2 2.3
0.05000 3 4.5 2 2.3 2 2.5 2 3.1
0.02000 4 5.6 3 3.2 4 3.6 3 4.6
0.01000 6 6.7 4 4.0 5 4.8 4 6.1
0.00500 7 8.0 5 5.0 6 6.3 5 8.2
0.00200 9 10.0 7 6.8 9 9.1 10 12.2
0.00100 11 11.9 9 8.6 12 12.0 15 16.4
0.00050 14 14.2 11 10.8 16 15.9 21 22.1
0.00020 17 17.9 15 14.7 23 22.9 32 32.7
0.00010 21 21.2 18 18.5 30 30.2 43 44.1
0.00005 25 25.3 24 23.3 40 39.9 59 59.3

we find

g(z) = 3

2
z2
(
1 − 1

2
z2
)

and H0(z) = (1 + z2
)−3

.

So we see that we are in our admissible ‘Airy’ case, predicting a behavior in ε−3/7 for the azimuthal
frequency k(ε) of the first eigenvector. Noting that 3

7 � 0.43 and 2
5 = 0.4, we believe that this explains

what have observed the authors [3, p. 55]: “We also notice that in the elliptic case, Kt [k(ε)] is probably
growing slightly faster than exactly t−2/5 [ε−2/5]”. The treatment in [9] of the same model as [3] confirms
the asymptotics of k(ε) and the very good argreement between eigenvalues of the Lamé operator and the
eigenvalues of Koiter and Naghdi models.

The final question of interest is the overall validity of our approach. As noticed in the conclusion of
[9], the behavior at high angular frequency of the first membrane eigenvalue λ1[Mk] is of fundamental
importance. For cylinders and trimmed cones, λ1[Mk] tend to 0 as k → ∞ and our asymptotic approach
is always valid (at least for trimmed cones – when the cone has a vertex we observe a similar behavior,
but with a deteriorated accuracy of the 1D model). For barrels, the behavior of λ1[Mk] may happen
to be more varied. Our approach is validated if the global infimum of λ1[Mk] is attained at infinity,
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and nowhere else. But, we have no a priori proof that this is the case. As visible for the Airy barrel of
[3,9], λ1[Mk] has a local minimum at k = 0, which causes axisymmetric modes to be dominant for
moderately thin shells. Moreover, we have observed that for some narrow barrels, the global minimum
of λ1[Mk] can sit at k = 0.

Appendix A. High frequency reduction of the membrane operator

Recall that the membrane operator is written as M[k] = k2M0 + kM1 + M2. Let us give elements of the
proof of Theorem 4.2. We write the reduction formula (4.6) in the form

M[k]V[k] = V0 ◦ (H[k] − �[k])+ �[k]AV[k].
This formula holds in the sense of the formal series algebra: This means that it is equivalent to the
collection of equations: For all n � 0,

M0Vn + M1Vn−1 + M2Vn−2 = V0 ◦ (Hn−2 − �n−2) +
∑

p+q=n−2

�pAVq (A.1)

with the convention that Vn, Hn, and �n are 0 for n < 0, where Vn and Hn are the unknown coefficients
of the formal series V[k] = ∑n�0 hnVn and H[k] = ∑n�0 hnHn. Here the series �[k] = ∑n�0 hn�n is
given. The mass matrix A is given by (4.2), and the operators M� by

M0 = E

1 − ν2

⎛⎝ 1−ν

2f 2s2 0 0

0 1
f 4 0

0 0 0

⎞⎠ =:
⎛⎝Mzz

0 0 0
0 Mϕϕ

0 0
0 0 0

⎞⎠ . (A.2)

M1 = i
E

1 − ν2

⎛⎜⎝ 0 − 1+ν

2f 2s2 ∂z + 2f ′
f 3s2 0

− 1+ν

2f 2s2 ∂z + (
(ν−3)f ′
2f 3s2 + (1+ν)f ′f ′′

2f 2s4 ) 0 − 1
f 3s

+ νf ′′
f 2s3

0 1
f 3s

− νf ′′
f 2s3 0

⎞⎟⎠ (A.3)

and

M2 = E

1 − ν2

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
s4 ∂

2
z + (

3f ′f ′′
s6 − f ′

f s4 )∂z

+ f ′′2+f ′f ′′′
s6 − 4f ′2f ′′2

s8

− νf ′′
f s4 + (1+ν)f ′2f ′′

f s6 + f ′2
f 2s4

0

(
f ′′
s5 − ν

f s3 )∂z

+ f ′
f 2s3 + f ′′′

s5

− 3f ′f ′′2
s7 + f ′f ′′

f s5

0

− 1−ν

2f 2s2 ∂
2
z

+ (
(1−ν)f ′f ′′

2f 2s4 + (1−ν)f ′
2f 3s2 )∂z

+ (1−ν)f ′′
f 3s2 − (1−ν)f ′2f ′′

f 3s4

0

(−f ′′
s5 + ν

f s3 )∂z

+ f ′f ′′2
s7 + f ′

f 2s3 − 2νf ′f ′′
f s5

0 f ′′2
s6 + 1

f 2s2 − 2νf ′′
f s4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(A.4)
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Let us emphasize that the operators M1 and M2 have the following structure:

M1 =
⎛⎝ 0 Mzϕ

1 0
Mϕz

1 0 Mϕ3
1

0 M3ϕ

1 0

⎞⎠ and M2 =
⎛⎝Mzz

2 0 Mz3
2

0 Mϕϕ

2 0
M3z

2 0 M33
2

⎞⎠ . (A.5)

Let us now examine the collection of equation (A.1). For n = 0, this equation reduces to

M0V0 = 0,

which is satisfied with the choice V0 = (0, 0, Id)�. For n = 1, using the structure (A.5) of the operator
M1, the equation is M0V1 = −M1V0 that can be written as the system⎛⎝Mzz

0 V1,z

Mϕϕ

0 V1,ϕ

0

⎞⎠ =
⎛⎝ 0

−Mϕ3
1

0

⎞⎠ .

Hence, solving this equation we find V1,z = 0 and V1,ϕ = −(Mϕϕ

0 )−1Mϕ3
1 , i.e.,

V1,z = 0, V1,ϕ = if

s
− iνf ′′f 2

s3
. (A.6)

The equation for n = 2 is written as

M0V2 = −M1V1 − M2V0 + V0 ◦ (H0 − �0) + �0AV0.

Using the structure (A.5) and the expressions of V0 and V1, it is equivalent to the system⎧⎪⎨⎪⎩
Mzz

0 V2,z = −Mzϕ

1 V1,ϕ − Mz3
2

Mϕϕ

0 V2,ϕ = 0

0 = −M3ϕ

1 V1,ϕ − M33
2 + H0.

The last equation of the previous system joint with (A.6) gives the expression of the operator H0

H0 = M33
2 − M3ϕ

1

(
Mϕϕ

0

)−1
Mϕ3

1 ,

and using the first two equations, we can solve for V2 by setting

V2,z = (Mzz
0

)−1(
Mzϕ

1

(
Mϕϕ

0

)−1
Mϕ3

1 − Mz3
2

)
and V2,ϕ = (Mϕϕ

0

)−1
aϕϕ�0.

Thus we find that H0 = E
f ′′2
s6 and that the components of V2 are

V2,ϕ = 0,
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V2,z =
(

−f

s
− (ν + 2)f 2f ′′

s3

)
∂z (A.7)

+ f ′

s
+ 3(ν + 2)f 2f ′f ′′2

s5
− (ν + 2)f 2f ′′′

s3
− (2ν + 1)ff ′f ′′

s3
.

Now let us assume that the operators Ln and Vn+1 are constructed for n � 1. Then writing the equation
(A.1) for n + 2, we obtain the relation (using the fact that −V0�n + �nAV0 = 0)

M0Vn+2 − V0 ◦ Hn = −M1Vn+1 − M2Vn +
n−1∑
p=0

�pAVn−p.

This equation is equivalent to the system (using the fact that Vn,3 = 0 for n � 1)

⎧⎪⎨⎪⎩
Mρρ

0 Vn+2,z = −Mzϕ

1 Vn+1,ϕ − Mzz
2 Vn,z +∑n−1

p=0 �pazzVn−p,z

Mϕϕ

0 Vn+2,ϕ = −Mϕz

1 Vn+1,z − Mϕϕ

2 Vn,ϕ +∑n−1
p=0 �paϕϕVn−p,ϕ

Hn = M3ϕ

1 Vn+1,ϕ + M3z
2 Vn,z,

which gives the existence of the operators Vn+2,z, Vn+2,ϕ and Hn. This shows the existence of the opera-
tors Vn = (Vn,z, Vn,ϕ, 0)�. Moreover, we can check that Vn is an operator of order n−1 and is polynomial
in �j , for j � n − 3. The scalar operators Hn are of order n, polynomial in �j , for j � n − 2.

Expressions of the operators Hn for n = 0, . . . , 4 are given by the formulas (6.1)–(6.4) and the com-
ponents of the operator V3 are given by

V3,z = 0,

V3,ϕ = i

(
−νf 3

s3
− (1 + 2ν)f 4f ′′

s5

)
∂2
z

+ i

(
−(4ν + 6)f 3f ′f ′′

s5
− (4ν + 2)f 4f ′′′

s5
+ 7(2ν + 1)f 4f ′f ′′2

s7
− f 2f ′

s3

)
∂z

+ i

(
(ν2 + 19ν + 19)f 3f ′2f ′′2

s7
− (6ν + 6)f 3f ′f ′′′

s5
− (5ν + 3)f 2f ′2f ′′

s5

− (36ν + 18)f 4f ′2f ′′3

s9
+ (20ν + 10)f 4f ′f ′′f ′′′

s7
+ νf ′′f 2

s3
+ f ′2f

s3

+ (6ν + 3)f 4f ′′3

s7
− (2ν + 1)f 4f (4)

s5
− (ν2 + ν + 1)f 3f ′′2

s5

)
+ i

1 − ν2

E
�0

(
f 3

s
− νf 4f ′′

s3

)
. (A.8)
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Appendix B. Variational formulations on the meridian domain

The 3D Lamé operator is independent of the azimuthal coordinate ϕ if expressed in cylindrical com-
ponents of displacements. The contravariant cylindrical components used in this paper are⎧⎪⎨⎪⎩

ur = ut1 cos ϕ + ut2 sin ϕ, (radial)

uϕ = −ut1 1
r

sin ϕ + ut2 1
r

cos ϕ, (azimuthal)

uτ = ut3 (axial).

For a displacement u defined on �ε, denote by ûk = (ur
k, uϕ

k , uτ
k ) the Fourier coefficients of these com-

ponents:

ua
k(r, τ ) = 1

2π

∫ 2π

0
ua(r, ϕ, τ )e−ikϕ dϕ, a ∈ {r, ϕ, τ }, k ∈ Z, (r, τ ) ∈ ωε.

The energy bilinear form aε
L is decomposed in Fourier coefficients as follows

aε
L(u, v) =

∑
k∈Z

aε
k (̂uk, v̂k).

As soon as k �= 0, the energy bilinear form aε
k at azimuthal frequency k as non real coefficients. Never-

theless, by a simple change of components, the coefficients are back to real:

aε
k

((
ur , iuϕ, uτ

)
,
(
vr , −ivϕ, vτ

))
= E

1 − ν2

∫
ωε

{
(1 − ν)2

1 − 2ν

(
r∂ru

r∂rv
r + r∂τ uτ ∂τ vτ + k2

r3
uϕvϕ + 1

r
urvr

)
+ ν(1 − ν)

1 − 2ν

[
r
(
∂ru

r∂τ vτ + ∂τ uτ ∂rv
r
)+ (∂ru

rvr + ur∂rv
r + ur∂τ vτ + ∂τ uτ vr

)]
+ 1 − ν

2

k2

r

(
urvr + uτ vτ

)
+ 1 − ν

2

1

r

(
∂ru

ϕ∂rv
ϕ − 2

r
∂ru

ϕvϕ − 2

r
uϕ∂rv

ϕ + 4

r2
uϕvϕ + ∂τ uϕ∂τ vϕ

)
+ 1 − ν

2
r
(
∂ru

τ ∂τ vr + ∂τ ur∂rv
τ + ∂ru

τ ∂rv
τ + ∂τ ur∂τ vr

)
+ k

[
(1 − ν)2

1 − 2ν

1

r2

(
uϕvr + urvϕ

)+ 1 − ν

r2

(
uϕvr + urvϕ

)
+ ν(1 − ν)

1 − 2ν

1

r

(
uϕ∂rv

r + ∂ru
rvϕ + uϕ∂τ vτ + ∂τ uτ vϕ

)
− 1 − ν

2

1

r

(
uτ ∂τ vϕ + ∂τ uϕvτ + ur∂rv

ϕ + ∂ru
ϕvr
)]}

dr dτ
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The associate eigenproblem is: Find λ and a nonzero (ur , uϕ, uτ ) ∈ V (ωε) such that for all (vr , vϕ, vτ ) ∈
V (ωε)

aε
k

((
ur , iuϕ, uτ

)
,
(
vr , −ivϕ, vτ

)) = λ

∫
ωε

[
urvr + 1

r2
uϕvϕ + uτ vτ

]
r dr dτ.

Here the variational space V (ωε) corresponds to V (�ε)

V
(
ωε
) := {̂u = (ur , uϕ, uτ

) ∈ H 1
(
ωε
)3

, û = 0 on ∂0ω
ε
}
.

Note that the eigenvalues of aε
k are the same as those of aε

−k because of the identity

aε
−k

((
ur , iuϕ, uτ

)
,
(
vr , −ivϕ, vτ

)) = aε
k

((
ur , −iuϕ, uτ

)
,
(
vr , ivϕ, vτ

))
.
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