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SUMMARY

A simple method for computing the flux intensity factors associated with the asymptotic solution of elliptic
equations having a large convergence radius in the vicinity of singular points is presented. The Poisson and
Laplace equations over domains containing boundary singularities due to abrupt change of the boundary
geometry or boundary conditions are considered. The method is based on approximating the solution by the
leading terms of the local symptotic expansion, weakly enforcing boundary conditions by minimization of a
norm on the domain boundary in a least-squares sense. The method is applied to the Motz problem,
resulting in extremely accurate estimates for the flux intensity factors. It is shown that the method converges
exponentially with the number of singular functions and requires a low computational cost. Numerical
results to a number of problems concerned with the Poisson equation over an L-shaped domain, and over
domains containing multiple singular points, demonstrate accurate estimates for the flux intensity factors.
© 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Solutions of elliptic linear partial differential equations in two dimensions may contain singular
points on boundaries of the solution domain. These points are located at abrupt changes of
boundary conditions or re-entrant corners, and first derivatives of the solution tend to infinity as
the distance from these points tends to zero. The solution of the Laplace equation V?u = 0, for
example, in the vicinity of a singular point is usually known in the form of an asymptotic
expansion with unknown coefficients'-?,
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rand 0 being the polar co-ordinates of a system located in the singular point, «; are the eigen-
values (real numbers in the case of the Laplace problem) arranged in ascending order and £, , (0)
are the eigenfunctions which are analytic. These are uniquely determined by the geometry and the

boundary conditions along boundaries intersecting in the singular point. The function wu, ..
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belongs to the Sobolev space HY(Q2), where ¢ depends on &, and can be made as high as required
providing that N is large enough. Except for special cases (when «; is an integer, or when the
multiplicity of an eigenvalue is higher than the multiplicity of the corresponding eigenfunction),
S =0. M is either 0 or a positive integer when the boundary near the singular point (at the vertex)
is curved. Herein only straight boundaries in the vicinity of the singular point will be addressed,
and the special cases where In (r) terms appear will not be treated; therefore we consider (1) in its
simplified form,

N
uH(r, 9) = ZA,'rxlf,‘(e) + Usmooth (2)
i=1

The eigenpairs uidéfr“'fi((?) satisfy the governing equation in the domain and the boundary
conditions along the parts of the boundary that cause the singularity. Note that, if o, < I, the
corresponding ith term in the expansion (2) for Vuy; is unbounded as r — 0. We can think of
the coefficients A, of these terms as analogous to the stress intensity factors of elasticity. We
generalize this terminology, and refer to all coeflicients 4;, whether or not the corresponding
terms in (2) are singular, as generalized flux intensity factors (GFIFs). The GFIFs depend on the
global problem and are often desirable in many applications.

The computation of GFIFs by standard numerical methods can become very inaccurate, and
reasonable engineering accuracy is often impossible or, at least, very costly to obtain. To achieve
satisfactory accuracy and convergence rates, special methods taking into account the form of the
local solution are often suggested. Based on the mathematical analysis of Li et al.,? we present in
this paper a simple yet efficient numerical method for the computation of GFIFs associated with
singular points in a two-dimensional domain, provided that the eigenpairs u; are known
explicitly. In Reference 3 a weak formulation based on a bilinear weighted form is considered and
the minimum is sought. The present method is a simpler variation of that described in Reference
3, and is also capable of solving the Poisson problem, thus providing the GFIFs with high
accuracy. We use the method for two-dimensional Laplace and Poisson equations over domains
containing re-entrant corners or abrupt change of boundary conditions. From the engineering
point of view, the Laplace and Poisson equations describe several problems of engineering
interest such as steady-state heat transfer in an unsmooth domain, fully developed flow in a duct
of cross-section containing re-entrant corners, the Saint Venant torsion of a bar having an
unsmooth cross-section, the deflection of a membrane with a free half-edge, etc.

The proposed boundary method is based on approximating boundary conditions by the
expansion (2) by minimizing a discrete functional. Thus, in the interior of the domain, the
solution is approximated by a space which is spanned by the first N leading terms of the
expansion (2), i.e. u;, i=1,2,...,N. As pointed out, each u, exactly satisfies the governing
equation and the boundary conditions along the boundary causing the singularity. The
boundary conditions away from the singular point are imposed in a least-squares sense: we
require that the expansion (2) matches the boundary conditions by minimizing a discrete
functional. This functional sums the square of the distances between the series and the boundary
conditions at a given number of points along the domain boundary. This method has several
advantages: (a) the dimension of the problem is reduced by one and, consequently, the
computational cost is considerably lower; (b) the generalized flux intensity factors are computed
explicitly; (c) the numerical computed GFIFs converge to the exact values exponentially as N is
increased.

© 1998 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng, 14, 657—670 (1998)
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The formulation of the boundary method is presented in Section 2. Numerical experiments are
provided in Sections 3 and 4. We first consider a Laplace equation problem, the Motz problem.*
This is considered as a classical benchmark problem for testing the various methods proposed in
the literature, since exact GFIFs are available in Reference 5 for comparison. GFIFs computed
by the boundary method for the Poisson equation over L-shaped domains are also presented, and
compared to values computed by the p-version finite element method. We also consider the
Poisson equation over a domain containing multiple singular points, where a domain decom-
position is required. We conclude with a summary in Section 5.

2. THE NUMERICAL METHOD

Let Q be a two-dimensional domain bounded by the boundary 0Q = U,I';, where I'; are straight
lines called edges. These edges intersect at points called vertices. The two boundaries intersecting
in the singular point of interest are denoted by I'; and I, (see Figure 1). We consider the Poisson
equation

Viu(x,y)=—f(x,y) in Q 3)
Bi(u)y=0 on I, i=12 4)
By(u) = d{(x, ) on T, i#1.2 (5)

where d(x, y) are smooth functions on the boundaries, B, is the trace operator for Dirichlet
boundary conditions, d/on for Newmann boundary conditions, where n denotes the outward normal
vector to the boundary. The solution to the above problem in the vicinity of a singular point takes
the form

U=y + Up (6)

where uy, is given by (2) and uy, is a particular solution which satisfies (3) identically.
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Figure 1. Domain with a re-entrant corner and notation
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Herein u is approximated by considering the first N leading terms in the series (2). On UT,,
i#1,2, we place N_ grid points equally spaced along the boundary, such that for each it is
required that (6) satisfies the boundary conditions (5). Non-uniform spacing of the grid points
virtually does not change the accuracy of the results. It is essential that N, is greater than N
(for N, <N one obtains an underdetermined system of equations, whereas for N,=N one
obtains a collocation method). Thus, an overdetermined set of equations is obtained, and the
following procedure is applied. We define

NP
B= ; Z{B,-[u(xj, = dix )Y, (.)€l ()
i J=

B obtains a minimum when the coeflicients 4, are the best approximations to the exact values.
Thus we have to consider

B

—=0, k=1,2,...,N 8
i ()
which provides a system of N equations for the N unknown GFIFs.

3. NUMERICAL EXAMPLE: THE MOTZ PROBLEM

We demonstrate the method on the Motz problem,* considered as a benchmark problem for
testing the various singular methods proposed in the literature; see, for example, References 3
and 6. The geometry, the governing equation and the boundary conditions for the Motz problem
as modified by Wait and Mitchell” are shown in Figure 2. A singularity arises at x = y = 0, where
the boundary condition suddenly changes from u = 0 to du/dy = 0. The solution in the vicinity of
the singular point is given by

wy =y AV cos[(2k — 1)0/2] )
k=1

The above expansion is valid in the entire solution domain. In fact, it has been shown in
Reference 5 that the radius of convergence is at least as large as 2 and that the first 20 GFIFs are
obtained exactly by a conformal mapping technique.

Du/Qy:O
I
Au=0
Y,
du/Ox=0 |I's 1A Is|u=500
I Iy x
u=0 Du/Dj’:O
. 1 i 1

Figure 2. Domain and boundary conditions for the Motz problem
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Many special numerical schemes have been proposed for the solution of the Motz problem,
including finite difference, global element, boundary element, finite element and others. In what
follows we make comparisons with the exact values of Rosser and Papamichael.’
The solution u is approximated using the /N leading terms of the asymptotic expansion (9), and
the derivatives are approximated by

ou
ax 1 & , cos[(2k — 3)0/2]

=2 4,2k — )R 10
u 2;; (2= {—sin[(Zk—3)0/2]} (10)
ay

At each grid point along the boundary segments I';, I'y and I's we require that # approximates the
boundary conditions. It is essential that the number of grid points N, is greater than NV, obtaining
an overdetermined set of equations. Defining

B= Y [500—uCx.y)F + Y [0—du(x,.y)/0)
(xpy) el (xpy)ely

+ Z [0—814(96,-’)’1‘)/395]2

(x;y) €T

(11)

B obtains a minimum when the coefficients 4, are the best approximations to the exact values.
Thus we consider

0B

—=0, k=12,...,N 12
04, (12)

which produces a system of N linear algebraic equations presented in a matrix form by
(KN4} = {r} (13)

The matrix [K] is a symmetric matrix which is fully populated. As N_ is increased, for a given N,
the condition number of the matrix [K] is improved. In Table I we show the effect of N, on the
calculated values of 4,, 45, 4, 4,5 and A4,, obtained with N =40. One notices that the values
of the GFIFs converge with N, and that highly accurate estimates are obtained at least for the

Table I. Convergence of the GFIFs with N, (N =40)

Np A, As A A5 A4, Cond.
41 401-1624537506 14402727165  0-0153843744  0-0002715122  —0-0000052957  4-95,,7
61 401-1624537453 14402727170  0-0153843745  0-0002715122  —0-0000052958  8-63,,6
81 401-1624537452 14402727170  0-0153843745  0-0002715122  —0-0000052958  7-76,,6

101 401-1624537452  1-4402727170  0-0153843745  0-0002715122  —0-0000052958  7-27,,6

121 401-1624537452 14402727170  0-0153843745  0-0002715122  —0-0000052958  6:94,,6

141 401-1624537452 14402727170  0-0153843745  0-0002715122  —0-0000052958  6-71,,6

161 401-1624537452 14402727170  0-0153843745  0-0002715122  —0-0000052958  6-54,,6

Exact  401-1624537452 1-4402727170  0-0153843745  0-0002715122  —0-000005295

© 1998 John Wiley & Sons, Ltd.
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Table II. Convergence of the solution as N increases (N, =161)

N A, As A, A A4, Cond.
20 401-1624601517  1-4402703003  0-0153455497  0-0002398586 —0-0000061606  4-07,,3
25 401-1624538791  1-4402728589  0-0153831210  0-0002687029  —0-0000058721  2-61,,4
30 401-1624537608  1-4402727275  0-0153843513  0-0002713616  —0-0000053706  1-48,,5
35 401-1624537452  1-4402727161  0-0153843744  0-0002715173  —0-0000052845  9-90,,5
40 401-1624537452 14402727170  0-0153843745  0-0002715122  —0-0000052958  6-54,,6
45 401-1624537452  1-4402727170  0-0153843745  0-0002715122  —0-0000052958  3-84,,7
50 401-1624537452  1-4402727170  0-0153843745  0-0002715122  —0-0000052957  2-18,,8
Exact  401-1624537452 1-4402727170  0-0153843745  0-0002715122 —0-000005295

20 leading coefficients. In the last column we introduce the condition number associated with the
matrix [K],
1 1/2
cond = (ﬂ>
)“min
where A

max and 4. are the largest and smallest eigenvalues of [K], respectively. One may see
that for N,>2N the results are practically independent of N,

In Table IT we show the convergence of the GFIFs as N increases with N,=161. One notices
that the values of the singular coefficients converge rapidly with N. It is visible that there is a loss
of stability as NV increases (i.e. the condition number becomes larger). A similar loss of stability
was observed by Li et al.® and Georgiou et al.® The exponential convergence rate of the method is
illustrated in Figure 3, where the absolute error of 4, as a function of N(Np =161) is plotted. The
first 20 coefficients obtained with N =40 and N, =161 are as accurate as the exact values
presented in Reference 5. The present method yields accurate GFIFs and requires a smaller
computational effort when compared to other methods given in References 3 and 5.

(14)

3.1. Motz non-symmetric problem

The method was checked on a variation of the Motz problem with a larger and non-symmetric
domain shown in Figure 4. ‘Motz boundary conditions’ are kept on the five segments of the
boundary. Taking N =20 and N,=3l the first six GFIFs obtained are: 4, =169-8046,
A, =36-9230, A, =7-0542, A, =—3-6406, A;=0-4543 and A, =0-0494. In order to check the
accuracy of these GFIFs, the p-version of the finite element method was used to compute these
GFIFs over the mesh shown in Figure 5. The p-level over the elements has been increased from 1
to 8, obtaining an estimated relative error in energy norm at p = 8 of less than 0-2 per cent with
1839 degrees of freedom (see Reference 8 for details on the estimation of the error in energy
norm). Using the finite element commercial code Stress Check* the following GFIFs are
obtained: 4, =169-799, 4, =36-923, A, =7-054, A, = —3-642, A; =0-454 and A, = 0-0495. The
results, obtained by different methods, agree with each other very well, ensuring their accuracy.
The question of the accuracy of the results obtained using the local expansion to approximate the
exact solution away from the singular point is addressed in the following Section.

*Stress Check is the Trade Mark of Engineering Software Research and Development, Inc., 7750 Clayton Road,
Suite 204, St. Louis, MO 63117, U.S.A.
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Figure 4. Domain and boundary conditions for the non-symmetric Motz problem

4. NUMERICAL EXAMPLE: POISSON EQUATION OVER AN L-SHAPED DOMAIN

In this Section the Poisson equation V2« = —1 over the domain illustrated in Figure 6 is con-
sidered, with homogeneous Dirichlet boundary conditions applied over the whole boundary. The
exact solution to this problem in the vicinity of the singular point consists of two parts:

uy(r. 0) =Y A7 sin(2k0/3) (15)
k=1

© 1998 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng, 14, 657—670 (1998)
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Figure 5. Finite element mesh for the non-symmetric Motz problem
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Figure 6. Solution domain for Poisson equation
and’
- [3n . 3
up(r, ) = —| =+ 2 In(r) sin(20) + | 20 — =— ) cos(20) (16)
6m | 2 2n

u =uy + up represents in engineering practice the Prantl stress potential (see, for example,
Reference 10, Chapter 35) from which the stress tensor to the Saint Venant torsion of a straight
bar can be obtained. This problem, for example, is of technical importance in fracture mechanics,
and the ‘stress intensity factor’ defined by %Al is often sought.

Exact GFIFs to the problem of interest are unavailable. However, numerical tests using
multigrid methods are reported in Reference 11, where 4, = 0-40192487 is accurate to the fourth

© 1998 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng, 14, 657—670 (1998)
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2

(a)

Figure 7. Cross-sections of domains over which Poisson equation is applied

significant digit, and 4, ~ 0. It is known that all the even terms in (15) vanish, so we may expect
that the computation will yield 4, =4, =---=0.

Again, the homogeneous part of the solution is approximated by the N = 10 leading terms of
the symptotic series (15), and we assign Np =61 grid points along the boundary segments
', — I',. The results obtained are 4, = 0-401920085 and 4, = 10~!7, which agree very well with
Reference 11.

We also consider a number of problems associated with the torsion of a long rod having cross-
sections shown in Figure 7. All cross-sections are composed of identical L-shaped blocks. Each
of the cross-sections (a) and (b) contains two such blocks and has one axis of symmetry, whereas
cross-section (c¢) contains four L-shaped blocks and has two axes of symmetry. In each of the
cases (a)—(c) we exploit the geometrical symmetry and consider only one shaded L-shaped block,
while imposing appropriate symmetry boundary conditions on the axes of symmetry. Thus, only
one singular point is considered in each case. For these cases the derivatives duy;/dx + dup/0x and
Ouy /3y + up/dy are computed from (15) and (16), respectively.

The first GFIFs for the problems in Figure 7 as obtained with N =10 and N, =61 are
summarized in Table III. We compare our results to those reported in Reference 12 (in which a
low number of degrees of freedom has been used (N = 5) and 31 nodal points are used at the DtN
boundary) and also with the results computed using finite element analysis over the mesh shown
in Figure 8, having 742 DOF at p = 8 and an estimated relative error in energy norm of 0-13 per
cent. Again the finite element analysis was performed using Stress Check®.

Table III. Values of first GFIF for problems shown in Figure 6

Case no. Reference 12 FE Present method
(a) 0-4162 0-4102 0-4101
(b) 0-5527 0-5447 0-5471
(o) 0-4245 0-4185 0-4183

© 1998 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng, 14, 657—670 (1998)
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Figure 8. Finite element mesh for Poisson problems shown in Figure 7

4.1. Large L-shaped domains

Herein we address the accuracy of the proposed method when applied over large domains. This
is of particular interest since it is known that series (2) is an asymptotic series, i.e. fewer terms are
needed as one approaches the singular point. We consider herein an L-shaped domain which is
ten times larger than the domain shown in Figure 6. Again, the homogeneous part of the solution
is approximated by the N = 10 leading terms of the asymptotic series (15), and we assign Np = 61
grid points along the boundary segments. The results obtained are A4,=8-65912216 and
A,=—10'%. The obtained GFIFs are compared to the ones extracted using the finite element
method, which are 4, =8-6682 and 4, = 0. this comparison shows excellent agreement.

Although the GFIFs are associated with the close vicinity of the singular point, we show that
when the series satisfies the boundary conditions away from the singularity we still obtain
accurate estimation of GFIFs. An explanation of this situation follows. Let us consider the
Poisson equation over a domain which is M times larger than a “unity’ domain in Figure 6. The
solution over the large domain will be denoted by u!*} and satisfies the equation

V2 “{AA\“ n ufl}m = —u (17)

© 1998 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng, 14, 657—670 (1998)
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where p is a constant. For example, the aforementioned problem had M = 10. We define new
co-ordinates

X=2, v=2 (18)

consequently, the polar co-ordinates R, ® are associated with r,0 by R=r/M, ® =0. The
Poisson equation (17) in the new co-ordinate system takes the form

M M 2
ulbt +ully) = —Mp (19)

which is a Poisson equation over the ‘unity’ domain. This explains the fact that the method is
suitable to any bounded domain.

It is also interesting to note that one can obtain immediately the GFIF to any domain which is
larger by a factor M, having in hand the GFIF to the ‘unity’ domain when u is a constant and the
boundary conditions are homogeneous. Comparing (17) and (19), the following connection is
obtained:

2/3
a7, 0) = MU (R, ©) = AP 10) = M2AV (D)1, 00)
which becomes
A{lM} :M4/3A{11}

Indeed, the obtained 4, computed in this sub-section is associated with the 4, computed over the
‘unity” domain at the beginning of Section 4:

A =107 x 0-40192085 = 865912216

which agrees with the numerical value above.

Convergence of solutions using this method is ensured only when there are no additional
points of singularity in the domain. In the case of a domain which has more than one singular
point, it is necessary to subdivide it into several subdomains, as explained in the next subsection.

4.2. Subdivision of the Domain

For problems with material interfaces or multiple singularities, it is not possible to find a single
expansion valid in the entire domain. It is therefore necessary to subdivide it into several sub-
domains and use different expansions in each of them. A solution is then obtained by approx-
imating both the boundary conditions and the continuity conditions across the interior artificial
interface. We note that for a good subdivision only a few terms are needed in each subdomain to
achieve an accurate approximation. Moreover, the numerical stability is greatly improved and the
matrix [K] has many zero entries. To demonstrate the subdivision technique, we consider the
Poisson equation V?u = —1 over the domain shown in Figure 9 with homogeneous Dirichlet
boundary conditions applied over the entire boundary. Due to the two singular points, two
subdomains, Q, and Q,, are defined. In each subdomain we consider a series of the form (15) and
(16). These series have to satisfy the continuity conditions across the interface at selected grid
points. These requirements may not be fulfilled exactly but only in a least-squares form, enabling

© 1998 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng, 14, 657—670 (1998)
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S,
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Figure 9. Domain with two singular points and notation

a flexibility between the approximations which improves the accuracy. Continuity across the
artificial boundary is required on the solution u as well as on the normal derivative of u. These
continuity conditions were applied to be consistent with the outer boundary conditions 9Q. This
also simplifies the programming difficulties. Similar continuity conditions were proposed by
Liet al3

For a domain with §, =2, 5, =38, §;=3, 5, =4, S;=4, §,=06, §; =3, we chose N, ) = 10,
Nq,) = 10 and a grid size on all the boundaries (the distance between adjacent grid point55 h=1.
The first two computed GFIFs for the singular point P, (in the domain Q,) and P, (in Q,) are:

at P: A, =1-6042, A, =0-3533
at Py A, =2-0403, A, =0-2332
The condition number associated with the problem is 1-4354 x 10%.

Since neither analytic nor numerical approximations to this problem are available, we solve the
same problem using finite elements (Stress Check®) over the mesh shown in Figure 10. At p =8,
with 2361 DOF, the relative error in energy norm is 0-08 per cent, and the first two GFIFs are:

at P: A4, =1-6013, A, = 03504
at P,: A, =2.0333, A, =0-2329

As may be noted, the first two GFIFs obtained by the two different numerical techniques are very
similar, confirming the accuracy of the presented method.

5. CONCLUSIONS

A simple boundary method has been presented for computing the generalized flux intensity
factors associated with the singular solution of two-dimensional elliptic boundary value

© 1998 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng, 14, 657—670 (1998)
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Y

L x

Figure 10. Finite element mesh for Poisson problem containing multiple singular points as shown in Figure 9

problems arising from abrupt changes in the boundary conditions or in the direction of the
boundary. The method has several advantages: (a) the dimension of the problem is reduced by
one and, consequently, the computational cost is considerably lower; (b) the generalized flux
intensity factors are computed explicitly; (c) the numerical computed GFIFs converge to the
exact values exponentially as N is increased.

The method may be extended to elliptic problems involving other types of singularities, such as
those caused by an interface between two different elastic materials, for example, provided that
the form of the asymptotic series for the solution in the vicinity of the singular point is known.
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