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Abstract

Numerical methods for computing singular solutions of linear second order elliptic partial differential equations
(Laplace and Elasticity problems) in polyhedral domains are presented. The singularities may be caused by edges,
vertices, or abrupt changes in material properties or boundary conditions. In the vicinity of the singular lines or
points the solution can be represented by an asymptotic series, composed of eigen-pairs and their amplitudes. These
are of great interest from the point of view of failure initiation because failure theories directly or indirectly involve
them.

This paper addresses a general method based on the modified Steklov formulation for computing the eigen-pairs
and a dual weak formulation for extracting the amplitudes numerically using thep-version of the finite element
method. The methods are post-solution operations on the finite element solution vector and have been shown in
a two dimensional setting to be super-convergent. 2000 IMACS. Published by Elsevier Science B.V. All rights
reserved.
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1. Introduction and notations

The solution of second order elliptic boundary value problems (BVP) in three-dimensions, in the
vicinity of singularities can be decomposed into three different forms, depending whether it is in the
neighborhood of an edge, a vertex or an intersection of the edge and the vertex. Mathematical details on
the decomposition can be found, e.g., in [1,3,6,8–10] and the references therein. A representative three-
dimensional domain denoted byΩ , which contains typical 3-D singularities is shown in Fig 1. Vertex
singularities arise in the neighborhood of the verticesAi , and edge singularities arise in the neighborhood
of the edgesΛij . Only straight edges are considered herein(for curved edges see [6]). Close to the
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Fig. 1. Typical 3-D singularities.

vertex/edge intersection, the vertex-edge singularities arise. It shall be assumed that curved edges which
intersect at vertices do not exist, and that crack faces, if any, lie in a flat plane.

For introductory purposes the simplest elliptic BVP, namely the Laplace equation, is considered:

∇2u= 0 inΩ (1)

with the following boundary conditions:

u= g1 onΓD ⊂ ∂Ω, (2)
∂u

∂n
= g2 onΓN ⊂ ∂Ω, (3)

ΓD ∪ ΓN = ∂Ω . In the vicinity of edges or vertices of interest, we assume that homogeneous boundary
conditions are applied for clarity and simplicity of presentation.

In this section we provide a short outline of the singular solution decomposition in the neighborhood
of an edge, a vertex or at a vertex–edge intersection. Based on previous work on two-dimensional
singularities, see, e.g., [16,17,22,23], we herein extend the methods developed for singular points
shown to be accurate, general and super-convergent, to three-dimensional edge and vertex singularities.
Sections 2 and 3 introduce the modified Steklov formulation for extracting edge and vertex eigen-pairs
associated with the Laplace operator. In Sections 4 and 5 a more detailed analysis of the modified Steklov
method is provided for extracting eigen-pairs associated with edge and vertex elastic singularities. We
thereafter introduce the dual weak form for extracting edge flux intensity functions of the Laplace
operator in Section 6 as an illustrative example of the required formulation for the elasticity problem.
We conclude with a summary in Section 7.

Edge singularities. Let us consider one of the edges denoted byΛij connecting the verticesAi andAj .
Moving away from the vertex a distanceδ/2, we create a cylindrical sector sub-domain of radiusr =R
with the edgeΛij as its axis. It is denoted byEδ,R(Λij ), and is shown in Fig. 2 for edgeΛ12. It is again
emphasized that our attention is restricted to domains having straight edges. The solution inEδ,R can be
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Fig. 2. The edge sub-domainEδ,R(Λ12).

decomposed as follows:

u(r, θ, z)=
K∑
k=1

S∑
s=0

aks(z) r
αk (ln r)s fks(θ)+ v(r, θ, z), (4)

whereS > 0 is an integer which is zero unlessαk is an integer,αk+1> αk are called edge eigen-values,
aks(z) are analytic inz and are denoted by edge flux intensity functions (EFIFs).fks(θ) are analytic inθ ,
called edge eigen-functions. The functionv(r, θ, z) belongs toHq(E), the usual Sobolev space, whereq
can be as large as required and depends onK . We shall assume thatαk for k 6K are not integers, and
that no “crossing points” are of interest (see a detailed explanation in [6]), therefore, (4) becomes:

u(r, θ, z)=
K∑
k=1

ak(z)r
αkfk(θ)+ v(r, θ, z). (5)

Vertex singularities. A sphere of radiusρ = δ, centered in the vertexA11 for example, is constructed
and intersected with the domainΩ . Then, a cone having an opening angleθ = σ is constructed such that
it intersects atA11, and removed from the previously constructed sub-domain, as shown in Fig. 3. The
resulting vertex sub-domain is denoted byVδ(A11), and the solutionu can be decomposed inVδ(A11)

using a spherical coordinate system by

u(ρ,φ, θ)=
L∑
l=1

P∑
p=0

blpρ
γl (lnρ)phlp(φ, θ)+ v(ρ,φ, θ), (6)

whereP > 0 is an integer which is zero unlessγl is an integer,γl+1> γl are called vertex eigen-values,
andhlp(φ, θ) are analytic inφ and θ away from the edgesand are called vertex eigen-functions.blp
are denoted by vertex flux intensity factors (VFIFs). The functionv(r, θ, z) belongs toHq(V), whereq
depends onL. We shall assume thatγl for l 6L is not an integer, therefore, (6) becomes:

u(ρ,φ, θ)=
L∑
l=1

blρ
γlhl(φ, θ)+ v(ρ,φ, θ). (7)
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Fig. 3. The vertex neighborhoodVδ(A11). Fig. 4. The vertex–edge neighborhoodVEδ,R(A11,Λ10,11).

Vertex–edge singularities.The most complicated decomposition of the solution arises in case of a
vertex–edge intersection, but this will not be addressed herein. Only a short outline is provided. For
example, let us consider the neighborhood where the edgeΛ10,11 approaches the vertexA11. A spherical
coordinate system is located in the vertexA11, and a cone having an opening angleθ = σ with its vertex
coinciding withA11 is constructed withΛ10,11 being its center-axis. This cone is terminated by a ball-
shaped basis having a radiusρ = δ, as shown in Fig. 4. The resulting vertex–edge sub-domain is denoted
by VEδ,R(A11,Λ10,11), and the solutionu can be decomposed inVEδ,R(A11,Λ10,11):

u(ρ,φ, θ)=
K∑
k=1

S∑
s=0

(
L∑
l=1

akslρ
γl +mks(ρ)

)
(sinθ)αk

[
ln(sinθ)

]s
gks(φ)

+
L∑
l=1

P∑
p=0

clp ρ
γl (lnρ)p hlp(φ, θ) + v(ρ,φ, θ), (8)

wheremks(ρ) are analytic inρ, gks(φ) are analytic inφ and hlp(φ, θ) are analytic inφ and θ . The
functionv(r, θ, z) belongs toHq(VE) whereq is as large as required depending onL andK .

The eigen-values and the eigen-functions are associated pairs (eigen-pairs) which depend on
the material properties, the geometry, and the boundary conditionsin the vicinity of the singular
vertex/edge only. Similarly, the solution for problems in linear elasticity, in the neighborhood of singular
vertices/edges is analogous to (4)–(8), the differences are that the equations are in a vector form and the
eigen-pairs may be complex. For general singular points the exact solutionuEX is generally not known
explicitly, i.e., neither the exact eigen-pairs nor the exact EFIFs, VFIFs are known, therefore numerical
approximations are sought.

2. Computing edge eigen-pairs for the Laplace problem

For the Laplace equation, we may perform a separation of variables procedure in the neighborhood
of the edge singularity as shown in (5). Each eigen-pair (thenth, for example,rαnfn(θ)) is independent
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of z and satisfies the Laplace equation over the plane(r, θ) which is perpendicular to the edge.This
is exactly a 2-D problem and the eigen-pairs are identical to the 2-D eigen-pairs(see for detailed
mathematical analysis [9, Chapter 2.5]). Thus, the modified Steklov method described in [22] can be
used for determining the eigen-pairs in the neighborhood of edge singularities on a two-dimensional
plane perpendicular to the edge.

Remark 1. Of course, eigen-pairs for the Laplace operator are known explicitly, but for multi-material
interface problems of general scalar elliptic operators (provided that in thez direction the domain
remains isotropic) one has to use numerical methods to compute the eigen-pairs as the modified Steklov
formulation.

3. Computing vertex eigen-pairs for the Laplace problem

Based on the methods documented in [3,22], we herein provide the modified Steklov formulation for
the computation of vertex eigen-pairs. Consider the sub-domain shown in Fig. 5 in the vicinity of a vertex.
Edge singularities exist along the edgesΛ11,12, Λ11,14 andΛ11,10, so that proper numerical treatment is
required in their vicinity. A possibility to overcome the deterioration of the numerical approximations
due to the vertex–edge singularities is to use the Auxiliary Mapping Method [10], having in hand already
the edge eigen-values, or to enrich the finite element space with edge-singular shape functions in the
elements adjacent to the edges. If neither methods are used, one has to geometrically refine the mesh in
the vicinity of the edges. Based on (7), in the neighborhood of the vertex,u ∝ ργ h(φ, θ), therefore on
the sphere-shaped boundary,ρ = P , for example, we have

∂u

∂n
= ∂u
∂ρ
= γ

P
u onρ = P. (9)

Fig. 5. Domain for vertex eigen-pairs extraction.
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Assume that homogeneous Neumann boundary conditions are prescribed in the vicinity of the vertex,
thus we have to solve overΩ∗P the following classical eigen-value problem:

∇2u= 0 inΩ∗P ,

∂u

∂n
= 0 onΓN,

∂u

∂ρ
− γ
P
u= 0 onρ = P,

∂u

∂ρ
− γ

P ∗
u= 0 onρ = P ∗,

(10)

whereΓN for this case are the plane boundaries ofΩ∗P shown in Fig. 5. The weak eigen-formulation
associated with (10) is obtained by following the steps presented in [22]:
• Seekγ ∈ C, 0 6= u ∈H 1(Ω∗P ), such that

B(u, v)= γ [MP (u, v)+MP ∗(u, v)
]
, ∀v ∈H 1(Ω∗P ), (11)

where:

B(u, v),
y
Ω∗
P

∇u · ∇vρ2 sinφ dρ dφ dθ,

MP (u, v)= P
x
φ,θ

[uv sinφ]ρ=P dφ dθ, (12)

MP ∗(u, v)= P ∗
x
φ,θ

[uv sinφ]ρ=P ∗ dφ dθ. (13)

The weak formulation (11) may be solved by thep-version of the finite element method through
a meshing process, dividing the domainΩ∗P into 3-D hexahedra/tetrahedral elements. It has to be
emphasized that although the vertex singularity has been removed from the domainΩ∗P , yet edge
singularities may be present.

4. Computing edge eigen-pairs for the elasticity problem

The elastostatic displacements field in three-dimensions,u = (ux, uy, uz)T, in the vicinity of an
edge can be decomposed in terms of edge eigen-pairs and edge stress intensity functions (ESIFs).
Mathematical details on the decomposition can be found, e.g., in [1,8,9] and the references therein.
Elastic edge singularities have been less investigated, especially when associated with anisotropic
materials and multi-material interfaces. Analytical methods as in [18,19] provide the means for
computing the eigen-pairs for a two-material interface however requires extensive mathematics. Several
numerical methods, have been suggested lately. Among them [5,7,11,12,14] and the references therein.

In the neighborhood of a typical edge (for example,Eδ,R), the displacement field can be decomposed
as follows:

u(r, θ, z)=
K∑
k=1

S∑
s=0

aks(z)r
αk (ln r)sf ks(θ)+w(r, θ, z), (14)
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Fig. 6. The modified Steklov domainΩ∗R.

whereS > 0 is an integer which is zero for most practical problems, except for special cases, andaks(z)

are analytic inz called edge stress intensity functions (ESIFs). The vector functionw(r, θ, z) belongs to
[Hq(Eδ,R)]3, whereq depends onK . We shall address herein only these cases whereS = 0, therefore,
(14) becomes:

u(r, θ, z)=
K∑
k=1

ak(z)r
αkf k(θ)+w(r, θ, z). (15)

We denote the tractions on the boundaries byT = (Tx Ty Tz)T, and the Cartesian stress vector by
σ = (σx σy σz τxy τyz τxz)T. In the vicinity of the edge we assume that no body forces are present.

For computing eigen-pairs, atwo-dimensionalsub-domainΩ∗R is constructed in a plane perpendicular
to the edge (z-axis) and bounded by the radiir =R∗ andr =R, as shown in Fig. 6.

On the boundariesθ = 0 andθ = ωij of the sub-domainΩ∗R either homogeneous traction boundary
conditions (T = 0), or homogeneous displacements boundary conditions, or a combinations of these are
prescribed.

In view of (15),u in ΩR∗ (respectivelyv) has the functional representation

u
def= a(z)rα(fx(θ), fy(θ), fz(θ))T = a(z)rαf (θ), v

def= b(z)rαf (θ). (16)

We also denote thein-planevariation of the displacements as follows:

ũ(r, θ)
def= u

a(z)
, ṽ(r, θ)

def= v

b(z)
. (17)

Following the steps presented in detail in [20], an eigen-problem is cast in a weak form which is an
integral equation (modified Steklov weak form) over a two dimensional domain involving the three
displacements field.
• Seekα ∈ C, 0 6= ũ ∈ [H 1(Ω∗R)]3, such that∀ṽ ∈ [H 1(Ω∗R)]3,

B
(
ũ, ṽ

)− [NR(ũ, ṽ)−NR∗(ũ, ṽ)]= α[MR

(
ũ, ṽ

)−MR∗
(
ũ, ṽ

)]
(18)

with
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B
(
ũ, ṽ

) def=
R∫

R∗

ω12∫
0

{(
[Ar ]∂r + [Aθ ]∂θ

r

)
ṽ

}T

[E]
{(
[Ar ]∂r + [Aθ ]∂θ

r

)
ũ

}
r dθ dr, (19)

NR
(
ũ, ṽ

) def=
ω12∫
0

ṽT[Ar ]T[E][Aθ ]∂θ ũ
∣∣
r=R dθ, (20)

MR

(
ũ, ṽ

) def=
ω12∫
0

ṽT[Ar ]T[E][Ar ]ũ
∣∣
r=R dθ, (21)

where

[Ar ] def=



cosθ 0 0
0 sinθ 0
0 0 0

sinθ cosθ 0
0 0 sinθ
0 0 cosθ

 , [Aθ ] def=



−sinθ 0 0
0 cosθ 0
0 0 0

cosθ −sinθ 0
0 0 cosθ
0 0 −sinθ

 (22)

and[E] is the material matrix given in (36).

Remark 2. Although bothũ and ṽ have three components, the domain over which the weak eigen-
formulation is defined is two-dimensional, and excludes any singular points. Therefore, the application
of thep-version of the FEM for solving (18) is expected to be very efficient.

Remark 3. The bilinear formsNR andNR∗ arenon-symmetricwith respect tõu and ṽ, thus are not
self-adjoint. As a consequence, the “minimax principle” does not hold, and any approximation of the
eigenvalues (obtained using a finite dimension subspace of[H 1(Ω∗R)]3) cannot be considered as an upper
bound of the exact ones and the monotonic convergence as the sub-space is enriched is lost as well.
Nevertheless, convergence is assured (with a very high rate as will be shown by the numerical examples)
under a general proof provided in [2].

Remark 4. Note that in (18) we do not limit the domainΩ∗R to be isotropic, and in fact (18) can be
applied to multi-material anisotropic interface.

Remark 5. When homogeneous displacement boundary conditions are applied, one has to restrict the
spaces to[H 1

0 (Ω
∗
R)]3, or a variation of it, so as to apply the essential boundary condition restrictions on

the spaces in which̃u andṽ lay.

4.1. Numerical treatment by the finite element method

We provide herein a short outline on the discretization of the weak eigen-formulation (18) by the
p-version of the finite element method. Details and explicit expressions can be found in [20].

Assume that the domainΩ∗R consists of three different material as shown in Fig. 7. We dividedΩ∗R
into, let us say, 3 finite elements, through a meshing process. Let us consider a typical element, element
number 1, shown in Fig. 7, bounded byθ1 6 θ 6 θ2. A standard element in theξ, η plane such that
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Fig. 7. A typical finite element in the domainΩ∗R .

−1< ξ < 1,−1< η < 1 is considered, over which the polynomial basis and trial functions are defined.
These standard elements are then mapped by appropriate mapping functions onto the “real” elements
(for details see [15, Chapters 5, 6]). The functionsũx, ũy, ũz are expressed in terms of the basis functions
Φi(ξ, η) in the standard plane:

ũ=
Φ1 . . . ΦN 0 . . . 0 0 . . . 0

0 . . . 0 Φ1 . . . ΦN 0 . . . 0
0 . . . 0 0 . . . 0 Φ1 . . . ΦN



c1
...

c3N

 def= [Φ]C, (23)

whereci are the amplitudes of the basis functions. Similarly,ṽ
def= [Φ]B .

The unconstrained stiffness matrix corresponding toB(ũ, ṽ) on the typical element is given by

[K] def=
R∫

R∗

θ2∫
θ1

{(
[Ar ]∂r + [Aθ ]∂θ

r

)
[Φ]

}T

[E]
{(
[Ar ]∂r + [Aθ ]∂θ

r

)
[Φ]

}
r dθ dr. (24)

The matrices corresponding toMR andNR on a typical element are computed according to

NR(ũ, ṽ)=BT

( 1∫
−1

[P̃ ]T[E][∂P ]∣∣
η=−1 dξ

)
C

def= BT[NR]C, (25)

MR(ũ, ṽ)=BT

(
θ2− θ1

2

1∫
−1

[P̃ ]T[E][P̃ ]∣∣
η=−1 dξ

)
C

def= BT[MR]C (26)

with [P̃ ] and[∂P ] explicitly given in [20].
The matrices[NR∗ ] and [MR∗ ] have same values as those of[NR] and [MR], but of opposite sign.

Denoting the set of amplitudes of the basis functions associated with the artificial boundaryΓ3 by CR ,
and those associated with the artificial boundaryΓ4 by CR∗ , the eigen-pairs can be obtained by solving
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the generalized matrix eigen-problem:

[K]C − ([NR]CR − [NR∗ ]CR∗)= α([MR]CR − [MR∗]CR∗). (27)

Augmenting the coefficients of the basis functions associated withΓ3 with those associated withΓ4, and
denoting them by the vectorCRR∗, (27) becomes

[K]C − [NRR∗]CRR∗ = α[MRR∗]CRR∗. (28)

We assemble the left-hand part of (28). The vector which represents the total number of nodal values
inΩ∗R may be divided into two vectors such that one contains the coefficientsCRR∗ , and the other contains
the remaining coefficients:CT = {CT

RR∗,C
T
in}. By partitioning[K], we can write the eigen-problem (28)

in the form[ [K] − [NRR∗] [KRR∗−in]
[Kin−RR∗] [Kin]

]{
CRR∗
C in

}
= α

[ [MRR∗] [0]
[0] [0]

]{
CRR∗
C in

}
. (29)

The relation in (29) can be used to eliminateC in by static condensation, thus obtaining the reduced
eigen-problem

[KS ]CRR∗ = α[MRR∗]CRR∗, (30)

where

[KS ] = ([K] − [NRR∗ ])− [KRR∗−in][Kin]−1[Kin−RR∗].
For the solution of the eigen-problem (30), it is important to note that[KS] is, in general, a full matrix.

However, since the order of the matrices is relatively small, the solution (using Cholesky factorization to
compute[Kin]−1) is not expensive.

Remark 6. There is the possibility thatm multiple eigenvalues exist with less thanm corresponding
eigenvectors (the algebraic multiplicity is higher than the geometric multiplicity). This is associated with
the special cases when the asymptotic expansion contains power-logarithmic terms, and this behavior
triggers the existence of ln(r) terms.

Remark 7. Although we derived our matrices as if only one finite element exists along the boundaryΓ3

andΓ4, the formulation for multiple finite elements is identical, and the matrices[K], [NR] and[MR] are
obtained by an assembly procedure.

4.2. Numerical example: Two cross-ply anisotropic laminate

As an example, we study edge singularities associated with a two cross-ply anisotropic laminate.
Consider a composite laminate with ply properties typical of a high-modulus graphite-epoxy system, as
shown in Fig. 8. The orientation of fibers differs from layer to layer. Referring to the principle direction
of the fibers, we define

EL = 1.38× 105 MPa(20× 106 psi), ET =Ez = 1.45× 104 MPa(2.1× 106 psi),

GLT =GLz =GTz = 0.586× 104 MPa(0.85× 106 psi), νLT = νLz= νTz= 0.21,
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Fig. 8. Cross-ply anisotropic laminate.

where the subscriptsL,T , z refer to fiber, transverse and thickness directions of an individual ply,
respectively. The material matrix[E] for a ply with fibers orientation rotated by an angleβ about the
y-axis is given by

[E] = [T (β)]T[Eo][T (β)], (31)

where

[
T (β)

]=


c2 0 s2 0 0 c · s
0 1 0 0 0 0
s2 0 c2 0 0 −c · s
0 0 0 c s 0
0 0 0 −s c 0

−2c · s 0 2c · s 0 0 c2− s2

 , c
def= cos(β), s

def= sin(β).

The material matrix in theL,T , z “ply coordinate system” is given by

[Eo] = V



(1− νTzνzT)EL (νLT + νLzνzT)ET (νzL+ νzTνTL)EL 0 0 0
(1− νLzνzL)ET (νzT+ νLTνzL)ET 0 0 0

(1− νLTνTL)Ez 0 0 0
GLT

V
0 0

GTz

V
0

GLz

V


, (32)

V
def= (1− νLTνTL− νTzνzT− νLzνzL− 2νLTνTzνzL)

−1,

νTL= νLT
ET

EL
, νzT= νTz

Ez

ET
, νzL= νLz

Ez

EL
.
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Fig. 9. Finite element mesh used for the cross-ply anisotropic laminate.

However, theL,T , z “ply coordinates” do not match thex, y, z coordinate system shown in Fig. 8, so
one has to associate theL ply direction with coordinatez, theT ply direction with coordinatex and the
z ply direction with coordinatey. Thus, in order to use (31), one has to change raws and columns in the
matrix [Eo], resulting with

[Eo] = V



(1− νLzνzL)ET (νzT+ νLTνzL)ET (νLT + νLzνzT)ET 0 0 0
(1− νLTνTL)Ez (νzL+ νzTνTL)EL 0 0 0

(1− νTzνzT)EL 0 0 0
GTz

V
0 0

GLz

V
0

GLT

V


. (33)

Note that the angleβ in Fig. 8 has a negative sign when used with (31).
We investigate the eigen-pairs associated with the singularities near the junction of the free edge and

the interface, for a commonly used[±β] angle-ply composite. Of course, the eigen-pairs depend onβ

and we choseβ = 45◦ for which the first 12 exact non-integer eigen-pairs are reported in [19] with 8
decimal significant digits:α1 = 0.974424342,α2,3 = 1.88147184± i0.23400497,α4,5 = 2.5115263±
i0.79281732. . .

The two-element mesh shown in Fig. 9 is used in our computation. The rate of convergence of the
eigen-values is clearly visible when plotted on a log-log scale as shown in Fig. 10. The eigen-function
vector (displacement fields) associated withα1 obtained atp = 8 is illustrated in Fig. 11.

The variation of the eigen-values for different[±β] cross-ply laminate and many more other example
problems are provided in [21].

5. Vertex singularities for elasticity problem

Let us assume that the three-dimensional domainΩ has a rotationally symmetric conical vertexO
on its boundary as shown in Fig. 12 withθo ∈ (0, π). The solution to the linear elastic problem in the
neighborhood of the vertexO is naturally expressed in terms of the spherical coordinatesρ,φ, θ , with
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Fig. 10. Convergence of edge eigen-values for the cross-ply anisotropic laminate.

Fig. 11. Edge eigen-functions associated withα1 for the cross-ply anisotropic laminate.

Fig. 12. Typical 3-D domain with a rotationally symmetric conical vertex.
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the origin at the vertexO (06 ρ, 06 φ < 2π , 0< θ < π ). In the vicinity ofO the displacements field
can be represented as follows (see, e.g., [4]):

ux
uy
uz

 def= u(ρ, θ,φ)=
K∑
k=1

S∑
s=0

aksρ
αk (lnρ)sf ks(θ, φ)+w(ρ, θ,φ), (34)

wherew ∈ [Hq(Ω)]3, q being as large as desired and depends onK .
The stress-displacements relationship through the constitutive material law (Hooke’s law) is given by

σ = [E][D]u (35)

with [D] and[E] (material matrix):

[D] def=



∂x 0 0
0 ∂y 0
0 0 ∂z
∂y ∂x 0
0 ∂z ∂y
∂z 0 ∂x

 ,


∂x
def= ∂

∂x

∂y
def= ∂

∂y

∂z
def= ∂

∂z

, [E] =



E1 E2 E4 E7 E11 E16

E3 E5 E8 E12 E17

E6 E9 E13 E18

E10 E14 E19

E15 E20

E21

 . (36)

The Navier–Lamé second-order differential equations (equilibrium equations in terms of the displace-
ments) can be cast in a weak form:
• Seeku ∈ [H 1(Ω)]3, such that

B(u,v)=F(v) ∀v ∈ [H 1(Ω)
]3
, (37)

where

B(u,v) def=
y
Ω

([D]v)T[E][D]udV, (38)

F(v) def=
x
∂Ω

(v)TT dA. (39)

If homogeneous displacement boundary conditions are prescribed on the boundary of the domain∂Ω ,
then the weak form (37) remains unchanged except for the spaces in whichu andv lie.

We introduce the outward normal vectorn= (nxnynz)T on a spherical surface:

n= (sinθ cosφ,sinθ sinφ,cosθ)T

so that the traction vectorT can be expressed by

T =
nx 0 0 ny 0 nz

0 ny 0 nx nz 0
0 0 nz 0 ny nx


︸ ︷︷ ︸

[n]

σ . (40)

Any displacement field of the formu= ραf (φ, θ) satisfies the Navier–Lame equilibrium equations in
the neighborhood of the vertex. With the above notation, the differential operator[D] acting onu of the
above form can be decomposed as follows:

[D]u= 1

ρ

(
α[n]T + [D(θ,φ)

])
u, (41)
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where

[
D(θ,φ)

]=



cosθ cosφ∂θ − sinφ

sinθ
∂φ 0 0

0 cosθ sinφ∂θ + cosφ

sinθ
∂φ 0

0 0 −sinθ∂θ

cosθ sinφ∂θ + cosφ

sinθ
∂φ cosθ cosφ∂θ − sinφ

sinθ
∂φ 0

0 −sinθ∂θ cosθ sinφ∂θ + cosφ

sinθ
∂φ

−sinθ∂θ 0 cosθ cosφ∂θ − sinφ

sinθ
∂φ


.

Consider the sub-domainΩ∗ in the neighborhood of the conical point of interest, bounded by a cone
(which is the boundary ofΩ) and two spheres centered at the conical point of radiiP > P ∗. See, for
example, Fig. 13. Let us consider the weak formulation (37) overΩ∗, and particularly, let us examine the
linear formF(v). Because homogeneous traction or displacement boundary conditions are considered,
thenF(v) is defined on the two spheres only. Using (35) and (41) we may rewrite (40) as

T = 1

ρ
[n][E](α[n]Tu+ [D(θ,φ)

]
u
)
. (42)

Substituting (42) in the linear formF(v) one obtains

F(v)=Pα
x
φ,θ

[
vT[n][E][n]Tu]

P
sinθ dθ dφ +P ∗α

x
φ,θ

[
vT[n][E][n]Tu]

P ∗ sinθ dθ dφ

+P
x
φ,θ

[
vT[n][E][D(θ,φ)]u]

P
sinθ dθ dφ +P ∗

x
φ,θ

[
vT[n][E][D(θ,φ)

]
u
]
P ∗ sinθ dθ dφ. (43)

To simplify our notations we define

MP (u,v)
def= P

x
φ,θ

[
vT[n][E][n]Tu]

P
sinθ dθ dφ (44)

and

NP (u,v) def= P
x
φ,θ

[
vT[n][E][D(θ,φ)

]
u
]
P

sinθ dθ dφ (45)

and with these notations the weak Steklov eigen-problem is
• Seekα ∈ C, 0 6= u ∈ [H 1(Ω∗)]3 such that∀v ∈ [H 1(Ω∗)]3,

B(u,v)− [NP (u,v)+NP ∗(u,v)]= α[MP (u,v)+MP ∗(u,v)
]
. (46)

Eq. (46) can be cast in a matrix form using thep-version of the finite element method. Because the
conical point is excluded from the domain of analysis, the solution in this domain is regular up to the
edges, and exponential convergence rate can be realized if the mesh is properly refined near edges.
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5.1. Finite element discretization

We herein illustrate the steps needed to be followed to convert the bilinear formB(u,v) into the
stiffness matrix[K], which we partition into nine blocks:

[K] def=
 [Kxx] [Kxy] [Kxz]
[Kxy]T [Kyy] [Kyz]
[Kxz]T [Kyz]T [Kzz]

 . (47)

The block[Kxx], for example, can be expressed as

[Kxx] =
P∫

P ∗

θo∫
0

2π∫
0

∂T
spvx[Q]T

 E1 E7 E16

E7 E10 E19

E16 E19 E21

 [Q]∂spuxρ2 sinθ dρ dθ dφ, (48)

where the transformation matrix[Q] and the differentiation vector∂sp are given as

[Q] =


sinθ cosφ

cosθ cosφ

ρ

−sinφ

ρ sinθ

sinθ sinφ
cosθ sinφ

ρ

cosφ

ρ sinθ

cosθ
−sinθ

ρ
0

 , ∂sp =

∂ρ
∂θ
∂φ

 . (49)

The other five blocks[Kxy], [Kxz], [Kyy], [Kyz], and[Kzz] are:

[Kxy] =
P∫

P ∗

θo∫
0

2π∫
0

∂T
spvx[Q]T

 E7 E2 E11

E10 E8 E14

E19 E17 E20

 [Q]∂spuyρ2 sinθ dρ dθdφ,

[Kxz] =
P∫

P ∗

θo∫
0

2π∫
0

∂T
spvx[Q]T

E16 E11 E4

E19 E14 E9

E21 E20 E18

 [Q]∂spuzρ2 sinθ dρ dθ dφ,

[Kyy] =
P∫

P ∗

θo∫
0

2π∫
0

∂T
spvy[Q]T

E10 E8 E14

E8 E3 E12

E14 E12 E15

 [Q]∂spuyρ2 sinθ dρ dθ dφ,

[Kyz] =
P∫

P ∗

θo∫
0

2π∫
0

∂T
spvy[Q]T

E19 E14 E9

E17 E12 E5

E20 E15 E13

 [Q]∂spuzρ2 sinθ dρ dθ dφ,

[Kzz] =
P∫

P ∗

θo∫
0

2π∫
0

∂T
spvz[Q]T

E21 E20 E18

E20 E15 E13

E18 E13 E6

 [Q]∂spuzρ2 sinθ dρ dθ dφ.

The domain of interestΩ∗ is partitioned into a small number of finite elements, with only one element in
the radial direction. For example, Fig. 13 shows a finite element mesh containing 4 pentahedra elements
for a conical point with an opening angleθo = 0.51π/2.

Remark 8. For a purely conical vertex it is convenient to select a coordinate system with thez-axis
along the cone axis, wherez-axis points toward the body (the opposite as shown in Fig. 13). This way,
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Fig. 13. Typical mesh for a 3-D rotationally symmetric conical vertex.

the limits of the integrals for the computation of the stiffness matrix terms are simply as provided herein.
Otherwise, a change of coordinates is necessary.

6. Computing edge flux intensity functions for the Laplacian

Having computed the eigen-pairs, one may proceed to the computation of the edge flux/stress intensity
functions or the vertex flux/stress intensity factors. We will demonstrate the procedure by extracting edge
flux intensity functions (EFIFs) for the Laplace equation.

6.1. The dual weak form

Consider the edge subdomainEδ,R(Λ12) shown in Fig. 2. We define a vector spaceEc(Eδ,R) as follows:

Ec(Eδ,R)=
{
q

def= (qx, qy, qz)T
∣∣∣y
Eδ,R

|q|2r dθ dr dz <∞, div q = ∂xqx + ∂yqy + ∂zqz = 0
}
. (50)

We define byΓN that part of the boundary ofEδ,R whereqn = ∂q/∂n = q̂ is prescribed. The space of
admissible fluxes (for the Laplace operator) is denoted byẼc(Eδ,R) and is defined by

Ẽc(Eδ,R)= {q | q ∈Ec(Eδ,R), qn = q̂ onΓN
}
. (51)

Note that ifq = gradu, the condition divq = 0 is nothing more than the Laplace equation itself.
The dual weak form is stated as follows:
• Seekq ∈ Ẽc(Eδ,R) such that

Bc(q, l)=Fc(l) ∀l ∈ Ẽc(Eδ,R), (52)

where

Bc(q, l)≡
R∫

r=0

ω12∫
θ=0

z2∫
z=z1

q · lr dr dθ dz (53)
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and

Fc(l)≡
x
ΓD

g1(l · n)dA. (54)

Detailed discussion on the dual weak form and its relation to the primal weak form is given in [13].
To compute the edge flux intensity function associated with a particular eigen-pair by the dual weak
formulation, one needs to generate a space of admissible fluxes.

6.2. Generating the space of admissible fluxes

For the two-dimensional Laplace equation over domains containing singularities this space is spanned
by the eigen-pairs. In 3-D the situation is more complicated, and the space of admissible fluxes is
considerably more difficult to be obtained. Once obtaining eigen-pairs for the 2-D Laplacian, one may
proceed and construct admissible flux vectors for the 3-D Laplacian.

Let rαf (θ) be an eigen-pair of the two-dimensional Laplacian (denoted by12D) over thex–y plane
perpendicular to an edge along thez-axis. Leta(z) be the edge flux intensity function associated with the
eigen-pair. Thus,

12D
[
a(z)rαf (θ)

]= a(z)rα−2[α2f (θ)+ f ′′(θ)]= 0. (55)

However, a(z)rαf (θ) does not satisfy the three dimensional Laplacian,13D = 12D + ∂2
z , where

∂2
z

def= ∂2/∂z2.

13D
[
a(z)rαf (θ)

]= ∂2
za(z)r

αf (θ) 6= 0. (56)

Augmenting the functiona(z)rαf (θ) by

− 1

4(α + 1)
∂2
za(z)r

α+2f (θ)

then substituting in the Laplace equation, one obtains

13D

[
a(z)rαf (θ)− 1

4(α + 1)
∂2
za(z)r

α+2f (θ)

]
=− 1

4(α+ 1)
∂4
za(z)r

α+2f (θ) 6= 0. (57)

The edge flux intensity function is a smooth function of the variablez, so that it may be approximated by
a basis of polynomials. Examining (57), one may notice that ifa(z) is a polynomial of degree smaller or
equal to three then the two terms in (57) are a function from which an admissible flux can be obtained.
We may add a new function

1

32(α + 1)(α+ 2)
∂4
za(z)r

α+4f (θ),

so that now the residual is

13D

[
a(z)rαf (θ)− 1

4(α + 1)
∂2
za(z)r

α+2f (θ)+ 1

32(α + 1)(α + 2)
∂4
za(z)r

α+4f (θ)

]
= 1

32(α + 1)(α+ 2)
∂6
za(z)r

α+4f (θ). (58)
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The residual vanishes now ifa(z) is a polynomial of degree smaller or equal to five. We may proceed
in a similar fashion, and obtain the following functionFα,N(r, θ, z) associated with the 2-D eigen-pair
rαf (θ):

Fα,N(r, θ, z)= rαf (θ)
N∑
i=0

∂2i
z a(z)r

2i (−0.25)i∏i
j=1 j (α+ j)

(59)

and the reminder is

13DFα,N = ∂2N+2
z a(z)rα+2Nf (θ)

(−0.25)N∏N
j=1 j (α+ j)

. (60)

It may be noticed thatFα,N(r, θ, z) is indeed a function from which an admissible flux vector can be
obtained, ifa(z) is a polynomial of order 2N + 1 or smaller.

6.3. Computing the dual bi-linear form

Let an(z) be the polynomial edge flux intensity function associated with thenth eigen-pair which may
be represented byP T(z)an =∑N+1

j=1 Pj (z)anj . HerePj (z) are the “shape functions” based on integrals of
Legendre polynomials defined in Section 4.1. The associated admissible flux vector is

qn =

∂x
∂y
∂z

un =
cosθ −sinθ 0

sinθ cosθ 0
0 0 1


︸ ︷︷ ︸

[T ]


∂r
1

r
∂θ

∂z

un. (61)

Substituting (59) in (61) one obtains the admissible flux vector associated with thenth eigen-pair:

qn = [T ]rαn−1Qnan, (62)

where

Qn =



αnfn(θ)P
T(z)− αn + 2

4(αn + 1)
r2fn(θ)∂

2
zP

T(z)+ αn + 4

32(αn + 1)(αn + 2)
r4fn(θ)∂

4P T(z)+ · · ·

f ′n(θ)P
T(z)− αn + 2

4(αn + 1)
r2f ′n(θ)∂2

zP
T(z)+ αn + 4

32(αn + 1)(αn + 2)
r4f ′n(θ)∂4

zP
T(z)+ · · ·

rfn(θ)∂zP
T(z)− αn + 2

4(αn + 1)
r3fn(θ)∂

3
zP

T(z)+ αn + 4

32(αn + 1)(αn + 2)
r5fn(θ)∂

5
zP

T(z)+ · · ·



T

.

Similarly, we construct the admissible flux vector associated with themth eigen-pairlm = [T ]Qmam, so
that

qT
n · lm = aT

nQ
T
n[T ]T[T ]Qmam = aT

nQ
T
nQmam. (63)

If homogeneous boundary conditions are applied on the facesθ = 0 and θ = ω12 of the domain
Eδ,R, then one can show that

∫ ω12
θ=0fn(θ)fm(θ)dθ = 0 for n 6= m (orthogonality of the eigen-functions),∫ ω12

θ=0f
′
n(θ)f

′
m(θ)dθ = 0 for n 6=m and

ω12∫
θ=0

[
f ′n(θ)

]2
dθ = α2

n

ω12∫
θ=0

[
fn(θ)

]2
dθ.
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With this in mind, and after substituting (63) in the expression for the dual bilinear form (52), one obtains

Bc(qn, lm)= 0 for n 6=m (64)

and

Bc(qn, ln)= aT
n

ω12∫
θ=0

[
fn(θ)

]2
dθ
{
αnR

2αn1z[PP ]

+ R2(αn+1)

1z(αn+ 1)

(
[DPDP ] − αn

2

([
PD2P

]+ [PD2P
]T))

+ R2(αn+2)

(1z)3(αn + 1)(αn + 2)

(
α2
n + αn + 2

2(αn + 1)

[
D2PD2P

]− ([DPD3P
]+ [DPD3P

]T))
+ R2(αn+3)

(1z)5(αn + 1)2(αn + 3)

[
D3PD3P

]+ · · ·}an. (65)

The above expression for the dual bilinear form is exact foran(z) being polynomials up to degree five.
Otherwise the next term which is missing is of order O(R2(αn+4)), and the fifth–seventh rows and columns
are required in the matrices given as follows:

[PP ] =



2
3

1
3

−1√
6

1
3
√

10
· · ·

2
3

−1√
6

−1
3
√

10
. . .

2
5 0 . . .

SYM 2
21 . . .

 , [DPDP ] =


1
2

−1
2 0 0 . . .

1
2 0 0 . . .

1 0 . . .

SYM 1 . . .

 ,

[
PD2P

]=


0 0
√

3
2 −

√
10
2 . . .

0 0
√

3
2

√
10
2 . . .

0 0 −1 0 . . .

0 0 0 −1 . . .

 ,
[
D2PD2P

]=


0 0 0 0 . . .

0 0 0 . . .

3 0 . . .

SYM 15 . . .

 ,

[
DPD3P

]=


0 0 0 − 30
2
√

10
. . .

0 0 0 30
2
√

10
. . .

0 0 0 0 . . .

0 0 0 0 . . .

 ,
[
D3PD3P

]=


0 0 0 0 . . .

0 0 0 . . .

0 0 . . .

SYM 90 . . .

 .
In (65)1z= z2− z1 is the length of the cylindrical sector over which the dual weak form is computed.
The “compliance matrix” associated withBc is a block diagonal matrix, with each block of sizeN + 1
(N being the order of polynomial approximation of the eigen-functions).

6.4. Computing the dual linear form

The dual linear formFc(l) is defined on the surface of the cylindrical sector shown in Fig. 2. Because
we assume homogeneous boundary conditions on the two planes intersecting at the edge of interest, the
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linear form vanishes on them. Let us consider first the linear form associated with thenth eigen-pair over
the cylindrical surface, denoted by[Fc(ln)]cyl:

[
Fc(ln)

]
cyl=

ω12∫
0

z2∫
z1

u(R, θ, z)

[
αnR

αn−1fn(θ)

(
P T(z)− αn + 2

4(αn + 1)
R2∂2

zP
T(z)

+ αn + 4

32(αn + 1)(αn + 2)
R4∂4

zP
T(z)+ · · ·

)]
anR dθ dz

=
{
αn1z

2
Rαn

ω12∫
0

1∫
−1

u(R, θ, ζ )fn(θ)P
T(ζ )dθ dζ

− αn + 2

21z(αn + 1)
Rαn+2

ω12∫
0

1∫
−1

u(R, θ, ζ )fn(θ)

(
0,0,

√
3

2
,

3
√

10ζ

2
, · · ·

)
dθ dζ

}
an. (66)

Remark 9. Note that the above expressions are based on the assumption that the edge flux intensity
functions are polynomials of at most degree three. Otherwise, more terms are required to be accounted
for. However, since the edge flux intensity function are smooth, and an adaptive selection of an increasing
order of polynomials is considered one can decide whether a higher polynomial order is required.

There are two more planes over which the dual linear form is defined. These are the top and bottom
faces of the cylinder. The dual linear form forz= z1 is

[
Fc(ln)

]
z1
=
{
−1z

2

ω12∫
0

R∫
0

u(r, θ, z1)r
αn+1fn(θ)dr dθ

(−1

2
,

1

2
, −

√
6

4
,

√
10

4
, · · ·

)

+ (1z)3

32(αn + 1)

ω12∫
0

R∫
0

u(r, θ, z1)r
αn+3fn(θ)dr dθ

(
0, 0, 0,

30

2
√

10
, · · ·

)}
an, (67)

and for the planez= z2:

[
Fc(ln)

]
z2
=
{
1z

2

ω12∫
0

R∫
0

u(r, θ, z2)r
αn+1fn(θ)dr dθ

(−1

2
,

1

2
, −

√
6

4
,

√
10

4
, · · ·

)

− (1z)3

32(αn + 1)

ω12∫
0

R∫
0

u(r, θ, z2)r
αn+3fn(θ)dr dθ

(
0, 0, 0,

30

2
√

10
, · · ·

)}
an. (68)

Adding (66)–(68) provides the “load vector” (withN +1 elements) associated with thenth eigen-pair.
We then assemble the load vectors for the number of edge flux intensity functions of interest to obtain
the right-hand side of (52). Notice that the exact functionu in (66)–(68) is not known, so that we use its
finite element approximation. The left-hand side of (52) is the compliance matrix given by (65), so that
all which is left is the solution of a symmetric system of equations.
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7. Summary and conclusions

This paper addresses numerical methods for computing singular solutions of linear second order
elliptic partial differential equations (Laplace and Elasticity problems) in polyhedra domains, using the
p-version of the finite element method. Specifically, we have addressed singularities associated with
straight edges and vertices, and concentrate our attention on the computation of eigen-pairs by the
weak modified Steklov eigen-formulation. This formulation has been presented for both the Laplace and
elasticity problems, and a numerical example provided. The method has several advantages, namely,
it is general for two-dimensional and three-dimensional domains and has been shown to be both
accurate, reliable and super-convergent in two-dimensions [22] as well as for edge singularities in three-
dimensions. Its implementation for 3-D vertex singularities is in progress and numerical results will be
presented in the future.

By using the computed eigen-pairs, and the dual weak formulation, a method has been presented for
extracting the edge flux intensity functions for the Laplace problem. This is a post-solution operation on
the finite element solution vector. An adaptive strategy of selecting an increasing order of polynomials to
approximate the edge flux intensity functions together with the hierarchical space of thep-version finite
element method is expected to provide an optimal convergence rate. The method is being implemented
and numerical examples will be presented in a forthcoming paper.
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