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Abstract

Numerical methods for computing singular solutions of linear second order elliptic partial differential equations
(Laplace and Elasticity problems) in polyhedral domains are presented. The singularities may be caused by edges
vertices, or abrupt changes in material properties or boundary conditions. In the vicinity of the singular lines or
points the solution can be represented by an asymptotic series, composed of eigen-pairs and their amplitudes. Thes
are of great interest from the point of view of failure initiation because failure theories directly or indirectly involve
them.

This paper addresses a general method based on the modified Steklov formulation for computing the eigen-pairs
and a dual weak formulation for extracting the amplitudes numerically using-trexsion of the finite element
method. The methods are post-solution operations on the finite element solution vector and have been shown ir
a two dimensional setting to be super-converger000 IMACS. Published by Elsevier Science B.V. All rights
reserved.
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1. Introduction and notations

The solution of second order elliptic boundary value problems (BVP) in three-dimensions, in the
vicinity of singularities can be decomposed into three different forms, depending whether it is in the
neighborhood of an edge, a vertex or an intersection of the edge and the vertex. Mathematical details or
the decomposition can be found, e.g., in [1,3,6,8—10] and the references therein. A representative three
dimensional domain denoted I§y, which contains typical 3-D singularities is shown in Fig 1. Vertex
singularities arise in the neighborhood of the vertidesand edge singularities arise in the neighborhood
of the edgesa;;. Only straight edges are considered hergfar curved edges see [6]). Close to the
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A;- Vertex i.
Ajj- Edge between A; & Aj.

Fig. 1. Typical 3-D singularities.

vertex/edge intersection, the vertex-edge singularities arise. It shall be assumed that curved edges whic
intersect at vertices do not exist, and that crack faces, if any, lie in a flat plane.
For introductory purposes the simplest elliptic BVP, namely the Laplace equation, is considered:

VZu=0 ing (1)
with the following boundary conditions:

=g  onlpC o, ©

Z—Z =g, onlyCos£2, ©)

I'p U 'y =082. In the vicinity of edges or vertices of interest, we assume that homogeneous boundary
conditions are applied for clarity and simplicity of presentation.

In this section we provide a short outline of the singular solution decomposition in the neighborhood
of an edge, a vertex or at a vertex—edge intersection. Based on previous work on two-dimensional
singularities, see, e.g., [16,17,22,23], we herein extend the methods developed for singular points
shown to be accurate, general and super-convergent, to three-dimensional edge and vertex singularitie:
Sections 2 and 3 introduce the modified Steklov formulation for extracting edge and vertex eigen-pairs
associated with the Laplace operator. In Sections 4 and 5 a more detailed analysis of the modified Steklov
method is provided for extracting eigen-pairs associated with edge and vertex elastic singularities. We
thereafter introduce the dual weak form for extracting edge flux intensity functions of the Laplace
operator in Section 6 as an illustrative example of the required formulation for the elasticity problem.
We conclude with a summary in Section 7.

Edge singularities. Let us consider one of the edges denotedibyconnecting the verticed; andA ;.
Moving away from the vertex a distanég2, we create a cylindrical sector sub-domain of radigs R
with the edge4;; as its axis. It is denoted by z(A;;), and is shown in Fig. 2 for edge,. It is again
emphasized that our attention is restricted to domains having straight edges. The soldgigrcan be
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Fig. 2. The edge sub-domaiy r(A12).

decomposed as follows:

K S
u(r,0,2) =Y Y ar (@) r* (nr)* fi, () +v(r,0,2), (4)
k=1 s=0

whereS > 0 is an integer which is zero unlesg is an integerg, 1 > «; are called edge eigen-values,
axs(z) are analytic irg and are denoted by edge flux intensity functions (EFIFs)0) are analytic ir9,
called edge eigen-functions. The functiofr, 0, z) belongs toH?(£), the usual Sobolev space, where
can be as large as required and depend& oe shall assume that, for k < K are not integers, and
that no “crossing points” are of interest (see a detailed explanation in [6]), therefore, (4) becomes:

K
u(r,0,2) =Y a@Qr* fi(0) + v(r.6,2). (5)
k=1

Vertex singularities. A sphere of radiup = §, centered in the vertex; for example, is constructed
and intersected with the domadl. Then, a cone having an opening angle o is constructed such that
it intersects atd1;, and removed from the previously constructed sub-domain, as shown in Fig. 3. The
resulting vertex sub-domain is denoted By(A1,), and the solution: can be decomposed W (A1)
using a spherical coordinate system by
L P
w(p,$.0)=>_> bipp"(Inp)’hyy(¢,0) +v(p. . 6), (6)
=1 p=0
whereP > 0 is an integer which is zero unlegsis an integery,.; > y; are called vertex eigen-values,
and hy, (¢, 0) are analytic ing and6é away from the edgeand are called vertex eigen-functioris,
are denoted by vertex flux intensity factors (VFIFs). The functiéno, z) belongs toH?(V), whereg
depends orl.. We shall assume that for / < L is not an integer, therefore, (6) becomes:

L
u(p,$,0) =" bip"hi(p,0)+v(p,$,0). @)

=1
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Fig. 3. The vertex neighborhodd (A11). Fig. 4. The vertex—edge neighborhddfis gr(A11, A10.11).

Vertex—edge singularities. The most complicated decomposition of the solution arises in case of a
vertex—edge intersection, but this will not be addressed herein. Only a short outline is provided. For
example, let us consider the neighborhood where the ddge, approaches the vertek;;. A spherical
coordinate system is located in the vertey, and a cone having an opening an@le: o with its vertex
coinciding with A;; is constructed with1g 11 being its center-axis. This cone is terminated by a ball-
shaped basis having a radips= §, as shown in Fig. 4. The resulting vertex—edge sub-domain is denoted
by VE; r(A11, A1011), and the solutiom can be decomposed WEs g(A11, A1011):

K S L
u(p.¢.0)=>3 3 (Z g " +mks<p>> (sind)* [In(sing)]* g (¢)

k=1s5=0 \I/=1

L P
+ YD e pUNp)? hyp(9.0) + v(p, . 0), 8)
I=1 p=0
wherem,(p) are analytic inp, gk (¢) are analytic ing andh,,(¢,0) are analytic ing and6. The
functionv(r, 6, z) belongs toH?(V E) whereq is as large as required dependingloandK .

The eigen-values and the eigen-functions are associated pairs (eigen-pairs) which depend or
the material properties, the geometry, and the boundary conditiortke vicinity of the singular
vertex/edge onhySimilarly, the solution for problems in linear elasticity, in the neighborhood of singular
vertices/edges is analogous to (4)—(8), the differences are that the equations are in a vector form and th
eigen-pairs may be complex. For general singular points the exact soligias generally not known
explicitly, i.e., neither the exact eigen-pairs nor the exact EFIFs, VFIFs are known, therefore numerical
approximations are sought.

2. Computing edge eigen-pairs for the Laplace problem

For the Laplace equation, we may perform a separation of variables procedure in the neighborhood
of the edge singularity as shown in (5). Each eigen-pair /§the for exampler® f,(0)) is independent
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of z and satisfies the Laplace equation over the planeé) which is perpendicular to the edgéhis

is exactly a 2-D problem and the eigen-pairs are identical to the 2-D eigen-fia@s for detailed
mathematical analysis [9, Chapter 2.5]). Thus, the modified Steklov method described in [22] can be
used for determining the eigen-pairs in the neighborhood of edge singularities on a two-dimensional
plane perpendicular to the edge.

Remark 1. Of course, eigen-pairs for the Laplace operator are known explicitly, but for multi-material
interface problems of general scalar elliptic operators (provided that iry ttieection the domain
remains isotropic) one has to use numerical methods to compute the eigen-pairs as the modified Stekloy
formulation.

3. Computing vertex eigen-pairs for the Laplace problem

Based on the methods documented in [3,22], we herein provide the modified Steklov formulation for
the computation of vertex eigen-pairs. Consider the sub-domain shown in Fig. 5 in the vicinity of a vertex.
Edge singularities exist along the edgés, 12, A11.14 and A1 10, SO that proper numerical treatment is
required in their vicinity. A possibility to overcome the deterioration of the numerical approximations
due to the vertex—edge singularities is to use the Auxiliary Mapping Method [10], having in hand already
the edge eigen-values, or to enrich the finite element space with edge-singular shape functions in the
elements adjacent to the edges. If neither methods are used, one has to geometrically refine the mesh |
the vicinity of the edges. Based on (7), in the neighborhood of the vertexp? (¢, 0), therefore on
the sphere-shaped boundasy= P, for example, we have

ou Ou vy

—=—="u oOnp=~r. 9
on _op pP' P ©)

Fig. 5. Domain for vertex eigen-pairs extraction.
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Assume that homogeneous Neumann boundary conditions are prescribed in the vicinity of the vertex,
thus we have to solve ove?; the following classical eigen-value problem:

V=0 in 25,

0

a—M:O onrly,

n

u v (10)
— —=u=0 onp=Pr,

op P

ou vy

— ——u=0 onp=P"

0p P*u p

where 'y for this case are the plane boundaries2f shown in Fig. 5. The weak eigen-formulation
associated with (10) is obtained by following the steps presented in [22]:
e Seeky €C, 0#u € HY(£2}), such that

B(u,v) =y [Mp(u,v) + Mp:(u,v)], VYve HY(2}), (12)
where:

Bu,v) 2 H Vi - Vup?sing dp do do,
Q*

P

Mop(u, v) = Pﬂ[uu sing],_p de do, (12)
¢.0
Mp-(u, v) = P* ﬂ[uv Sing1,_p- 0 0. (13)
¢.,0

The weak formulation (11) may be solved by tlpeversion of the finite element method through
a meshing process, dividing the domaii; into 3-D hexahedra/tetrahedral elements. It has to be

emphasized that although the vertex singularity has been removed from the d@jhaiyet edge
singularities may be present.

4. Computing edge eigen-pairs for the elasticity problem

The elastostatic displacements field in three-dimensians; (ux,uy,uz)T, in the vicinity of an
edge can be decomposed in terms of edge eigen-pairs and edge stress intensity functions (ESIFs
Mathematical details on the decomposition can be found, e.g., in [1,8,9] and the references therein.
Elastic edge singularities have been less investigated, especially when associated with anisotropic
materials and multi-material interfaces. Analytical methods as in [18,19] provide the means for
computing the eigen-pairs for a two-material interface however requires extensive mathematics. Severa
numerical methods, have been suggested lately. Among them [5,7,11,12,14] and the references therein.

In the neighborhood of a typical edge (for examidgg), the displacement field can be decomposed
as follows:

K S

w(r,0,2) =Y > a@r(nr)’ f,0) + w(r, 0, 2), (14)

k=1 s=0
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Fig. 6. The modified Steklov domaiy.

whereS > 0 is an integer which is zero for most practical problems, except for special caseg, @nd
are analytic irg called edge stress intensity functions (ESIFs). The vector funati@nd, z) belongs to
[H9(&5.z)]13, whereq depends orK. We shall address herein only these cases whet€0, therefore,
(14) becomes:

K
u(r,0,2)=>_ ay@r™ f(0) + w(r,0,2). (15)
k=1
We denote the tractions on the boundariesTby= (T, 7, T;)T, and the Cartesian stress vector by
0 = (0, 0y 0; Tyy Ty, Trz) . In the vicinity of the edge we assume that no body forces are present.

For computing eigen-pairs,tevo-dimensionasub-domains2; is constructed in a plane perpendicular
to the edgeq-axis) and bounded by the radii= R* andr = R, as shown in Fig. 6.

On the boundarie8 = 0 andé = w;; of the sub-domain2; either homogeneous traction boundary
conditions ' = 0), or homogeneous displacements boundary conditions, or a combinations of these are
prescribed.

In view of (15),u in 2z« (respectivelyv) has the functional representation

u L a@)re(£,0). £,0). £-0) =a@r f©).  vEb@rf©). (16)
We also denote thim-planevariation of the displacements as follows:

IO LA = LU

u(r,0) = prees v(r, ) . (17)

Following the steps presented in detail in [20], an eigen-problem is cast in a weak form which is an
integral equation (modified Steklov weak form) over a two dimensional domain involving the three
displacements field.
e Seeka €C, 0#£u € [HY(£23)]3, such thavv e [H(£2})13,
B(u,v) — [Ng(u,v) — Ng«(u,9)] = a[Mg(u,v) — Mg-(u,v)] (18)
with
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w12

R
:e/ {([A 10, —l-[Ae]aH) } [E]{([Ar]ar—I—[AQ]%)ﬁ}rder, (19)

R* O
w12
AL / 3T [A, 1T[E Ag10ii]|_, 06, (20)
0
w12
Mg (&, ) dzef/v[ ATIENA, Ji],_, 6, (1)
0
where
cosH 0 0 —sing 0 0
0 sind 0 0 cosy 0
def| O 0 0 def 0 0 0
[A=1ging coss 0 | [A6]="1 coss  —sing 0 (22)
0 0 sing 0 0 cos)
0 0 coy) 0 0 —sing

and[E] is the material matrix given in (36).

Remark 2. Although bothz andv have three components, the domain over which the weak eigen-
formulation is defined is two-dimensional, and excludes any singular points. Therefore, the application
of the p-version of the FEM for solving (18) is expected to be very efficient.

Remark 3. The bilinear forms\; and N« are non-symmetriavith respect toe and v, thus are not
self-adjoint. As a consequence, the “minimax principle” does not hold, and any approximation of the
eigenvalues (obtained using a finite dimension subspaidé af2})]13) cannot be considered as an upper
bound of the exact ones and the monotonic convergence as the sub-space is enriched is lost as wel
Nevertheless, convergence is assured (with a very high rate as will be shown by the numerical examples)
under a general proof provided in [2].

Remark 4. Note that in (18) we do not limit the domai?; to be isotropic, and in fact (18) can be
applied to multi-material anisotropic interface.

Remark 5. When homogeneous displacement boundary conditions are applied, one has to restrict the
spaces tdH}(£23)13, or a variation of it, so as to apply the essential boundary condition restrictions on
the spaces in which andv lay.

4.1. Numerical treatment by the finite element method

We provide herein a short outline on the discretization of the weak eigen-formulation (18) by the
p-version of the finite element method. Details and explicit expressions can be found in [20].

Assume that the domaif?} consists of three different material as shown in Fig. 7. We divitgd
into, let us say, 3 finite elements, through a meshing process. Let us consider a typical element, elemen
number 1, shown in Fig. 7, bounded By < 6 < 6,. A standard element in thg, n plane such that
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I

Fig. 7. A typical finite element in the domaiy.

—1<é&<1,—1<n<1lisconsidered, over which the polynomial basis and trial functions are defined.
These standard elements are then mapped by appropriate mapping functions onto the “real” element:
(for details see [15, Chapters 5, 6]). The functiensu,, u, are expressed in terms of the basis functions

®; (£, n) in the standard plane:

& ... &y 0O ... 0 O ... O al..
a=|0 ... 0 & .. &y O ... O =eo]C, (23)
0 ... 0 0 ... 0 &1 ... &y] |cay

wherec; are the amplitudes of the basis functions. SimilatTlgc%f[di]B.

The unconstrained stiffness matrix corresponding @, v) on the typical element is given by
13 2 T 2
[K]E / / {([Ar]ar +[A9]79)[q>]} [E]{([A,]ar +[A9]79)[q>]}rd9 . (24)
R* 61

The matrices corresponding fof x and Nz on a typical element are computed according to

1
Ni(@i, ) = BT< / [ﬁ]T[E][aP]I,,__ld$> C EBTIN:IC. (25)
-1
6, —6 /
Mg (@, v)=B" (% / (PILENPI,__, ds) C E BT[MIC (26)
-1

with [P] and[d P] explicitly given in [20].

The matricedNg+] and [My+] have same values as those[dfz] and [MR], but of opposite sign.
Denoting the set of amplitudes of the basis functions associated with the artificial bouridayyC r,
and those associated with the artificial boundBgyby C k-, the eigen-pairs can be obtained by solving
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the generalized matrix eigen-problem:
[K]C — ([NgICg — [Ng+1Cg+) = a([MRICg — [Mg+]Cg+). (27)

Augmenting the coefficients of the basis functions associated Myithith those associated with,, and
denoting them by the vectdr zz., (27) becomes

[K]C — [Ngg+1C grr+ = a[Mpg+1C gp~. (28)

We assemble the left-hand part of (28). The vector which represents the total number of nodal values
in £23 may be divided into two vectors such that one contains the coeffidigpts, and the other contains
the remaining coefficient€ " = {C,TQR*, CI]}. By partitioning[K ], we can write the eigen-problem (28)

in the form
[K] —[Ngr<] [Kgrre—inl| [ Crr=\ _ |[Mgr<] [O]] [ Crg=
[Kin_ k] [Kin] H Cin }‘“[ [0] [0]]{ Cin } (29)

The relation in (29) can be used to eliminaig, by static condensation, thus obtaining the reduced
eigen-problem

[Ks]C grx = a[Mgg+]1C g, (30)
where
[Ks]= (IK]—[Ngg1) — [Krg—inl[Kin] [ Kin_rz+]-

For the solution of the eigen-problem (30), it is important to note tkiat is, in general, a full matrix.
However, since the order of the matrices is relatively small, the solution (using Cholesky factorization to
compute[Ki,]71) is not expensive.

Remark 6. There is the possibility thatz multiple eigenvalues exist with less than corresponding
eigenvectors (the algebraic multiplicity is higher than the geometric multiplicity). This is associated with
the special cases when the asymptotic expansion contains power-logarithmic terms, and this behaviol
triggers the existence of (n) terms.

Remark 7. Although we derived our matrices as if only one finite element exists along the bouRglary
and Iy, the formulation for multiple finite elements is identical, and the matifi&&s [Nx] and[M] are
obtained by an assembly procedure.

4.2. Numerical example: Two cross-ply anisotropic laminate

As an example, we study edge singularities associated with a two cross-ply anisotropic laminate.
Consider a composite laminate with ply properties typical of a high-modulus graphite-epoxy system, as
shown in Fig. 8. The orientation of fibers differs from layer to layer. Referring to the principle direction
of the fibers, we define

E; =1.38x 10° MPa(20 x 10° psi), Er = E. =145x 10* MPa(2.1 x 10° psi),
Grr=G..=Gr, =0586x 10 MPa(0.85 x 10° psi), wT == v, =0.21,
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A Typical
Laminate

Fig. 8. Cross-ply anisotropic laminate.

where the subscripté, T, z refer to fiber, transverse and thickness directions of an individual ply,
respectively. The material matrp&] for a ply with fibers orientation rotated by an angleabout the
y-axis is given by

LE1= [T(B)] [E[T(B)]. (31)
where
c? 0 s 0O 0 c¢-s
0 1 0 0O O 0
T(8)] = SS 5 Cg 00 e c®eogp). s Eising).
0 0 0 —s c 0

—2c-s 0 2-s 0 0 c?2—s?

The material matrix in the., T, z “ply coordinate system” is given by

A—=vrmEL (wr+vvnEr (a+vovm)EL O 0 0
A—vv)Er  (er+vrva)Er 0 0 0
A—vrvr)E; 0 0 0
Gt
[E,)=V ~ 9 0 @
G 0
\%
GLZ
\%

def 1
V = (1 = vLrvTL — VTaVzT — VigVzL — 20TV

Er E, E,
VIL=VLT—> VT = VTz 7> VzL = VL2 .
Ep Er Er
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Fig. 9. Finite element mesh used for the cross-ply anisotropic laminate.

However, theL, T, z “ply coordinates” do not match the, y, z coordinate system shown in Fig. 8, so
one has to associate tlieply direction with coordinate, the T ply direction with coordinate: and the

z ply direction with coordinate. Thus, in order to use (31), one has to change raws and columns in the
matrix [E,], resulting with

A—vv)Er (a+vwrva)Er (vt +vv.nEr O 0 0
A—-vrvrDE;, (a+vor)E, O 0 0
A—vrmEL 0 0 0
GTZ
[E,]=V v 9 0 (33)
@ 0
\%
Gur
%4

Note that the anglg in Fig. 8 has a negative sign when used with (31).

We investigate the eigen-pairs associated with the singularities near the junction of the free edge and
the interface, for a commonly uséd ] angle-ply composite. Of course, the eigen-pairs depend on
and we chose8 = 45° for which the first 12 exact non-integer eigen-pairs are reported in [19] with 8
decimal significant digitsey; = 0.974424342 v, 3 = 1.88147184+ i0.23400497 045 = 2.5115263+
i0.79281732..

The two-element mesh shown in Fig. 9 is used in our computation. The rate of convergence of the
eigen-values is clearly visible when plotted on a log-log scale as shown in Fig. 10. The eigen-function
vector (displacement fields) associated withobtained afp = 8 is illustrated in Fig. 11.

The variation of the eigen-values for differgdtg] cross-ply laminate and many more other example
problems are provided in [21].

5. Vertex singularities for elasticity problem

Let us assume that the three-dimensional donfaihas a rotationally symmetric conical vertéx
on its boundary as shown in Fig. 12 with € (0, 7). The solution to the linear elastic problem in the
neighborhood of the verte® is naturally expressed in terms of the spherical coordinatés 6, with



Z. Yosibash / Applied Numerical Mathematics 33 (2000) 71-93

B ona,
101 S o—>o 0, S
K‘—‘-ﬂ-“;‘* &8 Re(0L, )
\ \:. ~A 4~~~ A Re(0t, )
kY AN
= 10°
3 S
RN
s N
& 107 h )
2 AN
: N
& 10° O
& AN
é M
10° \
hS
107 b
2 100
DOF

Fig. 10. Convergence of edge eigen-values for the cross-ply anisotropic laminate.
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Fig. 11. Edge eigen-functions associated withfor the cross-ply anisotropic laminate.

Fig. 12. Typical 3-D domain with a rotationally symmetric conical vertex.
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the origin at the vertex0 (0< p, 0< ¢ < 2, 0 < 6 < 7). In the vicinity of O the displacements field
can be represented as follows (see, e.qg., [4]):

Uy
{ }"ef u(p. 0, ¢>—Zzaksp“k<lnp> f1:0.¢) +w(p.6,9), (34)

u, k=15=0

wherew € [H?(£2)]3, ¢ being as large as desired and depend&on
The stress-displacements relationship through the constitutive material law (Hooke’s law) is given by

o =[E][Dlu (35)
with [D] and[E] (material matrix):
0 0 O 3 def 0 Ev E; Eis E7 Eun Ee
0 9, O * agc E3 Es Eg Ei» Ei7
def | O 0 o def Eg Eg Ei3 Ejg
D = Z a E == .
D] 9, 0, 0|’ YTy LE] Eip Eia Eig 36)
0 9, 9, 5, def O Eis  Ezo
0, 0 o, 0z Ep

The Navier-Lamé second-order differential equations (equilibrium equations in terms of the displace-
ments) can be cast in a weak form:
e Seeku € [HY(£2)]3, such that

B(u,v)=F@v) Vve [HY(2)]’, (37)
where

defﬂf [D]v) [E][D]udV, (38)

F )d_efﬂ(v)TT dA. (39)

If homogeneous displacement boundary conditions are prescribed on the boundary of thea@main
then the weak form (37) remains unchanged except for the spaces inwhiddw lie.
We introduce the outward normal vecte= (n,n,n.)" on a spherical surface:

n = (sinf cosg, sind sing, cos) "
so that the traction vectdf can be expressed by
ne, 0 0 n, 0 n
=0 n, 0 ne n, 0]o. (40)
0 0 n, 0 ny, n,
[n]

Any displacement field of the forma = p“ f (¢, 6) satisfies the Navier—Lame equilibrium equations in
the neighborhood of the vertex. With the above notation, the differential opé¢iiacting onu of the
above form can be decomposed as follows:

[D]u = %(a[nﬂ + D] )u, (41)
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where
[ cos cospd, — %% 0 oss 0 .
0 cos Sing 0y + W% .O
[DW’)] _ | 0 coss 0 sing —SiNB 0y
CosY singdy + W% COSH COSp 0y — mad, 0
, . co
0 —sinfoy €0osf sing 0y + ggga(ﬁ
i —Sinfdy 0 COSY C0Sp 0y — wa(ﬁ_

Consider the sub-domaif2* in the neighborhood of the conical point of interest, bounded by a cone
(which is the boundary of2) and two spheres centered at the conical point of r&dii P*. See, for
example, Fig. 13. Let us consider the weak formulation (37) @/grand particularly, let us examine the
linear form F(v). Because homogeneous traction or displacement boundary conditions are considered,
thenF(v) is defined on the two spheres only. Using (35) and (41) we may rewrite (40) as

T = %[n][E](a[n]Tu + [DO]u). (42)
Substituting (42) in the linear forr# (v) one obtains
Fw)=Pa [[ [v"IENnI"u] , sin0 do dp + P*a [[ [T (En]"u] . sin6 do do
¢.0 ¢.0

+P [ WTIIEND P 1u] , sino do dp + P* [[ [oTIILEN[DO]u] . sine do dp. (43)
¢.0 ¢.0

To simplify our notations we define

Mp (@, v) E'P [[ [oTIEn]"u] , sino do dg (44)
¢.,0

and
Np(@,v) EP [[ [vTIE1[D]u] , sino db d (45)
@0
and with these notations the weak Steklov eigen-problem is
e Seeka € C, 0#u e [HY(£2%)]® such thatvv € [H1(22%)]°,
B(u,v) — [Np(u,v) + Np+(u, v)| =a[Mp(u, v) + Mp-(u, v)]. (46)

EqQ. (46) can be cast in a matrix form using theversion of the finite element method. Because the
conical point is excluded from the domain of analysis, the solution in this domain is regular up to the
edges, and exponential convergence rate can be realized if the mesh is properly refined near edges.
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5.1. Finite element discretization

We herein illustrate the steps needed to be followed to convert the bilinear Bounw) into the
stiffness matri{ K], which we partition into nine blocks:
(K.l [Ky]  [Ki]
[Koy]T  [Kyy]  [Ky]
(K ]T [Ky]T [K..]
The block[K,.], for example, can be expressed as
P 8 21 E1 E7 Ep
[Kyo]= / / / o E;  Ex Elgl [Q10,t, p? SN0 dp 40 dp, (48)
Eis E19 E2
where the transformation matrp] and the differentiation vectd;, are given as
coshcosp —sing

def

(K]1E 47)

{sin@ COS¢

P psing d
. . SO si L
(0= | sinosing SoESN® oS 4 { 3 } . (49)
P pSing d
—siné ¢
Jol
The other five block$K 1, [K.], [Kyy], [K,.], and[K ] are:

P 9 2m . E; E, En _
= [ [ [olulol | Exn Es Eu|1010,u,0%sine dp codg.
Eig Ei17 Ex]

[Ei6 E11 Ea

0.,0:[01" | Exg E1s  Eeo | [Q1,,u.p?sing dpdo do,
Ez1 Ez Eig]

cosd 0

Sbo

— T T E\

[K:]

— T
R
N
o
o

[Kyy] 0],v,[01" | Es Es E1z|[Q10,,uyp®sing dpdo dg,

>~ ©O

[K,:]= 0,0,[01" | E17 E1p  Es | [Q1d,,u:p°sin6 dp do dg,

o—_

P
P 6 2n Ez1 Ezo Eisg
[K..]= ///ajpuz[Q] Ex Eis E13] [Q19,,u.p?sind dp d dop.
P+ 00 Ei1s Ei3 Es
The domain of interes* is partitioned into a small number of finite elements, with only one element in
the radial direction. For example, Fig. 13 shows a finite element mesh containing 4 pentahedra elements
for a conical point with an opening anglg = 0.51r /2.

Remark 8. For a purely conical vertex it is convenient to select a coordinate system withdRis
along the cone axis, wheteaxis points toward the body (the opposite as shown in Fig. 13). This way,
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i 2

Fig. 13. Typical mesh for a 3-D rotationally symmetric conical vertex.

the limits of the integrals for the computation of the stiffness matrix terms are simply as provided herein.
Otherwise, a change of coordinates is necessary.

6. Computing edge flux intensity functions for the Laplacian

Having computed the eigen-pairs, one may proceed to the computation of the edge flux/stress intensity
functions or the vertex flux/stress intensity factors. We will demonstrate the procedure by extracting edge
flux intensity functions (EFIFs) for the Laplace equation.

6.1. The dual weak form
Consider the edge subdomdifz (A12) shown in Fig. 2. We define a vector spatg&s r) as follows:

Ee(E.p) = {q © (gr.qy. 97| [[[ a1 do o de < 00, div g = d,g, + g, + 0. = o}. (50)
Es.r

We define byl that part of the boundary d; x whereg, = dq/0n = g is prescribed. The space of
admissible fluxes (for the Laplace operator) is denote@ [i¥’s z) and is defined by
E(&r)={q1q€E(Er), gn =G OnTy}. (51)

Note that ifg = gradu, the condition divg = 0 is nothing more than the Laplace equation itself.
The dual weak form is stated as follows:
e Seekq € E (& r) such that

B.(g,1)=F.(I) VIe€E.(Er), (52)
where
R w12 22
Bc(q,l)z// /q~lrdrd9dz (53)

r=00=0z=2z1
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and

Fol) = ﬂ g1 -n)dA. (54)
I'p

Detailed discussion on the dual weak form and its relation to the primal weak form is given in [13].
To compute the edge flux intensity function associated with a particular eigen-pair by the dual weak
formulation, one needs to generate a space of admissible fluxes.

6.2. Generating the space of admissible fluxes

For the two-dimensional Laplace equation over domains containing singularities this space is spanned
by the eigen-pairs. In 3-D the situation is more complicated, and the space of admissible fluxes is
considerably more difficult to be obtained. Once obtaining eigen-pairs for the 2-D Laplacian, one may
proceed and construct admissible flux vectors for the 3-D Laplacian.

Let r® f(0) be an eigen-pair of the two-dimensional Laplacian (denoted ) over thex—y plane
perpendicular to an edge along thexis. Leta(z) be the edge flux intensity function associated with the
eigen-pair. Thus,

Aopla()r® f(0)] =a(@)r*?[e®f(0) + £ ()] = 0. (55)
However, a(z)r® f (0) does not satisfy the three dimensional Laplacian, = Aop + ag, where
32 %'32/3.2,

Agpla(z)r® f(0)] = d2a(z)r® f(6) # 0. (56)
Augmenting the functiom (z)r® f (0) by

1 2 a+2
Ao+ D 0Za()r = f ()
then substituting in the Laplace equation, one obtains
1
a _ 2 a+2 — _ 4 a+2
Asp |a(@)r® f(0) 2o+ D 0Za()r ™ f(0) Ao+ D) 0,a()r* *f(0) #0. (57)

The edge flux intensity function is a smooth function of the variabko that it may be approximated by

a basis of polynomials. Examining (57), one may notice thatsj is a polynomial of degree smaller or
equal to three then the two terms in (57) are a function from which an admissible flux can be obtained.
We may add a new function

4 a+4
32+ (@ +2) 02a()r*" " f(0),

so that now the residual is

[ _ 1 2 a+2 1 4 a+4
Asp |a(2)r® f(0) Ao+ 1) 0%a()r* " f(0) + et D@t 0za()r ™" f(0)
= %a()r* £ (0). (58)

B 32(x + 1) (. + 2)
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The residual vanishes nowf(z) is a polynomial of degree smaller or equal to five. We may proceed
in a similar fashion, and obtain the following functidf_y (r, 0, z) associated with the 2-D eigen-pair

re f(0):

N .
. . (—0.25)
Fun(r0,2)=r"f(0)Y 0%a()r® —————— (59)
! ; i Hj:l](a+])
and the reminder is
(—0.25)N

AspFyn = 02 2a(z)r* 2N £(6) (60)

i@+ /)
It may be noticed thaF,, y(r, 0, z) is indeed a function from which an admissible flux vector can be
obtained, ifa(z) is a polynomial of order X 4 1 or smaller.

6.3. Computing the dual bi-linear form

Leta, (z) be the polynomial edge flux intensity function associated withitheeigen-pair which may
be represented b® " (z)a, = Z?’jll Pj(z)a,;. HereP;(z) are the “shape functions” based on integrals of
Legendre polynomials defined in Section 4.1. The associated admissible flux vector is

0, cos® —singd O 16,

qg,=140, pu,=|[sing cos® O “Qy ¢ Un- (61)

e I
(7]

Substituting (59) in (61) one obtains the admissible flux vector associated witlhteégen-pair:

qn = [T]ra,,—l Qnaﬂ’ (62)
where
T _L"‘zz 2pT o, +4 4 4pT T
a, fn@)P ' (2) Aol +1)r fa(@)0ZP (Z)+32(a D +2)” f2(0)0" P (z) +
_ / Tiy au+2 5, 2pT O"1+4n 4 4pT
0,=! FOP 4(an+1%r £16)92P (z)+32(%+1)(%err 57 HO0PTQ) +
n+ rl—"_
rfn(e)azPT(z)—hr%(@)afﬂ(zw32(a il)(a +2)r5f,,(9)a§PT(z)+...

Similarly, we construct the admissible flux vector associated withvitheeigen-paid,, = [T]10,,a.,, SO
that
qI -1, :aI QI[T]T[T]Qmam :aI QI 0,.a. (63)

If homogeneous boundary conditions are applied on the facesO and 6§ = w;, of the domain
&s r, then one can show thdf3 1, () f,,(6) d@ = 0 for n # m (orthogonality of the eigen-functions),
o8 f1(0) £ (6)do = 0 for n £ m and

w12 w12

/[f,;(e)]zdezaﬁ/ [£,(6))° do.

6=0 6=0
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With this in mind, and after substituting (63) in the expression for the dual bilinear form (52), one obtains
B.(q,,l,)=0 forn#m (64)
and

w12

B.(q,.1,) =a, / [£2(0)] “db {OtnRZ“” Az[PP]
6=0

R2(an+l) o, , -
+m<[DPDP]—?([PD P]-i—[PD P] ))
R+ aZ+a,+2 2p 2 3 3,7
- D?PD?P] — ([DPD3P] + [DPD®P
+ (A2)3(ay, + 1) (ap +2) < 2(a, + 1) [ 1= (I 1+ ] )>
R DEPD3P 65
B T D 13 I }” (65)

The above expression for the dual bilinear form is exactfgr) being polynomials up to degree five.
Otherwise the next term which is missing is of ordg®&**4), and the fifth—seventh rows and columns
are required in the matrices given as follows:

2 1 -1 1 1
3 3 /6 310 5 > 00
2 -1 -1 1 0 O
[PP]= 8 V& 310 , [DPDP] = 2 ,
SYM 2. SYM 1
00,2 /¥ .. 0 00 0 ..
3 10
-1 0o ...
o -1 .. L SYM 15 .
30 _ .
000 —3% 0 0
000 32 . 0
[DPD®P] = 2/10 . [D*PD?P]=
0 0O 0 0 0
0 0O 0o ... L SYM 90 |

In (65) Az =z, — z3 is the length of the cylindrical sector over which the dual weak form is computed.
The “compliance matrix” associated with). is a block diagonal matrix, with each block of size+ 1
(N being the order of polynomial approximation of the eigen-functions).

6.4. Computing the dual linear form

The dual linear forn¥.(1) is defined on the surface of the cylindrical sector shown in Fig. 2. Because
we assume homogeneous boundary conditions on the two planes intersecting at the edge of interest, th
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linear form vanishes on them. Let us consider first the linear form associated witthtbgen-pair over
the cylindrical surface, denoted . (1,,)lcyi:

12 72
o, +2

_ on—1 T N 272 pT
Foll)]oy = 0/ / u(R.9.2)|on R, 0) (PTG G S RPT)

o, +4
32(a, + (e, +2)

w12 1
. o, Az o T
_{ ik //u(R,e,;m(e)P (¢)do d¢

0 -1

_#ﬁib R +2 /12/lu(R 0, ;)f,,(@)(O 0, \E 3J2—0§ >d9d§}an (66)

RYIPT(2) + - )} a,Rdo dz

Remark 9. Note that the above expressions are based on the assumption that the edge flux intensity
functions are polynomials of at most degree three. Otherwise, more terms are required to be accountec
for. However, since the edge flux intensity function are smooth, and an adaptive selection of an increasing
order of polynomials is considered one can decide whether a higher polynomial order is required.

There are two more planes over which the dual linear form is defined. These are the top and bottom
faces of the cylinder. The dual linear form foe z is

w12 R
[fcdn)]u:{—— / / u(r, 0, 20)r "+ £,(0) dr o 71 > f f )

(A7) ant3 < . >}
+732(0ln+1) //u(r 0,z1)r fn(6)drde 0, 0, 2«/1—0’ a,, (67)

and for the plane = z,:

w12 R
[ﬁ(l,,)]f{AZ / / u(r, 9, Zz)r“"“fn(@)drdé’ \[ \f )

__(a? ant3 ( ‘ )}
32a, + 1) //u(r 0, z)r ™ f,(0)drdo (0, 0, O, 2@ a,. (68)

Adding (66)—(68) provides the “load vector” (witki + 1 elements) associated with th#h eigen-pair.
We then assemble the load vectors for the number of edge flux intensity functions of interest to obtain
the right-hand side of (52). Notice that the exact functian (66)—(68) is not known, so that we use its
finite element approximation. The left-hand side of (52) is the compliance matrix given by (65), so that
all which is left is the solution of a symmetric system of equations.
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7. Summary and conclusions

This paper addresses numerical methods for computing singular solutions of linear second order
elliptic partial differential equations (Laplace and Elasticity problems) in polyhedra domains, using the
p-version of the finite element method. Specifically, we have addressed singularities associated with
straight edges and vertices, and concentrate our attention on the computation of eigen-pairs by the
weak modified Steklov eigen-formulation. This formulation has been presented for both the Laplace and
elasticity problems, and a numerical example provided. The method has several advantages, namely
it is general for two-dimensional and three-dimensional domains and has been shown to be both
accurate, reliable and super-convergent in two-dimensions [22] as well as for edge singularities in three-
dimensions. Its implementation for 3-D vertex singularities is in progress and numerical results will be
presented in the future.

By using the computed eigen-pairs, and the dual weak formulation, a method has been presented fol
extracting the edge flux intensity functions for the Laplace problem. This is a post-solution operation on
the finite element solution vector. An adaptive strategy of selecting an increasing order of polynomials to
approximate the edge flux intensity functions together with the hierarchical spacepitrsion finite
element method is expected to provide an optimal convergence rate. The method is being implementec
and numerical examples will be presented in a forthcoming paper.
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