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Abstract

A three-dimensional failure initiation criterion in brittle materials containing a sharp V-notch

is presented and validated by experiments. It is based on simultaneous fulfilment of the stress

requirement and a finite fracture mechanics energy release rate (ERR) requirement.

Since the ERR cannot determine failure initiation direction for dominant mode III load-

ing, the failure initiation orientation is determined solely by stress considerations and the

force at fracture is determined by both ERR and stress requirements.

Experiments on PMMA, Graphite and MACOR V-notched specimens loaded by three

modes demonstrated that predicted fracture load was mostly within 6.5% (RMS) of experi-

mental values.
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Nomenclature

General

Symbol Meaning

δΠ The difference in the potential energy between a V-notched 3D linear elastic

domain with and without a small crack

Hij Geometric functions

G Energy release rate

Gc Critical energy release rate in mode I

KI , KII , KIII Mode I, II and III stress intensity factors

KIc Mode I fracture toughness

Fc Failure load of the specimen

σ Stress tensor

σn Stress normal to the rotated plane

σn,avg Average stress normal to the rotated plane

σc Critical stress

αi Eigenvalues

Si(θ
∗) Eigen-stress associated with the eigenvalue αi

Ai(z) Generalized Edge Stress Intensity Functions

S Crack area

R Outer radius of integration

h V-notch height (depth)

γ V-notch inclination angle in relation to the side faces

ω V-notch solid angle (complementary to 2π with the notch opening angle)

E Young’s modulus

ν Poisson’s ratio

α Counter clockwise rotation angle around the y axis (from the yz reference plane

which is the V-notch bisector)

θ∗ Counter clockwise rotation angle around the z axis (from the yz reference plane

which is the V-notch bisector)/ an angle measured from the V-notch bisector so

that −ω
2
≤ θ∗ ≤ ω

2

2



Coordinate systems

(r, θ∗, z) Cylindrical coordinates, the z axis coincides with the V-notch edge and θ∗ is

measured from the bisector plane

α, θ∗ Failure initiation rotation angles around V-notch bisector plane

rp, θp Polar coordinate system in the plane rotated by α, θ∗ around bisector plane

θp1, θp2 Integration limits on the circular sector in the rotated plane

1. Introduction

The theory of linear elastic fracture mechanics, in the context of finite fracture mechanics

(FFM), was successfully applied in the past fifteen years to predict the onset of fracture at

V-notch tips of two dimensional (2-D) domains. Different criteria have been suggested that

predict the critical load and fracture initiation angle at the V-notch tip under mode I or mixed

mode (I+II) state of stress in brittle elastic materials. These include: the generalized strain

energy density (SED) criterion [1, 2, 3, 4], the Novozhilov-Seweryn criterion (stress-based)

[5], thesharp V-notch maximum tangential stress (SV-MTS) [6], and the extension of the

Leguillon’s FFM criterion [7] to plane mixed modes [8, 9, 10, 11, 12, 13]. Leguillon’s criterion

[7] and its extended formulation for in-plane mixed mode loading [8] are based on the stress

and energy release rate requirements (in the framework of FFM) that must be simultaneously

satisfied for a virtual finite crack formation at the instance of failure initiation (in [11,

12, 13], the pointwise stress requirement was replaced by an average stress requirement).

The criterion for in-plane mixed mode [8] was shown to provide good predictions for crack

initiation angle and failure load compared to experimental observations (prediction error

under 20%) [9, 14, 15] for a wide range of V-notch angles ω (280o ≤ ω ≤ 340o) and in-plane

mode mixity ratios (between 0 and 3.5). This criterion was extended and applied for failure

initiation and crack growth along a fiber-matrix interface [16].

However, realistic three dimensional (3-D) structures containing a V-notch may be subject

to 3-D mixed mode loading and thus the failure that initiates at the V-notch edge is a much

more complex phenomenon compared to the 2-D situation: a) It may initiate at one point

along the V-notch edge, or along a set of points instantly, b) The failure surface, at the

initiation instance, may be inclined to the bi-sector of the V-notch edge at any spatial angle.
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Therefore, a failure initiation criterion in 3-D is not well established. As an illustrative

example, one may notice the complex fracture pattern in the rectangular bars with an inclined

V-notch subjected to a four point bending shown in Figure 1. The fracture front seems to be

Figure 1: Fracture at the tip of two inclined V-notches (one at 45o (left) and the other at 30o (right)) in

PMMA bars under four point bending.

confined at a finite length of the V-notch edge, and fragment immediately as soon as mode

III loading is present. We herein focus on the extension of the 2-D failure criterion in [8] to

a 3-D state, in an attempt to allow an accurate prediction of the load to fracture and the

fracture initiation angle at the V-notch edge under a mixed mode I+II+III condition.

Any failure criterion for a V-notched configuration should reduce to a known failure

criterion for the well known crack configuration for ω = 2π. For 3-D cracks there are several

failure criteria based on an energy considerations such as the generalized minimum strain

4



energy density criterion (MSED) [17, 18] (extended from [19]), the generalized maximum

energy release rate criterion (MERR) and its variation [17] and maximum mean value of the

energy release rate [20, 21, 22]. Most of reported experiments address in-plane mixed mode

(I+II) (such as [23, 24, 19, 25]) and show good correlation with the failure criteria (MSED,

MERR, MNSC) as long as the mode mixity is small (mode II is relatively weak compared

to mode I, or KII

KI
/ 0.5).

Failure criteria for cracks based on a stress approach include the maximum normal stress

criterion (MNSC) [26, 27], the maximum principal stress criterion (MPSC) [28], maximum

mean value of KI criterion [20] and the generalized empirical elliptic criterion [17].

It is important to realize that most of the failure initiation criteria in 3-D domains proposed

for a crack configuration under a general mixed mode loading (I+II+III) involve assumptions

that limit their ability to describe a general state of crack initiation. For example, most past

failure initiation criteria consider one failure initiation angle (which means that KIII affects

only the fracture load but not the fracture direction), and/or disregard the dependence of

the stress intensity factor KIII on the coordinate along the crack edge [17, 26, 28, 27, 18].

Therefore, these criteria are not appropriate for three-mode loading conditions. In Lazarus

et al. [20] a mesoscopically segmented fracture surface was represented by a macroscopic

smoothly twisting crack extension. Mixed mode I+III was considered and extensively dis-

cussed in Lin et. al [29] and Pham et. al [30]. Lin et al. [29] proposed an initiation criterion

which is a generalization of an Irwin-type criterion, and states that the crack initiates from

an existing crack in a direction where both mode II and III SIFs vanish (KII = KIII = 0),

and mode I stress intensity factor (SIF) equals KIC . In this criterion, the faceted crack front

is characterized by a single angle of fragmentation (a“factory roof” profile), so it addresses

a special case. This special case is further discussed and examined in [30]. It is worth men-

tioning here that some recent works emphasize the role of a coupled mode II and III state

of stress in failure initiation criteria at 3D cracks [31].

The experiments used to validate the aforementioned criteria are also limited. Experi-

ments conducted on PMMA and brittle steels which involved mode III loading conditions

[18] showed tens of percent of deviation between values of the fracture envelope (KIII

KIC
as

a function of KI

KIC
) for mode I+III loading conditions as predicted by the minimum strain
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energy density (MSED) [17, 18] and the maximum energy release rate (MERR) [17] criteria,

and experimental results (see also [32]). In [26, 27] the maximum normal stress criterion

(MNSC) showed tens of percent of deviation in fracture initiation angle values compared to

experimental results. The maximum principal stress criterion (MPSC) [28] also shows poor

correlation with experimental findings – up to 80% error in determining the fracture angle

in the presence of mode III [20]. The mean energy release rate criterion is closer to the

experimental results, showing up to 35% deviation and the mean KI criterion showed up to

20% deviation compared to the same experiments [20].

We herein generalize the 2-D (in-plane loading) failure initiation criterion from sharp

V-notches by Yosibash et al. (modes I+II) [8], and Leguillon (mode I) [7] to a 3-D setting,

and validate it by experimental observations in three different brittle elastic specimens. The

criterion is based on a virtual planar circular sector crack at the V-notch edge whose dimen-

sion and orientation simultaneously fulfill the stress criterion and finite fracture mechanics

energy release rate criterion.

Preliminaries and notations, including the stress tensor in the vicinity of a 3-D V-notch

edge are provided in section 2. The finite fracture mechanics energy release rate (ERR) in 3-D

in the context of finite fracture mechanics is introduced next in section 3. It is computed by

the difference in potential energy between a domain with a V-notch and same domain with a

small circular sector flat crack created along the V-notch edge in an arbitrary direction. This

ERR is provided as an asymptotic series (see [33]), necessary due to the amount of required

calculations. The stress criterion in 3-D is discussed in section 4, followed by the explicit

formulation of the failure criterion in section 5. This criterion is based on the determination

of a virtual planar circular-sector shaped crack whose orientation is chosen to satisfy the

stress criterion, and its area is determined so to simultaneously satisfy the stress and ERR

criteria. Once this virtual crack is determined, the critical load is known. To validate the

failure criterion, we performed experiments detailed in section 6. V-notched specimens made

of Poly-Methyl-Methacrylate (PMMA), Graphite and a machinable ceramic (Macor) were

loaded to fracture under a mixed mode loading. Failure load and failure initiation angles

were measured and compared to the predicted failure load and crack initiation angles in
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section 7. We conclude by a summary in section 8.

2. Preliminaries and notations

Consider a linear elastic and isotropic 3-D domain having a sharp V-notch with a straight

edge and traction free boundary conditions on its surfaces Γ1,Γ2, Fig. 2. The elastic solution

in the vicinity of the V-notch edge is expressed in cylindrical coordinates (r, θ∗, z). θ∗ = 0

along the the y axis so that −ω
2
≤ θ∗ ≤ ω

2
, and z axis coincides with the edge (yz is the

V-notch bisector plane).

Figure 2: Left: Edge and vertex in a 3-D domain. Right: The definitions of the virtual crack orientation.

The stress field in the vicinity of the singular edge is given by an asymptotic expansion
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[33]:

σ(r, θ∗, z) = (σrr σθ∗θ∗ σzz σrθ∗ σrz σθ∗z)
T
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where Ai(z) are the generalized edge stress intensity functions (GESIFs) representing the

strength of each singularity and may be computed by the quasi-dual function method [34] and

αi are the 2-D eigenvalues (α1 = 0.5050097, α2 = 0.6597016, for a solid angle of ω = 315o).

α3 is obtained by solving the Laplace equation
(

α2
3 +

∂2

∂(θ∗)2

)

sz(θ
∗) = 0 with homogeneous

Neumann boundary conditions. For ω = 315o, α3 =
4
7
. σ

(1)
θ∗θ∗(θ

∗ = 0) = (1+α1)
(1−α1)

· sin[ω(1+α1)/2]
sin[ω(1−α1)/2]

−

1, and σ
(2)
rθ∗(θ

∗ = 0) = 1 − (1−α2)
(1+α2)

· sin[ω(1+α2)/2]
sin[ω(1−α2)/2]

are normalization factors for the stresses so

that for mode I σ
(1)
θ∗θ∗(θ

∗ = 0) = 1 and for mode II σ
(2)
rθ∗(θ

∗ = 0) = 1. λ, µ are the Lamé

constants that may be expressed in terms of the Young modulus E and the Poisson ratio ν.

Remark 1. The angle θ∗ is more convenient for use because of its symmetry with respect

to the V-notch bisector plane. In [33] we have used θ = θ∗ + π
2
and in [35] the angle θ∗ was

denoted by β.
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To determine a spatial orientation of a virtual crack we use in 3-D two angles. These are

chosen relative to the V-notch bi-sector plane at the point of crack origin (yz plane in Fig.

2). The angle α is a counter-clockwise rotation around y axis, and θ∗ is counter-clockwise

rotation around z axis. Since the rotation by α and θ∗ is not commutative, we define

the rotation starting from the reference plane yz, first by θ∗ and then by α. In Cartesian

coordinates the normal to yz plane is (100). The unit normal to each crack orientation plane

can be represented in Cartesian or Cylindrical coordinates as follows:


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




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For examples, see [35] (where β ≡ θ∗).

3. Generalization of the energy release rate (ERR) to 3-D

Because the failure criterion developed is based on a virtual finite crack satisfying si-

multaneously the strength and ERR requirements it is required to determine in 3-D a crack

(assumed to be planar) so that:

1. The crack initiates along a direction at which the energy release rate is maximal, and

reaches its critical value: − δΠ
S

≥ Gc. δΠ denotes the difference in the potential energy

between a V-notched cracked domain and the V-notched un-cracked domain, and S is

the area of the virtual crack.

9



2. The average normal stress ahead of the V-notch edge within the virtual planar crack

surface is larger than a critical value: σn,avg ≥ σc.

Experiments on 3-D specimens with an inclined V-notch (see Sec 6) show that failure initia-

tion origins may change with the inclination angle, so that crack initiation can be either from

a single origin or from several separated origins distributed along the edge. The new criterion

should, therefore, be able to describe pointwise, segmented, or continuous fracture. Hence,

the new failure criterion must be applied at every point along the V-notch edge, producing

different results for fracture initiation angles (α, θ∗ - enabling a spatial crack initiation) and

forces at fracture (associated with the GESIF AI(z)). The smallest force is the failure load.

The expression for δΠ was explicitly provided by an asymptotic series in [33]. δΠ can be

computed for any crack orientation (α, θ∗) and location along the V-notch edge (z) by:

−δΠApprox = A2
1 × (

√
S)2α1+1H11(α, θ

∗) + A1A2 × (
√
S)α1+α2+1

(

H12(α, θ
∗) +H21(α, θ

∗)
)

+A2
2 × (

√
S)2α2+1H22(α, θ

∗) + A1A3 × (
√
S)α1+α3+1 ×

(

H13(α, θ
∗) +H31(α, θ

∗)
)

+A2A3 × (
√
S)α2+α3+1

(

H23(α, θ
∗) +H32(α, θ

∗)
)

+ A2
3 × (

√
S)2α3+1H33(α, θ

∗) +H.O.T.,

(3)

or in concise form:

−δΠApprox ≈
3

∑

i=1

3
∑

j=1

Ai(z)Aj(z) (
√
S)αi+αj+1Hij(α, θ

∗) (4)

where S is the area of the virtual crack, Ai(z) are the GESIFs of a V-notch without a crack,

and the geometrical functions Hij can be pre-computed and tabulated. Such asymptotic

expression substantially reduces the amount of needed calculations, since once Hij and the

GESIFs Ai(z) are available, δΠ can be easily computed for any (small) crack area S, at any

location along the V-notch edge z, and for every crack orientation.

The functions Hij depend on crack orientation (α, θ∗), material properties (E, ν) and

crack shape. The explicit expressions for Hij are presented herein for circular cracks, a V-

notch opening angle of 45o (ω = 315o), and for a wide range of material properties. The

GESIFs Ai(z) corresponding to the geometries used in the experiments (Sec. 6) are provided

in Sec. 4.

10



3.1. Hij’s for circular cracks

Functions Hij(α, θ
∗) are detailed in [33]. For discrete values of α, θ∗ in the range −61o ≤

α ≤ 61o and −45o ≤ θ∗ ≤ 45o the values of Hij were computed for a planar virtual crack of

circular shape (crack center coincides with the V-notch edge), for a V-notch angle ω = 315o

and PMMA material properties E = 3900 [MPa], ν = 0.332 (tabulated data is available in

[36]). These discrete values are shown in red dots in Fig. 3. Smooth functions can be then

determined to match the discrete values computed.

Hij functions have the following characteristics:

1. Hij ≈ Hji for i 6= j (mostly less than 1% difference between Hij and Hji values).

H12, H13 and H23 in Fig. 3 represent their counterparts.

2. All Hij functions show symmetry/anti-symmetry relations with respect to the spatial

angles α and θ∗. Hii are always positive and symmetric in relation to both α and θ∗,

while H12, H21 are symmetric with respect to α and anti-symmetric with respect to θ∗,

H13, H31 are symmetric with respect to θ∗ and anti-symmetric with respect to α, and

H23, H32 are anti-symmetric in relation to both α and θ∗.

3. Hij have units of mm2

N
, as can be derived from (4).
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Hij surfaces for E = 3900MPa, ν = 0.332,ω = 315o and circular crack shape: (a)H11, (b)H22,

(c)H33, (d)H12 = H21, (e)H13 = H31(notice that the axes are inverted to obtain a clear view), (f)H23 = H32

In Fig. 3 one can observe a steep change at α ∼ 0 for most of the Hij functions. The
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steep transition indicates that orientations for which α ∼ 0 are more favorable energetically

in cases of pure modes (where Hii define δΠ). Also, since angle θ∗ was defined as in 2-D

(rotation angle around the z axis) it is easy to see that the general trend of Hij at α = 0

resembles the 2-D behavior, as expected (see [8]).

3.1.1. Hij dependence on material properties

In 2-D, the Hij functions for a new Enew MPa and a new νnew can be computed once it

is available for a given E and ν according to [8]:

Hnew
ij (ω, θ∗) = Hij(ω, θ

∗)
E

1− ν2

1− (νnew)2

Enew
(5)

In 3-D Hij computations for 1 ≤ E ≤ 104MPa, 0 ≤ ν ≤ 0.4 show that Hij depends linearly

on E, but not so for ν, so that (5) is incorrect in 3-D. Approximation functions for Hij

are presented in Table 1, where E and ν are parameters (these expressions apply for a V-

notch solid angle of ω = 315o, and a circular crack shape). Substituting PMMA material

properties E = 3900MPa, ν = 0.332 approximately reduces to the Hij expressions in Fig.

3. Hij values change relatively moderately with ν, so when ν changes from 0 to 0.4, Hij

changes by approximately 25%, for the same value of E.

The asymptotic approximation for δΠ and additional FE methods were used in [35] to

examine the energy requirement − δΠ
S

≥ Gc under loading conditions which involve mode III.

According to the energy criterion, the crack initiates along a direction where the ERR is

maximum. This was shown to hold true in 2-D (modes I+II [8, 7, 18]), and we examined if

it is still so in 3-D (when mode III is present). We have shown [35] that the maximum value

of the ERR under dominant mode III loading is always obtained along the V-notch bisector,

contrary to experimental observations. Therefore, the energy requirement cannot be used

to predict the crack initiation direction in the presence of mode III. In the next section we

examine the stress criterion, and address its ability to determine the crack initiation direction

under mode III loading.

4. Generalization of the stress requirement to 3-D

Since the ERR criterion cannot predict the crack initiation direction in the presence

of mode III we consider instead the average normal stress criterion to determine the fail-
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Hij Approximation function

H11
1
E





















2− 7.1 · 10−4(θ∗)2 + α2(−4.875 · 10−4 + 1.1 · 10−7(θ∗)2) + 3.51 · 10−8α4

+1.482 · 10−7(θ∗)4 + (1.7238 − 0.8424ν − 1.6458ν2) exp[− α2

160
] exp[−

(θ∗)2

1000
]

−0.0872ν − 0.2625ν2 + 5.915 · 10−3ν | α | −3 · 10−3ν | θ∗ |

+





1.785 + 1.162 · 10−4(θ∗)2 − 1.482 · 10−7(θ∗)4+ | θ∗ | (−5.785 · 10−6 + 0.0164ν)

−0.45ν − 2.577ν2 + exp[−
(θ∗)2

1000
](−1.723 + 0.842ν + 1.646ν2)



 exp[− α2

0.5
]





















H22
1
E





















1.221− 3.67 · 10−4(θ∗)2 + α2(−4.33 · 10−4 + 1.08 · 10−7(θ∗)2)

+4.953 · 10−8α4 + 1.408 · 10−7(θ∗)4 − 0.1085ν − 0.3268ν2

+(0.667 + 0.928ν − 0.9516ν2) exp[−α2

90
] exp[− (θ∗)2

900
] + 4.141 · 10−3ν | α | −3.72 · 10−3ν | θ∗ |

+





0.694 + 3.67 · 10−4(θ∗)2 − 1.409 · 10−7(θ∗)4+ | θ∗ | (0.00814 − 0.00773ν)

+1.091ν − 1.341ν2 + exp[−
(θ∗)2

900
](−0.667 − 0.928ν + 0.952ν2)



 exp[− α2

0.5
]





















H33
1
E





















1.794 − 6.6 · 10−4(θ∗)2 + α2(−4.173 · 10−4 + 5.928 · 10−8(θ∗)2)

+7.644 · 10−8α4 + 1.51 · 10−7(θ∗)4 − 0.133ν − 0.4ν2

+(0.9367 + 1.786ν − 1.626ν2) exp[−α2

75
] exp[−

(θ∗)2

800
] + 6.22 · 10−3ν | α | −3.16 · 10−3ν | θ∗ |

+





0.981 + 2.88 · 10−4(θ∗)2 − 1.51 · 10−7(θ∗)4+ | θ∗ | (4.45 · 10−3 − 1 · 10−4ν)

+ν(1.588 − 0.994ν) + exp[− (θ∗)2

800
](−0.936− 1.786ν + 1.626ν2)



 exp[− α2

0.5
]





















H12(≈ H21)
1
E











3.4 · 10−4 + (θ∗) · (−0.02764 + 2.4 · 10−6α2 + 0.00165ν) + (−0.0484 + 0.0019 | α |)ν

−0.146ν2 + 5.634 · 10−6(θ∗)3 + (−5 · 10−4 + 8.28 · 10−8(θ∗)2 − 5.634 · 10−6(θ∗)3

+(θ∗) · (−0.0113 + 0.0123ν) + 0.0487ν + 0.1453ν2exp[−α2]











H13(≈ H31)
1
E











−6.65 · 10−5 + 0.046α − 1.4 · 10−5α3 − 1.4 · 10−5α(θ∗)2

+1.41 · 10−9α5 + 2.43 · 10−9α3(θ∗)2 + 1.056 · 10−9α(θ∗)4

−7.5 · 10−4αν + 0.019ν − 5.46 · 10−4(θ∗) · ν + 0.057ν2











H23(≈ H32)
1
E





−3.18 · 10−4α · θ∗ + 2.863 · 10−8α(θ∗)3 − 5.77 · 10−4αν

+0.02235ν − 6.88 · 10−4ν · θ∗ + 0.0673ν2





Table 1: Approximating functions for Hij with general material properties (ω = 315o, circular crack shape).

ure initiation direction. Failure initiates in a plane to which the average normal stress is

maximum.

The failure load needs also to satisfy σn ≥ σc, where σn is the normal stress to a failure

plane, and σc is a material property. The closed planar shape of all points at which σn ≥ σc

determines the virtual crack. Since on each plane the normal stress is different, the virtual

crack’s shape and area S depend on orientation, location along the edge z and the far

loading through Ai(z) (the larger the applied load, the larger is S). To conform with the

ERR criterion, instead of a general virtual crack shape, we consider only a circular sector

shaped virtual crack.
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The normal stress to a plane determined by (2) is obtained using (1):

σn = Tini = Trnr + Tθ∗nθ∗ + Tznz

= σrrn
2
r + σθ∗θ∗n2

θ∗ + σzzn
2
z + 2nrnθ∗σrθ∗ + 2nrnzσrz + 2nθ∗nzσθ∗z

= sin4(α/2)sin2(2θ∗)σrr(A1(z), A2(z), r, θ
∗) + (cos(α) cos2(θ∗) + sin2(θ∗))2σθ∗θ∗(A1(z), A2(z), r, θ

∗)

+
1

2
(sin2(α) + cos(2θ∗)sin2(α))σzz(A1(z), A2(z), r, θ

∗)

+
1

2
(−sin2(α)sin(2θ∗) + 2sin4(α/2)sin(4θ∗))σrθ∗(A1(z), A2(z), r, θ

∗)

− sin2(α/2)sin(α) (sin(θ∗) + sin(3θ∗))σrz(A3(z), r, θ
∗))

+ 2cos(θ∗) sin(α)(cos(α) cos2(θ∗) + sin2(θ∗))2σθ∗z(A3(z), r, θ
∗) (6)

To determine the virtual crack initiation angle we consider the average normal stress in

a radial sector of radius R on a plane determined by (α, θ∗):

σn,avg
def
=

∫ θp2

θp1

∫ R

0

σn(rp, θp) rp drp dθp

/

∫ θp2

θp1

∫ R

0

rp drp dθp (7)

where (rp, θp) are polar coordinates defined in the normal plane. An identical area needs to

be considered for all plane orientation so that the normal stress will be comparable. The

normal average stress was computed at angles (α, θ∗) in intervals of 2o within the range

−61o ≤ α ≤ 61o,−45o ≤ θ∗ ≤ 45o, and the combination (α, θ∗) which resulted in maximum

σn,avg was determined.

Computations were performed by Mathematica1 (code is available for download [37]).

Since the integration area is identical for all orientations, the integration limits of rp and

θp depend on the normal plane orientation (intersection lines between the V-notch faces

and normal plane were computed for each plane). The angle θp they create in relation to

the yp axis was calculated as well, these two angles served as the limiting angles in the

integration (7). For the integration limiting angles, the upper radial limit of integration

R was determined so to obtain a constant area:
∫ θp2
θp1

∫ R

0
rp drp dθp = const. Computed

directions at which σn,avg is maximum for circular sector areas of 0.1, 0.05, and 0.03mm2,

and pure loading modes (only one Ai(z) non-zero) are summarized in Table 2.

1Mathematica is a trademark of Wolfram Research, Inc., Champaign, IL, USA
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Integration

area mm2

Loading

mode

(α, θ∗) o

0.3

I (±1,±1)

II (±1,−45)

III (41,±1)

0.2

I (±1,±1)

II (±1,−45)

III (41,±1)

0.1

I (±1,±1)

II (±1,−45)

III (43,±1)

0.05

I (±1,±1)

II (±1,−45)

III (41,±1)

Table 2: Angles at which average maximum normal stress was obtained for pure loading modes (V-notch

opening angle ω = 315o).

One may observe that the integration area has a negligible influence on the plane direction

at which maximum average normal stress is obtained for mode III, and no influence was

observed for modes I and II. We used the area of 0.1mm2, which is small compared to

specimen dimensions, and is close to the expected orientation for maximum normal stress

for mode III. It was confirmed that the orientation (α, θ∗) at which σn,avg is maximum does

not depend on the applied force (which influences the GESIFs Ai(z)). For the same geometry

and material properties, the force applied was taken between 1000 N and 4000 N. For each

orientation, the value of σn,avg was increased by the same factor in which the force was

increased. Therefore, σn,avg is calculated for a reference force of 1000 N, and a constant area

of 0.1mm2 for all geometries examined in experiments (see [37]).

The influence of material properties on the failure orientation plane is through the σzz
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stress component, which depends on 2λ
λ+µ

= 4ν. Since σzz is the only component of the stress

which depends on material properties, the orientation of maximum normal stress is expected

to change very moderately with ν. Changing E has no influence on the results.

4.1. Computing the GESIFs Ai(z)

For δΠ and σn, one needs the GESIFs Ai(z) associated with the V-notch edge which are

computed by high order finite element models and the quasi-dual-function-method (QDFM)

[34], see Fig. 5. For example a FE model of a PMMA specimen tested in experiments is

shown in Fig. 4. The polynomial representation of Ai(z) for all the specimens considered in

this paper are presented in Appendix C.

Figure 4: Finite element model of a typical PMMA specimen.

The numerical accuracy of the Ai(z) computation was assured by performing p-extensions

[38] i.e. the polynomial degree of the shape functions in the finite elements was increased

from 1 to 8. In addition, the mesh was refined near the notch tip and the loading and

clamped regions. The error, measured in the energy norm, was between 0.7% and 3.9% for

all models.
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Figure 5: GESIFs in a specimen with the V-notch inclination angle γ = 45o and notch height h = 6mm, for

a force of 1604N .

5. The failure initiation criterion in 3-D

Once the failure plane orientation is determined at each point along the V-notch edge,

the ERR criterion and the normal stress criterion are use simultaneously to determine the

failure load and the virtual crack area.

In the 3-D form of the asymptotic expansion of δΠ we used circular crack shapes in order

to determine Hij functions. According to the stress criterion, we have shown that the shape

of the crack (determined by σn = σc curves) is a more complex “peanut-shape”. If we had

used such shapes for Hij , it would have greatly increased the number and complexity of the

required calculations, since this would require finding the specific shape for each orientation.
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Because both ERR and stress criteria consider the same virtual crack, for consistency

a circular virtual crack shape is assumed in both. The degree of agreement between the

predicted and experimental observations will indicate if such an assumption is admissible.

The force at fracture is determined by simultaneously satisfying the ERR and stress

requirements: − δΠ
S

≥ Gc and σn,avg ≥ σc. The two unknowns S and Fc are evaluated

at every location z along the V-notch edge. The minimum force (on of the entire edge)

represents the force at fracture.

σn,avg =
∫ ∫

σn(rp,θp) rp drp dθp
S

≥ σc

Fc

∫ ∫

Ã1(z) rα1−1
S1(θ∗)+Ã2(z) rα2−1

S2(θ∗)+Ã3(z) rα3−1
S3(θ∗) rp drp dθp

S
≥ σc

(8)

Fc

(

Ã2
1(z)× (

√

S(Fc))
2α1−1 H11(α, θ

∗)

+Ã1(z) Ã2(z)× (
√

S(Fc))
α1+α2−1 × (H12(α, θ

∗) +H21(α, θ
∗))

+Ã2
2(z) × (

√

S(Fc))
2α2−1 H22(α, θ

∗)

+Ã1(z) Ã3(z)× (
√

S(Fc))
α1+α3−1 × (H13(α, θ

∗) +H31(α, θ
∗))

+Ã2(z) Ã3(z)× (
√

S(Fc))
α2+α3−1 × (H23(α, θ

∗) +H32(α, θ
∗))

+Ã2
3(z) × (

√

S(Fc))
2α3−1 H33(α, θ

∗)
)

≥ Gc

(9)

The area S depends on the location z, orientation (α, θ∗) and force. The GESIFs Ai(F, z)

is normalized and represented by Ai(F, z) = FAi(1N, z) = FÃi(z), and Ãi(z) indicates the

GESIF for a unit force (F = 1N). Note also that in (8) r, θ∗ are given as different functions

of rp and θp, depending on the considered plane orientation of interest.

The force and area that satisfy simultaneously (8-9) are found numerically by a code

written in “Mathematica” [37] . The computational algorithm is briefly explained. Having

determined the virtual crack orientation (α, θ∗ for which σn,avg is maximum), the input

consists of the force (F ) and edge location (z). For every z, the initial guess for the force is

a small number (for example, 1N), which then determines the minimum area S of a circular

sector for which the stress criterion (8) is satisfied. Then, S is substituted in the energy

criterion (9) to compute the ERR. Since the initial guess for F is small, the corresponding

ERR is smaller than the critical ERR. The calculation is therefore repeated for a force F

increased by intervals of 1N , until we obtain the minimum force for which ERR reaches

its critical value. This calculation is performed for many locations along z, and for every
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geometry and material separately.

To clarify the dependence of the failure load and virtual crack area on the various ingre-

dients of the failure law, we explicitly summarize these herein.

Ai(z) - depend on the general specimen geometry, location z, and the force F . Inde-

pendent of material properties. Defined for a sharp V-notch without a crack and therefore

independent of any crack parameters.

Hij - depend on crack orientation (α, θ∗), shape, material properties (and V-notch opening

angle ω). Hij ’s throughout this work address circular virtual cracks only, and ω = 315o.

They are independent of virtual crack size, location z and general specimen geometry. As ν

is further away from 0.3, the simplification of Hij ≈ Hji for j 6= i may no longer hold.

Clearly, the separation of variables enabled by the asymptotic expansion for δΠ has

significantly decreased the amount of required calculations.

E, ν, σc,Gc - material properties, criterion requires the knowledge of 4 material parame-

ters.

S - depends on all the parameters which σn,avg depends on, namely crack orienta-

tion (α, θ∗), location z, force F , general geometry (through Ai(z)) and material properties

(E, ν, σc). Consequently, the virtual crack area S also depends on all the parameters listed

above, and therefore should not be mistaken for a material parameter.

The predicted failure plane orientation at a given z would change if the following data

change:

Ai(z) - for different geometries/far loading conditions.

ν - for different materials (σn,int is independent of E).

The predicted failure load at a given z would change if the following data change:

Ai(z) - for different geometries/far loading conditions.

ν, σc,Gc - for different materials.

Hij - for different (E, ν).
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6. Experiments on PMMA, Graphite and MACOR specimens with slanted V-

notches

Four-point-bending (4PB) experiments were conducted on bar-shaped specimens with a

V-notch inclined to the specimen free surface (see Fig. 6). This geometry creates a mixed

mode state of stress in the vicinity of the edge front [39, 40, 20, 29].
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(a) (b)

(c)

(d) (e)

Figure 6: (a,b) 4PB experiment configuration. (c) Specimen’s dimensions. (d) Top view (inclination angle

γ = 30o). (e) Side view.

The specimen’s dimensions are 80 × 20 × 10mm with a V-notch with an opening angle

of 45 degrees (ω = 315o). Three inclination angles were considered γ = 0o, 30o, 45o, with

notch height of h = 6mm (in PMMA specimens h = 4mm was examined also).

22



For a small tip radius, we may assume a sharp notch [8], so the V-notches were machined

with a cutting disc (2mm thickness) having a tip radius of ρ = 50µm and a 45 degrees

opening angle. In practice, the radius of curvature at the tip of the specimen’s notches was

within the range of 50− 120µm in PMMA specimens (the difference in the radius resulted

from the cutting entrance direction).

The specimens were manufactured from three materials considered linear elastic, homo-

geneous and isotropic.

1. Cast commercial PMMA (considered brittle at ambient temperatures).

2. Graphite manufactured by HIP (hot isostatic pressing) with small grain size (maximum

50µm) by David Hart Ltd, UK (H2878 Graphite plate).

3. MACOR, a ceramic suitable for machining by Corning Inc. NY, USA, (Aremcolox

502-MACOR).

Experiments on the PMMA were performed using a Zwick 1445 machine (Zwick GmbH

& Co. KG., Germany, 1992), with nominal load capability of 10kN. Experiments on the

Graphite and MACOR were performed using a Shimadzu machine with nominal load ca-

pability of 20kN. All experiments were performed under a constant displacement rate of

1mm/min (quasi-static). A Vishay system 7000 was used to record the load cell output

(precision of ±0.5% N) and displacements at the center of the specimen upper facet, by

means of linear displacement sensors (LDS, with a precision of ±0.05mm). To assure the

accuracy, attention has been paid to the parallel and center placements of the specimens in

all directions.

6.1. Material properties

The material properties of the commercial PMMA, MACOR and Graphite are summa-

rized in Table 3. The critical stress for fracture σc was estimated by loading a non-notched

beam in 4PB until failure. The critical energy release rate GC was estimated based on mode

I experiments on V-notched specimens using Leguillon’s criterion for sharp V-notches and

its correction for blunt V-notches [10].

Young’s modulus E was measured by several methods for each material:
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1. 4PB tests were performed on the V-notched beams with different inclination angles, as

previously described. For each geometry a corresponding FE model was constructed.

For each specimen the slope of the force-displacement curve was estimated, averaged

for each geometry and compared to FE results. The value of E which gave the smallest

error compared to the experiments was chosen.

2. In addition, 4PB tests were performed on non-notched beam specimens and compared

with corresponding FE models. The specimens were repeatedly loaded to small loads

up to 500 N. As for the notched beams, deflection was measured at the middle of

the upper facet and the slope of the force-displacement curve was estimated in the

linear region, averaged and compared to the FE results. The value of E which gave

the smallest error compared to the experiments was chosen. These tests were usually

repeated for several specimens, on alternating facets, to ensure the specimens are

homogeneous and isotropic.

3. Ultrasonic testing - longitudinal and transverse velocities of ultrasonic waves were

measured. The relation between the longitudinal wave velocity VL, transverse wave

velocity VT , Young’s modulus E, Poisson’s ratio ν and the density ρ is [41]:

VL =

√

E(1− ν)

ρ(1 + ν)(1− 2ν)
, VT =

√

E

2ρ(1 + ν)
(10)

In the Graphite and MACOR experiments, the displacements measured at the center of

the specimens upper facet by the LDS, were within experimental error range. Thus the

estimation of E from mechanical testing is disqualified. Ultrasonic determination of E was

instead used for all three materials (marked in bold in Table 3).

Material σcMPa
E GPa

ν
GC MPamm

ultrasonic mechanical ultrasonic mechanical

PMMA 103.3 5.6 3.9 0.332 0.411 0.601

Graphite 48 10.8 - 0.2 0.118 -

MACOR 159 66.9 - 0.25 0.0329 -

Table 3: Summary of material properties. Values used for the prediction of the failure law are boldface.
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Experimental determination of Gc was not possible (insertion of an initial crack to de-

termine KIC is very difficult in ceramic materials so these were not performed by us nor

provided by the manufacturer). Therefore we computed Gc using V-notched specimens un-

der mode I loading by the methods in [7, 42] (see for details Appendix A. Since both Gc and

Hij depend linearly on E, it has no influence on the computed Gc).

6.2. Measuring the failure initiation angles

There is no established generally accepted method to measure the angles of the planes

at which failure initiates on the fractured surfaces. We chose to measure these angles based

on a blue-light scan.

Several representative broken surfaces were scanned with an “ATOS Compact Scan 5M”

optical blue light scanner (manufactured by GOM, Germany). A point-cloud that represent

the surface of the right broken parts was converted to a smooth-surface file which was

exported to a SolidWorks2 program. The location of each crack origin and a small area

according to which its orientation was determined were chosen by the authors. A tangential

plane was defined through a chosen point in each small representative area, a normal axis was

attached to each plane, and the angles (α, θ∗) were calculated externally (using Mathematica

program) with respect to the V-notch bi-sector normal.

Measurements of the crack origin locations and orientations for all experiments are pre-

sented in Appendix B. The MACOR scanned surfaces seem to be the least reliable since

significant changes in the fracture surface orientation were observed close to the V-notch

edges. These specimens also had visible damage from the V-notch machining in the vertices

region. Forces at fracture are also detailed in Appendix B.

6.3. Summary of experimental results

The experimental results for commercial PMMA, MACOR and Graphite are summarized

in Tables 4 and 5.

2SolidWorks is a trademark of Dassault Systèmes SolidWorks Corporation in the US and other countries.
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γo Avg. number of fracture origins

PMMA Graphite MACOR

0 multiple multiple multiple

(along entire edge) (along entire edge) (along entire edge, 9 main)

30 several multiple multiple

(4-8 main, mainly edge center) (about 18, 6 main) (about 15, 8 main)

45 single multiple multiple

(irregular location) (about 12, 4 main) (about 10, 5 main, distributed over 2/3 edge)

Table 4: Average number of fracture origins in different V-notch inclinations in PMMA,Graphite and MA-

COR specimens with h = 6mm.

# of

specimens,

γo

Avg. force @

fracture N

(deviation)

Representative fracture

surface

5 , 00 922 (±64)

4 , 300 1213 (±63)

4 , 450 1604 (±103)

Table 5: PMMA: Average force at fracture, h = 6mm (stereoscope, ×8).
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# of

specimens, γo

Avg. force @

fracture N

(deviation)

Representative fracture surface

1 , 00 668

5 , 300 846 (±19)

5 , 450 1028 (±24)

Table 6: Graphite: Average force at fracture, h = 6mm.
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# of

specimens, γo

Avg. force @

fracture N

(deviation)

Representative fracture surface

1 , 00 996 (±112)

5 , 300 1290 (±189)

5 s, 450 1489 (±44)

Table 7: MACOR: Average force at fracture, h = 6mm.

For all 3 materials and geometries, the experimental force at fracture is within a small

deviation from the average - under 7% in the PMMA, under 3% in the Graphite and under

14% in the MACOR specimens.

One may observe in PMMA specimens a connection between the inclination angle γ

and the number of fracture origins - as γ increases the number of origins decreases. This

trend was not observed at all in the Graphite specimens, while in the MACOR specimens a

decrease in the number of origins was observed for γ = 45o.
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7. Comparison between predicted failure initiation force and angles and experi-

mental observations

The prediction of failure load and failure initiation angles, of the newly formulated 3-

D criterion are compared to the experimental observations to examine the validity of the

criterion.

7.1. Failure initiation angles

The failure initiation orientation was determined by the maximum average normal stress

σn,avg (7) at intervals of 1 mm along the V-notch edge (z) over a circular sector of a constant

size (0.1 mm2]) and a reference force of 1000N .

Predicted and experimental results are presented in Figures 7-9 for PMMA, Graphite

and MACOR. For γ = 0o and 30o, the predicted angles were identical for all 3 materials and

therefore represented by a single solid curve with square markers. At γ = 45o there was

some variation between the predicted α, θ∗ so each material was represented by a separate

curve (PMMA green circles, Graphite blue Rhombi and MACOR red triangles). α and θ∗

correspond to the locations z at which they were measured.
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(a)

(b)

Figure 7: Predicted and experimental α (a) and θ∗(b) angles for γ = 0o.
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(a)

(b)

Figure 8: Predicted and experimental α (a) and θ∗(b) angles for γ = 30o.
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(a)

(b)

Figure 9: Predicted and experimental α (a) and θ∗(b) angles for γ = 45o.

For the chosen γs the predicted failure initiation angle α is always negative or zero, and

the non-zero values are significantly smaller compared to θ∗. α is symmetric with respect to

the mid edge whereas θ∗ is anti-symmetric.

Changing E yield same predicted failure initiation angles (α, θ∗). The orientation of

maximum average normal stress changes very moderately with ν, as observed in Fig. 7-9

((α, θ∗) remained identical for the three materials for γ = 0o and 30o and similar for γ = 45o).

A good agreement between the predicted and experimental results is observed for γ = 0o.

For γ = 30o, one can observe that experimental values of θ∗ are negative at small z with a

32



gradual increase to positive values at larger z. This antisymmetrical trend with respect to

the edge center is also predicted, but yet underestimates the experimental observations. α

is mostly negative, whereas the predicted ones are approximately zero. This indicates that

A1(z) is more dominant for this geometry compared with A3(z), contrary to the experimental

observations. An error in the numerically obtained functions Ai(z) could decrease the relation

A3(z)
A1(z)

, which draws α to zero as in pure mode I.

For γ = 45o, the antisymmetrical trend of θ∗ with respect to the mid edge is again ob-

served, however the predicted values still significantly underestimate the experimental ones.

The predicted αs are negative, as are most of the experimental measurements and are smaller

in the outer portions of the V-notch edge - this trend is observed in experiments also. For

all three materials, the predicted αs are within the experimental range. They mostly over-

estimate PMMA experimental observations, mostly underestimate Graphite experimental

observations, and are approximately in the middle of the MACOR experimental range.

One combination of (α, θ∗) at a given z corresponds to the maximum average normal

stress σn,avg. For example, σn,avg for PMMA for a large range of (α, θ∗) is shown in Fig. 10

for γ = 45o, z = 5mm. In the vicinity of the maximum σn,avg changes very moderately.

Therefore there is a large range of (α, θ∗) combinations that result in 5% of the maximum

value of σn,avg as shown in Fig. 11. The approximate range is −39o ≤ α ≤ 0o,−15o ≤ θ∗ ≤

12o, which means that the presence of any small local defect may have a significant influence

on the failure initiation orientation. This may explain some of the differences between the

predicted and experimental failure initiation angles.
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Figure 10: σn,avg for PMMA as a function of (α, θ∗) for γ = 45o, at z = 5mm

.

Figure 11: (α, θ∗) for which σn,avg is within 5% of its maximum value. PMMA, γ = 45o, at z = 5mm.

7.2. Failure load

The minimum force that satisfies simultaneously (8) and (9) along the V-notch edge is

the predicted failure load. In Fig. 12-14, the predicted loads within 5% of the minimum value

are presented along with experimental results for PMMA, Graphite and MACOR. Specimens

that were not scanned to determine failure initiation locations and angles, but their force at
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fracture was measured, are represented by dashed lines. Since the location of the fracture

origin could not be determined for these specimens, the dashed lines in Fig. 12-14 extend

vertically throughout most of the V-notch front. We emphasize that this representation does

not indicate anything about the location of failure initiation, and only provides information

about the force at the moment of failure.

Figure 12: Predicted and experimental failure load in γ = 0o specimens.

Figure 13: Predicted and experimental failure load in γ = 30o specimens.

35



Figure 14: Predicted and experimental failure load in γ = 45o specimens.

Predicted failure loads are very close to the experimental ones. In specimens with γ = 0o

made of PMMA and Graphite the failure load overestimates the experimental one, and in γ =

45o for Graphite specimens the predicted load also slightly overdetermines the experimental

ones. For all other geometries and materials, the predicted failure loads are close to the

experimental ones. The RMS (root-mean-square) error for each geometry and material is

summarized in Table 8.

There are different relations between the three loading modes (expressed throughA1(z), A2(z), A3(z)).

As A3(z)
A1(z)

and A2(z)
A1(z)

increase, the failure load increases. Therefore, failure load increases with

γ. The failure load does not change significantly along most of the V-notch edge. The rela-

tion A3(z)
A1(z)

for γ = 45o is larger compared to γ = 30o. In the experiments the edge portion at

which failure initiates was reduced as γ increased for PMMA and for MACOR, but not for

Graphite.

Table 8 shows that the predicted failure loads match well the experimental observations.

For γ = 30o and 45o, the RMS difference is mostly under 6.5%. The difference is larger for

the γ = 0o geometry. The approximation of the virtual crack by a circular area may not be

appropriate for this case.

For comparison, predicted and experimental failure loads for in plane mode I and mixed

in plane modes I and II (results from [2, 8]) are provided in Table 9 for the case of ω = 315o.
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Material h mm γ A2

A1

, A3

A1

at min. force Min. force at

fracture from

(9) N

difference range

compared with

experiments

RMS error

compared with

experiments

PMMA

6 0o 0,0 1060 -23.4% to -11.1% 15.9%

6 30o -0.016,-0.45 1206 -3.2% to 5.5% 3.5%

6 45o 0.003,-0.87 1548 -1.8% to 9.3% 5.3%

4 0o 0,0 1381 -21.4% to -8.6% 15.1%

4 30o -0.005,-0.59 1493 1.9% to 6.6% 4.9%

4 45o 0.002,-0.92 1966 0.9% to 4.9% 3%

Graphite

6 0o 0,0 760 -13.8% 13.8%

6 30o -0.016,-0.45 862 -5.5% to 0.3% 3.9%

6 45o 0.003,-0.87 1084 -7.8% to -4.2% 6.3%

MACOR

6 0o 0,0 1020 -9% to -0.7% 7.2%

6 30o -0.016,-0.45 1174 -6% to 16.1% 12.1%

6 45o 0.003,-0.87 1515 -4.8% to 1.1% 3%

Table 8: Difference between predicted and experimental failure load for h = 6mm and γ = 0o, 30o, 45o for

all materials examined.

Comparing the % difference of force in in-plane loading from Table 9 with the % difference

in 3-D loading under modes I+II+III in Table 8, one notices that the new generalized 3-

D criterion predicts the failure load with a higher accuracy. In the presence of mode III

(γ 6= 0o) the precision of the predicted failure load is consistently improved compared to the

experimental results (with one geometry excluded, γ = 30o in MACOR).

In Table 8 pure mode I (γ = 0o geometry) was also determined by the 3-D criterion. It

should be noted, that the 3-D criterion, which is applicable for all combinations of modes

I+II+III, does not reduce to the 2D form of the Yosibash et. al and Leguillon’s criteria [7, 8].

This is most notably due to the representation of the virtual crack and its vicinity: in the 2-D

criteria the virtual crack is represented by a line and its vicinity is a circular area, whereas in

the generalized 3-D criterion presented herein, the virtual crack is represented by a circular

sector and its vicinity is a sphere (for details see [33]).

The sensitivity of the results of the 3-D criterion to E, σc and ,Gc was examined assuming

all other material parameters are constant. This check was performed for 6mm45deg geom-
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Material A2

A1

θ∗ % difference

between

predictions and

experiments

failure load %

difference between

predictions and

experiments

PMMA

(slanted:

exp. at

−75oC)

0 - 37.8%

0.07 1.2% -19.3%

0.156 3.8% -23.6%

0.217 6.9% -19.6%

0.333 7.4% -18.6%

0.616 5% -17.5%

0.11 -2.3% -5.3%

0.19 3.9% 0.4%

0.29 0% 4.7%

0.53 5% 15.5%

0.686 11.1% 16.1%

MACOR

0.342 4.3% -0.3%

1.308 8.7% 15.3%

1.737 -6.2% 20.9%

2.2 -13% 6.5%

3.25 3% 6.1%

Table 9: Experimental and predicted data for a mode I and mode II in-plane criteria [2, 8] for ω = 315o.

Experiments performed at −75oC are in slanted.

etry and PMMA material properties. None of these parameters influence the orientation

angles (α, θ∗). Increasing E or Gc by 10% increased the the minimum force at fracture by

4.6%. σc had a significantly smaller influence, increasing the minimum force at fracture only

by 0.7% when σc was increased by 10%. Therefore, the overestimation of the force at frac-

ture by the criterion may be attributed to the overestimated value of E from the ultrasonic

testing (which in our experience is by about 20-30% compared with mechanically obtained

values). The influence of E is apparently more significant than the approximation of the

blunt V-notch tip to a sharp one, which is expected to under-determine the experimental

results.

Importantly, the virtual crack area S obtained in the calculations of the 3-D criterion
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(7,9) is small compared to the specimen dimensions (at least 20 times smaller than the V-

notch edge length), as required by the asymptotic expansion. Values of S for all materials

and geometries examined are presented in Table 10.

Material h mm Inclination angle S of the virtual crack mm2

PMMA

6 γ = 0o 0.149 ≤ S ≤ 0.15

6 γ = 30o 0.108 ≤ S ≤ 0.119

6 γ = 45o 0.112 ≤ S ≤ 0.125

4 γ = 0o S = 0.149

4 γ = 30o 0.084 ≤ S ≤ 0.095

4 γ = 45o 0.113 ≤ S ≤ 0.122

Graphite

6 γ = 0o 0.84 ≤ S ≤ 0.862

6 γ = 30o 0.652 ≤ S ≤ 0.691

6 γ = 45o 0.599 ≤ S ≤ 0.652

MACOR

6 γ = 0o 0.022 ≤ S ≤ 0.022

6 γ = 30o 0.018 ≤ S ≤ 0.019

6 γ = 45o 0.016 ≤ S ≤ 0.017

Table 10: The range of the virtual crack area S obtained by the 3-D criterion , for h = 6mm and γ =

0o, 30o, 45o for all materials examined.

7.3. A failure criterion based entirely on the ERR and stress requirements

Although the ERR criterion alone cannot predict correctly the failure initiation orienta-

tion in 3-D we examined if the requirement of simultaneously satisfying both stress and ERR

conditions may well predict both orientation and load to failure. The crack shape was still as-

sumed to be a circular sector. The computations were realized by means of a code written in

“Mathematica”. The force F and orientation (α, θ∗) were taken in intervals. For a given force,

and combinations of (α, θ∗) taken in intervals between −61o ≤ α ≤ 61o, −45o ≤ θ∗ ≤ 45o,

we found numerically the radius of a circular sector which fulfills:

σc × 0.95 <
∫

σn(rp,θp) rp drp dθp
∫

rp drp dθp
< σc × 1.05 (11)
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A 10% range was allowed for numerical errors. If such radius existed for the specific force

and orientation, the estimated virtual crack area S was substituted into the expression of G.

It was examined whether this value lies within ±10% of Gc:

Gc × 0.9 < F
(

Ã2
1(z)× (

√
S)2α1−1H11(α, θ

∗) + Ã1(z) Ã2(z)× (
√
S)α1+α2−1 × (H12(α, θ

∗) +H21(α, θ
∗))

+Ã2
2(z)× (

√
S)2α2−1H22(α, θ

∗) + Ã1(z) Ã3(z)× (
√
S)α1+α3−1 × (H13(α, θ

∗) +H31(α, θ
∗))

+Ã2(z) Ã3(z)× (
√
S)α2+α3−1 × (H23(α, θ

∗) +H32(α, θ
∗)) + Ã2

3(z)× (
√
S)2α3−1 H33(α, θ

∗)
)

< Gc × 1.1

(12)

The combinations of orientation angles and force which fulfills both (11) and (12) were

documented. At forces smaller than a certain value, no radius of the circular sector has

fulfilled both (11,12). The process was repeated until this minimum value of the force was

reached. This force was taken as the force for failure.

This criterion was examined for 2 cases: z = 5mm for pure mode III loading, and z =

7mm at γ = 45o, both for PMMA. For pure mode III, the orientations which fulfilled (11,12)

were within −26o ≤ α ≤ −6o,−11o ≤ θ∗ ≤ 9o, whereas we expected (α, θ∗) ∼ (−45o, 0o). For

the γ = 45o configuration the minimum failure load was 1360N and −6o ≤ α ≤ 1o,−11o ≤

θ∗ ≤ 9o whereas the average failure load in experiments was 1604N (compare to 1548N in

Table 8). We therefore concluded that this alternative criterion is inferior to the one already

presented.

8. Summary and conclusions

A new 3-D failure initiation criterion from sharp V-notches suitable for general loading

conditions (modes I+II+III) was presented. It predicts both failure initiation angles (α, θ∗)

and load to failure F . The crack initiation orientation is determined exclusively by the

maximum average normal stress along the V-notch edge (z). The criterion was validated by

experimental observations on three quasi-brittle materials, PMMA, Graphite and MACOR.

Several mode mixities were examined (expressed through A1(z), A2(z), A3(z)). The predicted

failure initiation angles are similar to experimental trends and predict the observations well

for γ = 0o and γ = 45o. The predicted loads at failure were under 16% deviation (in

terms of RMS) from the experimental results for all three materials and all geometries, and
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mostly under 6.5% for γ = 30o and 45o. A better determination of E is expected to further

reduce this deviation. The newly introduced criterion is therefore suited for predicting failure

initiation in 3-D brittle elastic V-notched structures.

The criterion involves several simplifying assumptions:

1. Failure initiates along the V-notch edge (vertices excluded).

2. Only initiation (and not propagation) of failure is predicted.

3. It is applicable to quasi-brittle materials, such as glasses, ceramics, and certain kinds

of polymers (for which plastic deformation can be neglected). The material is also

assumed to be homogeneous and isotropic.

4. Quasi-static load (no dynamic considerations included).

5. V-notch surfaces are traction-free.

6. A sharp V-notch is assumed. One can extend the proposed criterion to investigation of

the influence of the V-notch tip radius on the predicted failure loads and reformulate

the proposed criterion to account for it, as in [42, 43].

7. The virtual crack is assumed to be planar.

8. The vitrual crack shape is assumed to be a circular sector, although the curves σn = σc

defining the crack shape are of a complex “peanut-shape” form. “Peanut-shaped” vir-

tual cracks may increase the accuracy of the predictions (but will significantly increase

the complexity of the calculations).

Future experimental observations on specimens with V-notch opening angles of 300o, 330o

and 270o will enable to determine the broader application of the proposed criterion. At the

same time, future investigation on the implementation of Gc in modes II and III (usually

denoted GIIc and GIIIc) into the failure criterion may improve its predictability.
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Appendix A. Determination of Gc by experiments on V-notched specimens un-

der mode I

The critical stress σc is independent of E. A1 does not depend on E, and Hnew
ij =

Hij
E

Enew f(ν).

Using the 2D criterion for blunt V-notches to calculate Gc, we compute Gc by [7, 42]:

Gc(E
new) =

A2
1C ·∆Hnew

11 (µ0) · ρ2α1

ℓ0
,

where A1C , µ0, ℓ0, ρ are independent of E, and ∆Hnew
11 = ∆H11

E
Enew

1−(νnew)2

1−ν2
. A1C is the 2D

SIF at fracture of the experimental specimen with a sharp V-notch under mode I loading, ρ

is the radius at the blunt notch tip, µ0 is a function of σ
(1)
θθ = σc

A1C ·ρα1−1 , and ℓ0 = µ0 · ρ). We

therefore obtain Gc(E
new) = Gc(E) E

Enew .

The same relation is obtained using Leguillon’s criterion for a sharp V-notches [7] Gc(E
new) =

Knew(ω) ·
(

A1C

σ
2α1−1
c

)
1

1−α1 = K(ω)× E
Enew

1−(νnew)2

1−ν2
×
(

A1C

σ
2α1−1
c

)
1

1−α1 . A1C , σc are independent on

E, and again Gc(E
new) = Gc(E) E

Enew . Therefore, we computed Gc, for the three materials

with different Es.

Appendix B. Experimental results: Failure origins, orientations, and failure

loads for PMMA, Graphite and MACOR

Tables B.11-B.13 present detailed measurements of the forces to fracture for the three

materials used in the experiments - commercial PMMA, Graphite and MACOR.

Tables B.15-B.21 present detailed measurements of the crack origins location and orien-

tations. In the Cartesian coordinate representation, the V-notch edge coincides with the z

axis, and z = 0 is the point of intersection between the edge and the free surface at the

back face of the specimen, with respect to its placement in the testing machine during the

experiment.

In the blue light scan the measured specimens were always the right half of the broken

bar specimen, in terms of its position in the machine during the 4PB test.

Failure loads
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Detailed results of the force to fracture for specimens with notch height of 6mm are

presented in Table B.11. and for notch height 4mm, in Table B.12.

48



specimen

geometry

specimen number failure load N Average failure

load N

γ = 0o

1 928.5

922
2 858.5

3 948.1

4 953.9

γ = 30o

11 1181.8

1213
12 1276.2

13 1227.2

14 1168.2

γ = 45o

21 1560.8

1604
22 1707.5

23 1627.7

24 1520.8

Table B.11: Failure load in PMMA specimens, notch height h = 6mm.

specimen

geometry

specimen number failure load N Average failure

load N

γ = 0o

5 1137.1

12136 1271.3

7 1230.7

γ = 30o

15 1572.4

156516 1522.5

17 1598.9

γ = 45o

25 2001.3

201826 2067.6

27 1984

Table B.12: Failure load in PMMA specimens, notch height h = 4mm.
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Experimental results for Graphite and MACOR are presented in Tables B.13-B.14.

specimen

geometry:

specimen number failure load N Average failure

load N

γ = 0o 1 668 668

γ = 30o

3 865

846

4 817

5 873

6 856

7 819

γ = 45o

8 1040

1028

9 1025

10 1040

11 1031

12 1005

Table B.13: Failure load in Graphite specimens, notch height h = 6mm.

specimen

geometry:

specimen number failure load N Average failure

load N

γ = 0o

1 1013

996
2 1100

3 936

4 939

γ = 30o

5 1346

1290
6 1399

7 1325

8 1107

γ = 45o

9 1467

1489
10 1445

11 1532

12 1512

Table B.14: Failure load in MACOR specimens, notch height h = 6mm.
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Crack initiation locations and angles measurements

specimen geometry

(number)

Fracture origin

location z mm

Fracture origin angles

α [o] θ∗ [o]

γ = 0o (3) uniform front 0 1

γ = 30o (11)

4 −22.5 −25.8

5 −6.5 −10.4

6.5 −12.8 −15.8

8.5 5.1 21.5

9.1 4 20.5

10.1 −5.8 17.6

γ = 30o (12)

4.7 −23.9 −19.3

6.2 −0.8 −1.39

8.6 −7.9 −23.1

9.6 −9 −5.1

γ = 30o (13)

4.5 -5.2 -15.7

5.7 2.7 7.4

6.8 26.8 25.2

7.1 13.9 11.3

7.6 3.2 13.3

9.3 7.6 25.9

10 0.9 21.6

γ = 30o (14)

3.9 -19.9 -22.8

4.7 5.1 -13

5.4 2.3 -12.6

6.2 0.3 -3.1

7 -2.2 9.6

8.6 -0.3 8.9

9.8 -10.1 -0.2

Table B.15: Crack initiation plane’s angles for a PMMA specimens, notch height h = 6mm
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specimen geometry

(number)

Fracture origin

location z mm

Fracture origin angles

α [o] θ∗ [o]

γ = 45o (21) 12 -40.8 1.3

γ = 45o (22)
2.8 -40.3 -14.5

3.4 -34 -5.4

γ = 45o (23) 2.8 -43 -12.4

γ = 45o (24) 4.3 -18.7 -17.1

Table B.16: PMMA - continued

For notch heights of 4mm, angle measurements are available from the profilometer only.

We used an optical profilometer for PMMA specimens with a single origin. It is based on

a scanning white light interferometry method (manufactured by Zygo, USA, 1998), with a

×50 magnification lens, producing 3-D pictures approximately 250µm over 290µm in size.

The difficulty is the need to perform a coordinate transformation from profilometer’s system

(which is picture dependent), to the coordinate system in Figure 2, so that (α, θ∗) could be

determined. Measurements taken for specimens with γ = 45o are presented in Table B.17

(single origin). The crack origin is marked by an arrow.
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Specimen

notation

(number)

The crack origin

profilometer view

(×50 magnification)

Fracture

origin angles

(α, θ∗) [o]

z mm

6mm45deg (21) (−30.4,−6) 12

6mm45deg (22) (−33.2,−13.6) 3.4

6mm45deg (23) (−31.3,−20.5) 2.8

4mm45deg (25) (−33.6,−3.6) 9.7

4mm45deg (26) (−33,−3.9) 7

4mm45deg (27) (−34.6,−5.7) 10.3

Table B.17: Crack initiation plane’s angles for a V-notch with γ = 45o
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The failure initiation angles in Table B.17 for each of the geometries are close: −30.4o ≤

α ≤ −39.8o, −20.5o ≤ θ∗ ≤ −6o for h = 6mm, −5.7o ≤ θ∗ ≤ −3.6o for h = 4mm and

8.9o ≤ θ∗ ≤ 17.6o for h = 2mm. An error estimation is of about ±5o. This method is

inefficient, and may not be implemented on specimens that have more than one crack origin.

Therefore, most of the spatial angles measurements were done using the blue light scan. The

angle measurements obtained by both methods (profilometer and blue light scan) can be

compared only for PMMA specimens of the 6mm45deg geometry (No. 21-23), for which the

profilometer results overestimate α by less than 12o and underestimate θ∗ by less that 8o

compared with the blue light scan.
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specimen geometry

(number)

Fracture origin

location z mm

Fracture origin angles

α [o] θ∗ [o]

γ = 0o (1)

0.5 -2.6 5.5

1 0.4 -1.5

1.4 -1.7 2.1

2 3.2 3.4

2.8 -5 5.2

3.7 0.8 1.9

4.5 -1.2 3.3

5.3 -3.5 3.9

6.2 5.7 2

7.6 -4.2 -1.8

8 -2.6 2.4

8.7 -3.7 0.5

9.6 -0.3 -5

γ = 30o (3)

0.6 -18.3 -22.5

3.2 -15.1 -8.2

4 -12.2 -10.3

4.6 1.6 -5.1

6.6 -9.8 -3.7

7.9 -22.7 10.3

9.1 -12.1 7.8

9.9 -16.6 14.1

γ = 30o (4)

2.7 0.5 -16

3.6 -3.6 -8

4.6 -1.5 -6

5.1 -5.5 -4.4

6 -10.5 -5.2

6.7 -13.5 -6.7

7.7 -3.1 10

8.9 -0.6 0.1

10.4 -4.8 13.5

γ = 30o (5)

1.9 -3.1 -13.3

2.6 -7.1 -15.9

3.8 -5.5 -20.4

4.9 -7.3 -7.7

5.6 10.7 -12.4

6.6 0.4 10.5

7.7 -2.9 9.8

8.8 -7.3 11.3

9.6 -15.6 4.8

10.4 -6.1 18.3

Table B.18: Crack initiation plane’s angles for a Graphite specimens, notch height h = 6mm.
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specimen geometry

(number)

Fracture origin

location z mm

Fracture origin angles

α [o] θ∗ [o]

γ = 30o (6)

1.5 -1 -10.3

2.2 -0.5 -18.8

4.8 -14.5 -2.3

5.8 -12 -1

7.7 -12.4 2.7

9 -2.9 12.9

11 -10.9 22.2

γ = 45o (8)

3 -18 -0.4

4 -9 -4.5

5.7 -16.1 -17.1

6.4 -14.1 -4.1

7.5 -8.1 0.8

9.8 -1.6 2

11.2 -14.2 27.8

12.2 -18.1 5.6

γ = 45o (9)

3.3 0.4 -6.5

3.9 0.1 -1.8

4.7 1 -0.7

6.1 -6.9 3.8

7.2 -6.9 14.8

8.7 -6.2 9

9.8 -22.1 7.7

11 -10.2 -8.3

11.7 -8 9.7

12.6 0.5 19.6

13.2 -0.7 8.9

Table B.19: Graphite - continued
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specimen geometry

(number)

Fracture origin

location z mm

Fracture origin angles

α [o] θ∗ [o]

γ = 45o (10)

1 -10.8 -42.6

2.5 1.8 -32.2

3.3 -7.9 -26

4.1 -7.4 -20.2

5.5 -9.1 -5.3

6.7 -4.3 6.2

7.5 -13.3 7.8

8.3 -6.8 13.6

8.8 -10.1 4.15

11.2 -3.1 22.5

12.1 -16.8 35.3

γ = 45o (11)

1.3 -21.5 -34.8

2.6 -6.6 1.9

3.5 -0.5 -6.2

5.2 -16.6 13.9

6.2 -11.3 8.5

7.1 -16.7 14.3

9.1 -4 11

10.4 -10.1 27.6

12.2 -3.9 17.7

Table B.20: Graphite - continued
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specimen geometry

(number)

Fracture origin

location z mm

Fracture origin angles

α [o] θ∗ [o]

γ = 0o (2)

1.6 6.2 -4.3

3.5 -0.3 -15.5

4.6 -2.2 -11.6

5.5 2.1 -15

6.7 -3.1 -8.6

7.9 -2.7 -7.7

8.9 -4.1 -4.3

9.5 -1.8 -5.4

γ = 30o (5)

0.9 -11.7 -6.5

1.9 -32.5 -20.8

2.8 -22.6 4.2

4.3 -25.3 9.2

5.9 -12.5 -5

7.1 -2.5 -12.7

8 -10.5 5.2

8.9 -6 8.7

10.4 -19 1.6

γ = 30o (6)

1 -35 -46.5

1.8 -18.3 -42.8

2.5 -19.2 -23

4.4 -15.7 -33.1

5 -10 -18.3

5.8 -15.4 -8.1

6.7 -17.2 -26

7.9 -41.3 -14.2

8.7 -32 5

10.5 -14.2 5.2

γ = 30o (7)

1.9 -28.6 -37.4

2.7 7.3 -27.8

3.9 4.7 -18.7

5 -16 -27

5.9 -23.3 11.2

6.6 -9.5 6.2

7.3 -20.4 0.4

8 -12.1 -6.3

8.8 -27 1.4

9.6 -15.5 5

Table B.21: Crack initiation plane’s angles for a MACOR specimens, notch height h = 6mm
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specimen geometry

(number)

Fracture origin

location z mm

Fracture origin angles

α [o] θ∗ [o]

γ = 30o (8)

0.6 -16.9 -9.3

2.1 -16.8 -20.7

3.5 -28.1 -21.2

4.3 -9 7.5

5.5 -6.2 0.5

7.4 -22.6 -19

8.2 -32.3 -2.8

9.4 -10.8 12.4

γ = 45o (9)

10.2 -17.7 -7.2

11.1 -21.1 -2.2

12 -18.9 5.4

γ = 45o (10)

6.8 -5.1 -28.6

7.6 -3.22 -18.1

8.2 -20.8 -18.4

9 -9.7 -17.1

9.7 -27.6 -6.3

11.4 -40.6 3

12.8 -43.8 35.4

γ = 45o (11)

7.5 -21.9 -20

8.4 -9.3 -6.6

9 -9 -25.7

9.8 -30.8 -10.4

11.2 -30.2 1.3

12 -26.1 -4.1

12.5 -16.4 28.7

γ = 45o (12)

4.6 -27 -29.3

5.5 -24.1 -20.5

6.3 -24.8 1.3

7.2 -11.1 10

8.5 -7.8 1.8

9.5 -31.6 7

12.1 -14.2 4.4

13 -40 22.4

Table B.22: MACOR continued
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Appendix C. Polynomial approximations of the GESIFs Ai(z) for the specimens

used in experiments

The GESIFs were computed using p-FEMs for the specimens used in our experiments.

The following notations are used for the specimens

γ = 0o γ = 30o γ = 45o

h = 4mm 4h0deg 4h30deg 4h45deg

h = 6mm 6h0deg 6h30deg 6h45deg

Table C.23: Specimens notation.

The GESIFs Ai(z) along the V-notch edge were extracted by the QDFM [34]. The

polynomials that represent the GESIFs are presented in Table C.24, for the average failure

load on PMMA experiments. Ai(z) depend linearly on the force, so their values for any other

load may be easily obtained, for the given geometries. The Ai(z) do not depend on material

properties, so for the given geometries they apply to all materials used.
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specimen A1(z) A2(z) A3(z) at force

of N

4h0deg

−0.000184z6 + 0.0055z5

−0.069z4 + 0.46z3

−1.7676z2 + 3.8726z

+19.5456

0 0 1213

6h0deg

−0.00018z6 + 0.0054z5

−0.06788z4 + 0.4552z3

−1.78z2 + 4.0625z

+18.8749

0 0 922

4h30deg

−0.0000463z6 + 0.0016z5

−0.024z4 + 0.197755z3

−z2 + 3.12z + 20.047

−3.84 · 10−10z6 − 0.0003266z5

+0.009428z4 − 0.116755z3

+0.7652z2 − 3.19285z

+7.0194

−0.00002824z6 + 0.0009784z5

−0.014221z4 + 0.111z3

−0.53894z2 + 1.72288z

−17.2226

1565

6h30deg

0.0000717z6 − 0.00224z5

+0.022z4 − 0.0461z3

−0.481z2 + 2.9638z

+19.8462

−0.0001443z6 + 0.004474z5

−0.05z4 + 0.2196z3

−0.10873z2 − 2.2893z

+7.6281

−0.0000219z6 + 0.0007583z5

−0.011z4 + 0.086z3

−0.41772z2 + 1.33537z

−13.3489

1213

4h45deg

−7.86 · 10−6z6 + 0.0003336z5

−0.00643z4 + 0.070765z3

−0.5217z2 + 2.5253z

+18.3964

1.616 · 10−8z6 − 0.0001543z5

+0.00544z4 − 0.0848z3

+0.71z2 − 3.71314z

+9.83072

−0.0000556z6 + 0.000236z5

−0.00404z4 + 0.035466z3

−0.19625z2 + 0.804757z

−23.978

2018

6h45deg

−2.517 · 10−6z6 + 0.000107z5

−0.00251z4 + 0.03541z3

−0.387z2 + 2.6434z

+17.7341

−2.673 · 10−8z6 − 0.0001264z5

+0.0045z4 − 0.06945z3

+0.5741z2 − 3.426z

+11.0881

−6.98 · 10−6z6 + 0.000296z5

−0.004925z4 + 0.0405z3

−0.20213z2 + 0.786648z

−23.473

1604

Table C.24: GESIFs Ai(z) for each specimen geometry, at PMMA failure load (z in mm, and GESIF in

MPa×mm1−αi.)
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