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The learning of natural configural strategies, strat-
egies that match people intuitive theories about con-
figural relationship between variables, is studied in a
two-cue probability learning paradigm. The main fo-
cusis the learning of disjunctive strategy, a strategy in
which response depends primarily on the high cue,
and conjunctive strategy, a strategy in which response
depends primarily on the low cue. We find that people
learn disjunctive strategy better when the target of
the prediction is human than when it is non-human,
and that they learn conjunctive strategy better when
the target is non-human. In addition, in a meaningful
context, conjunctive strategy is learned better in the
short run, but after a prolonged feedback, disjunctive
strategy is learned better. In an abstract context, dis-
junctive strategy is learned better both in the short
run and in the long run. The processes that lead to
these differences in the learning of conjunctive and
disjunctive strategies are discussed. © 1995 Academic

Press, Inc.

Learning from outcome feedback can be understood
as the result of an hypothesis testing process. People
generate hypotheses about the relationships between
cues and outcome, examine these hypotheses against
the feedback, maintain hypotheses that are compatible
with the feedback, and discard hypotheses that are in-
compatible with it (Brehmer, 1974).

Within this framework, the origin of the tested hy-
potheses is not in the data but in the subject (Brehmer,
1980). People have at their disposal various hypotheses
that they test against the data. These hypotheses vary
in their “strength” in that some of them are tested (and
used) prior to others. We label the prediction strategies
associated with these hypotheses natural strategies
(see Kahneman & Tversky, 1983, and Agnoli & Krantz,
1989). Thus, for example, Brehmer (1974) suggested
that in learning the functional rule relating predictor
to outcome, an hypothesis about positive linear rela-
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tionship between the predictor and the outcome is
tested first, followed by an hypothesis about negative
linear relationship, and hypotheses about inverted U
and U relationships (see also Sniezek, 1986). Similarly,
Ganzach (1993a, 1994b) suggested that in learning a
positive linear relationship between predictor and out-
come, the first strategy to be used (and tested) is based
on the representativeness heuristic. Predicted values
are chosen so that their extremity would match the
extremity of the predictor.

In this paper we use an hypothesis testing approach
to study the learning of configural strategies, strate-
gies in which the weight of cues depend on the level of
the other cues (Meehl, 1954). In particular, we study
the learning of natural configural strategies. We iden-
tify such strategies, we examine what makes them nat-
ural, and we investigate the process by which they are
learned.

PREVIOUS RESEARCH ABOUT THE LEARNING OF
CONFIGURAL STRATEGIES

A number of studies have investigated how people
learn configural relationships between variables. The
configural relationships that subjects were required to
learn in these studies were chosen by the experimenter
not because they were compatible with subjects’ intu-
ition about the configural relationship between vari-
ables, but because of some appealing mathematical
characteristics. For example, Brehmer (1969) studied
the learning of configural rules of the form Y = a +
bX,/X,, Y = a + bX;X,; Mellers (1980) studied the
learning of configural rules of the form Y =
(X; - 6)X; — 6) + 20 and Y = .25(X; — 6)%(X, — 6)
+ 20; and Edgell (1978, 1980, 1983; Edgell & Morris-
sey, 1987) studied the learning of “pattern informa-
tion” in a non-metric cue probability learning task.

Previous research of this kind indicated that people
can learn to exhibit in their responses some of the con-
figural components that exist in the stimuli. Edgell’s
(1978) work also suggests that this learning is associ-
ated with an hypothesis testing process rather than
with inductive, stimulus-response based learning.
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NATURAL CONFIGURAL STRATEGIES: THE
CONJUNCTIVE STRATEGY AND THE
DISJUNCTIVE STRATEGY

In this paper we study the learning of two types of
configural strategies: A disjunctive strategy, in which
the response depends primarily on the high cue(s), and
a conjunctive strategy, in which the response depends
primarily on the low cue(s). One way to represent these
strategies in a two cue probability learning paradigm
in which Y is the response and X; and X, are equally
scaled cues, is (respectively)®:

Y=a+ B:X, + B:Xp + Bymax(X;,X,), (1)

and

Y=a+ B1X; + BX5 + Bymin(X,,X,), (2)

We chose to study these strategies for two reasons.
First, disjunctive and conjunctive relationships are
structurally symmetrical.? This symmetry facilitates
the interpretation of differences in their learning. Sec-
ond, in our view, conjunctive and disjunctive strategies
are natural configural strategies, because they are of-
ten used spontaneously in judgment (Einhorn, 1971,
1972, 1973; Einhorn, Komorita, & Rosen, 1972; Oglivie
& Schmitt, 1979; Brannick & Brannick, 1989; Birn-
baum & Stenger, 1979; Ganzach, 1993b, 1994a, 1994c;
Weber, 1994). In particular, judgments that exhibit
negativity bias can be viewed as the result of a con-
junctive strategy, while judgments that exhibit positiv-
ity bias can be viewed as the result of a disjunctive
strategy (for a recent review of negativity and positiv-
ity biases in judgment see Skowronski and Carlston,
1989).

Equations (1) and (2) depict disjunctive and conjunc-
tive strategies as an adjustment to a linear strategy.
That is, they suggest that when learning a disjunctive
rule people learn to assign a higher weight to the

! These representations of disjunctive and conjunctive strategies
do not use the concept of logical inclusive or and logical and which
are often used in describing conjunctive and disjunctive strategies in
choice. However, these concepts apply primarily to choice, and it is
less meaningful in the context of prediction and judgment. Our de-
scription i, however, more general. It is applicable for both decision
modes, while still retaining the essence of what is meant by conjunc-
tion [disjunction] in choice, since it suggests that the attributes with
low [high] values play a major role in the decision. In choice, this
occurs due to the existence of threshold, and in judgment because of
the dominance of the attributes whose values are low (high] (see
Ganzach, in press). The generality of the current definition for con-
junctive/disjunctive strategies become apparent by noting that the
“standard” definition of these strategies can be represented by set-
ting B, = B, = 0 in Egs. (1) and (2).

2 Note also that Eq. (1) can be written as: Y = & + 8,X; + B X,
~-B;min(X,,X,), and Eq. (2) can be written as Y =a + 8,X, + 8,X;
~B max(X,,X,).
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higher cue, and when learning a conjunctive rule, they
learn to assign a higher weight to the lower cue. How-
ever, another way by which conjunctive and disjunctive
strategies can be described is as an adjustment to a
linear strategy which takes into account the (absolute)
gap between cue values. This is depicted by Eq. (3),
which represents a disjunctive strategy, and Eq. (4),
which represents a conjunctive strategy.

Y=o + BiX; + B:X,; + B1ABS(X,X,) 3)

Y=o + BiX; + B5X, — B;ABS(X,,X,) (4)

Thus, in learning configural strategies people may
learn that they have to correct their linear strategy for
the gap between the cues. In learning a conjunctive
strategy, they may learn that the prediction derived
from a linear combination rule has to be adjusted
downward by a factor which is proportional to the gap,
and in learning a disjunctive strategy, they may learn
that the linear prediction has to be adjusted upward by
a factor which is proportional to the gap.

The Appendix shows that the representation of dis-
junctive [conjunctive] strategy by Eq. (1) [2] is mathe-
matically equivalent to its representation by Eq. (3) [4].
However, Eqs. (3) and (4) allow the partioning the ex-
plained variance of the response to non-overlapping
linear and non-linear variances [ABS(X; — X,) is or-
thogonal both to X, and to X,]. Therefore the analyses
below are based on Egs. (3) and (4).

THE LEARNING OF DISJUNCTIVE AND
CONJUNCTIVE RELATIONSHIPS: WHICH
IS EASIER?

One question that may be asked about the learning
of conjunctive and disjunctive relationships is which of
the two is easier to learn. One line of reasoning sug-
gests that the learning of the conjunctive relationship
is easier, because this relationship is compatible with
negativity bias (the spontaneous tendency to assign
higher weight to negative information than to positive
information), the most ubiquitous information integra-
tion bias (see for example, Parducci, 1968; Kanouse &
Hanson, 1974; Fiske, 1980).

However, another line of reasoning suggests that it
is easier to learn disjunctive relationship, because peo-
ple learn about the positive aspects of the information
(i.e., increasing the weight of the higher cue) faster
than they learn about the negative aspects (i.e. increas-
ing the weight of the lower cue).® For example, Meyer

3 This argument is based on equations 1 and 2. However, as the
equations in Footnote 2 indicate, it could be argued that in learning
configural strategies people learn to decrease, rather than increase,
weights. That is, in a disjunctive strategy they learn to decrease the
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(1987) argued that in learning multi-attribute judg-
ment strategies, people learn positive scale values
faster than they learn negative scale values. From a
different perspective, the learning of a disjunctive
strategy can be viewed as learning positive relation-
ship between the inter-cue gap and the criterion,
whereas the learning of a conjunctive strategy can be
viewed as learning negative relationship between the
inter-cue gap and the criterion. Since the learning of
positive relationships is easier than the learning of
negative relationships (Brehmer, 1974), disjunctive
strategy may be learned better.

THE ROLE OF CONTEXT

The learning of conjunctive and disjunctive relation-
ships may be context dependent. One aspect of the con-
text is whether variable labels do suggest a functional
relationship between cues and criterion, or whether
they do not (these two contexts are labeled meaningful
and abstract contexts, respectively. See Sniezek, 1986).
In particular, the role of judgment biases, such as the
negativity bias, in facilitating the learning of configu-
ral relationships may be different among meaningful
and abstract contexts, since these biases exist in the
former, but not in the latter. The two experiments re-
ported here explore the learning of configural strate-
gies both in a meaningful context (Experiment 1) and
in an abstract context (Experiment 2).

The learning of configural relationships in meaning-
ful contexts can be further divided into the learning of
configural relationships about human objects and the
learning of configural relationships about non-human
objects. Ganzach (1993b) examined the (spontaneous)
use of configural strategies in judgment and found that
often people tend to be more conjunctive in judging
non-human objects than in judging human cbjects (and
see also Einhorn, 1971). His explanation for these re-
sults is based on the person positivity bias (Sears,
1983): People are more lenient in judging fellow human
beings than in judging nonhuman objects, and there-
fore put less emphasis on the negative aspects of the
information when judging the human objects.

Ganzach’s (1993b) findings suggest that learning
conjunctive relationships about nonhuman objects will
be easier than learning conjunctive relationships about
human objects, and that the learning disjunctive rela-
tionships about human objects will be easier than
learning disjunctive relationships about non-human
objects.

weight of the weight of the lower cue and in a conjunctive strategy
they learn to decrease the weight of the higher cue. However, this
process is less likely, since people are more likely to learn positive
than negative relationships (Brehmer, 1974).
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EXPERIMENT 1

Two questions are examined in this experiment.
First, whether there are differences in the learning of
conjunctive and disjunctive relationships in a mean-
ingful context, and second, whether these differences
depend on whether the learning concern a human or
non-human object.

Method

Subjects

One hundred thirty-eight first-year Business Admin-
istration students participated in the experiment to
fulfill a class requirement. Subjects were assigned ran-
domly to one of four groups (see Tables 1 and 2 for the
number of subjects in each of the groups). The experi-
ment was conducted in small groups of about 4 sub-
jects.

Design

There were two parts in the experiment. In each
part, subjects made predictions concerning either a hu-
man object (a student) or a non-human object (a motor)
in a disjunctive or in a conjunctive environment. The
two parts were divided by a shift: Both the object and
the environment were different in the two parts. For
example, if subjects in a given group had made predic-
tions about a human object in a disjunctive environ-
ment in part I, they made predictions about a non-
human object in a conjunctive environment in part II.
As a result, in addition to this group—the student-
disjunctive motor-conjunctive (SDMC) group—there
were three other groups: The student-conjunctive mo-
tor-disjunctive (SCMD) group, the motor-disjunctive
student-conjunctive (MDSC) group, and the motor-
conjunctive student-disjunctive (MCSD) group.

Procedure

After entering the laboratory, subjects were seated
in front of an IBM XT computer and told to read the
initial instructions which explained that in the exper-
iment there will be two separate prediction tasks. Sub-
sequently, instructions about the prediction task of
part I appeared. Subjects were informed that their task
was either to predict potential for academic success (in
the human-object conditions) or to predict how long a
motor would last (in the non-human conditions); they
were informed that the predictors would be presented
as bar graphs, the longer the bar the higher the value
of the predictor; and they were told that after each
prediction they would receive feedback as to the true
outcome. Three prizes were promised to the three stu-
dents with the best performance. Performance was ex-
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plained as predictions that are as close as possible to
the true outcome.

In each trial, the computer first displayed the pre-
dictors. In the human object conditions, the predictors
were labeled Mental Concentration and Abstraction
Ability, and in the non-human conditions they were
labeled Steal Quality and Production Quality. Two sec-
onds after the predictors appeared on the screen, the
computer prompted the subjects to type in their pre-
diction. The prediction was typed in numerically. The
computer then displayed the outcome for two seconds.
Subsequently, the outcome was erased, and a new trial
began. Subjects did not have a time limit and could
examine their predictions and make corrections.

After completing the first part, subjects were in-
formed that the second task was about to begin, and
received instructions for this task. These instructions
were similar to the instructions for the first task, ex-
cept for the changes required by the new context. The
trials in the second task were similar to those of the
first task, except for the labels of the predictors.

Each of the two tasks included 5 practice trials and
90 experimental trials. There was no time limit for
typing the predictions. To avoid including inadvertent
mistakes, the predictions were examined, and if they
were outside of the range of possible criterion values,
subjects were prompted to type in their prediction
again.

Stimuli

In each trial, the computer selected two cue values
from a bivariate uniform distribution over the range of
1 to 79. These cue values were presented in the form of
horizontal bar graphs on the computer screen. The
bars varied in 78 steps of about 3 mm, and their length
corresponded to the numerical cue values. The crite-
rion values were presented numerically. They were
generated by the following formulas:

Y =437 + .6X, + .6X, + .55ABS(X, — X,)
Y = 437 + .6X, + .6X,—.55ABS(X, - X,),

where X, and X, are the numerical values for the two
cues and Y is the criterion. The first formula was used
to generate the criterion in the disjunctive conditions,
and the second was used to generate the criterion in
the conjunctive conditions.? This resulted in about 78%
of the variance accounted for by the linear relation-
ships and about 22% accounted for by the configural
relationships.

4 Using Eqgs. (3) and (4), the generation of the stimuli of the dis-
junctive and conjunctive environments can be described, respec-
tively, by: Y = 485 + .05X, + .05X, + 1.10max(X,,X,) and Y = 485 +
05X, + .05X, + 1.10min(X,,X,).
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Post-experimental questionnaire: After completing
the experiment, subjects were asked to answer the fol-
lowing open-ended question: “What was the difference
between the strategy you used in Part I and the strat-
egy you used in Part I1.”

Results

The analyses were done for each of the two parts
separately. Each part can be viewed as a 2 (object: hu-
man vs non-human) x 2 (Environment: conjunctive vs
disjunctive) between subjects design. Note that part II
is independent of part I in that the four groups received
different treatments on both factors in the two parts. It
is not independent of part I in that the various groups
began the second part with a different past experience,
the experience they obtained in part 1.

Two dependent variables were analyzed. One vari-
able was the multiple linear correlation between cues
and response (denoted below RLIN). This variable rep-
resents the extent to which subjects learned the linear
aspects of the task. The other variable, denoted RNLN,
was the correlation between the response and
ABS(X;—X,) (in the disjunctive conditions), or the neg-
ative value of this correlation (in the conjunctive con-
ditions). This variable represents the extent to which
subjects learned the nonlinear, or configural, aspects of
the environment. (In the conjunctive conditions, the
correlation was multiplied by —1 so that higher values
would represent better learning). Note that RNLN is
the correlation between the variance unaccounted for
by a linear multiple-regression in the task system and
that unaccounted for by such regression in the subject’s
response system. This parameter is commonly used in
the lens model as a measure for how well the nonlinear
relationships are learned; (e.g. Hursch, Hammond, &
Hursch, 1964).5

Each of the two independent variables was calcu-
lated for each subject and each 30 trial block, was
transformed by Fisher’s R to Z transformation, and
was analyzed, separately for each of the two parts, by
a 2 (object: motor vs student) x 2 (environment: con-
Junctive vs disjunctive) x 3 (block: first second and
third) mixed ANOVA with repeated measures on the
third factor.

Preliminary Analysis: The Learning of the
Linear Relationships

The 2 x 2 x 3 mixed ANOVA on the multiple corre-
lation between cues and responses (RLIN) did not re-
veal any significant main effects or any significant in-
teractions for either of the two parts (the grand mean

5 RNLN is also equal to the partial correlation between the re-
sponse and the nonlinear terms of Egs. (1) and (2).
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of RLIN is 1.09 in part I and 1.04 in part II. The stan-
dard deviations are .34 and .38, respectively).

The Learning of the Configural Relationships: Part I

The mean RNLN by block and condition is given in
Table 1. The results of the between subjects part of the
ANOVA did not show a significant effect for environ-
ment (p > .1) or for object (p > .2), but did show a
significant interaction, F(1,134)=4.2, p < .05. As can be
seen from the marginals (the last row in Table 1), when
the object is human, the configural aspects of the en-
vironment were learned better in a disjunctive envi-
ronment than in a conjunctive environment. On the
other hand, when the object is non-human, configural-
ity was learned better in a conjunctive environment
than in a disjunctive environment. Thus, the hypothe-
sis about object-dependent differences between the
learning of conjunctive and disjunctive strategies is
supported by the results.

However, there are also object-independent differ-
ences between the learning of conjunctive and disjunc-
tive strategies. Initially there is a better learning of
conjunctive strategy. In the first block, the mean
RNLN in the conjunctive and disjunctive environments
(collapsing over the object conditions) are .18 and .02,
respectively; the simple main effect for environment in
this block is highly significant, F(1,137) = 13.6, p <
.0005 (in fact, in this block there is no evidence at all
for the learning of a disjunctive strategy; the latter
mean is not significantly different than zero). On the
other hand, in the third block there is no evidence for
higher level of learning in the conjunctive conditions.
The mean RNLN in the conjunctive environments is
even lower than the mean RNLN in the disjunctive
environments, .25 and .31, respectively (although the
simple main effect for environment in this block is not
significant (p > .2). This difference in immediate ver-

% This main effect should be interpreted with caution, because
there is also a significant interaction between environment and ob-
ject. This interaction is associated with the higher tendency to rely

TABLE 1
Mean RNLN in Part I of Experiment 1

Conjunctive Disjunctive
environment environment
Human Non-human Human Non-human

Block object object object object
n 34 35 35 34

1 .10 (.27) .25 (.30) .03 (.23) .01(.23)
2 .15 (31 .28 (34) .14 (.25) 10(.23)
3 .19 (.36) .31(.36) .33 (.30) 29 (3D
Mean .15 (.26) .28 (.28} A7(21) 13 (17)

Note. Numbers in parentheses are standard deviations.

199

sus asymptotic learning results in a highly significant
interaction between environment and block, F(2,268) =
9.2, p < .0002.

An even clearer demonstration of the difference be-
tween the learning processes in the two environments
is obtained by calculating for each subject the correla-
tion between block number (1, 2, or 3) and RNLN. In
the disjunctive conditions these correlations were .59
(STD =.64) and .43 (.71) for the human and non-human
conditions, respectively, while in the conjunctive con-
ditions they were .10 (.56) and .04 (.53), respectively.
Thus, while the learning of conjunctive environment
almost ceases after the first block, the learning of dis-
junctive environment continues throughout the exper-
iment.”

In our view, there are three factors that contribute to
the pattern of results observed in the first part of the
experiment: (1) a general negativity bias, which leads
to a rapid adoption of conjunctive strategy; (2) a stron-
ger negativity bias towards non-human objects that to-
ward human objects, which leads to a better learning of
conjunctive strategy in the former than in the latter
conditions; and (3) more efficient processes for extract-
ing the configural relationships from a disjunctive than
from a conjunctive environment, which lead to a steady
learning in the former environment, but not in the lat-
ter environment.

The Learning of the Configural Relationships: Part I1

The mean RNLN by condition and block is given in
Table 2. Note that negative values indicate that sub-
jects used the wrong strategy, that is, they used dis-
junctive strategy in a conjunctive environment.

The results of the ANOVA showed that the interac-
tion between object and environment is even stronger
in part II than in part I, £(1,134) = 10.6, p < .001. As
can be seen from the marginals (the last row in Table
2), a disjunctive strategy is learned better than a con-
junctive strategy when the object is human, whereas a
conjunctive strategy is learned better than a disjunc-
tive strategy when the object is non-human.

In addition, the analyses of part II revealed also a

on conjunctive strategy in judging non-human objects than in judg-
ing human objects.

7 To examine the possibility that the increase in RNLN is indeed
associated with an intra-individual learning process rather than
with an increase in the number of subjects using configural rule, we
examined the correlations between block and RNLN only for subjects
whose RNLN in the last block was significantly positive (i.e., subjects
who reliably learned the appropriate configural rule). The means
[STD, n] of these correlations were, respectively, .83 [.45, 15], and .80
[.23, 13] in the disjunctive conditions and .33 {.30, 11], and .23 [.34,
12] in the conjunctive conditions. That is, they were even higher than
the means for the entire subject population, lending support for the
intra-individual learning hypothesis.
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TABLE 2
Mean RNLN in Part II of Experiment 1

Conjunctive Disjunctive
environment environment
Human Non-human Human Non-human
Block object object object object
n 34 35 35 34
1 -.12(.24) .09 (.30) .04 (.24) —~.04 (.28)
2 .02 (.29) .26 (.38) 12 (.37 .10 (.26)
3 .15 (41) .33 (.42) .35 (.48) .20 (.38)
Mean -.02(.23) .23 (.30) 17(.30) .09 (.21)

Note. Numbers in parentheses are standard deviations.

highly significant block effect, F(2,268) = 30.3, p <
.0001, resulting from gradual learning.

The Learning of the Configural Relationships:
Comparison between the Two Parts

Comparison between the two parts reveals that the
asymptotic utilization of configural information in the
two parts is about the same. The difference in RNLN
between the third block of part I and the third block of
part 2 is —.02, .09, .04, and -.02 for the student-
disjunctive, motor-disjunctive, student-conjunctive,
and motor-conjunctive conditions, respectively. None
of these differences is significant.

On the other hand, there were significant differences
between the two parts in initial learning. These differ-
ences occurred when the shift was from a disjunctive to
a conjunctive environment, but not when the shift was
from a conjunctive to a disjunctive environment. The
differences in RNLN between the first block of part I
and the first block of the part I are —.01, .05, .22, and
.16, respectively. The latter two differences are signif-
icant, (£(66) = 3.6, p < .0001; #(68) = 2.3, p < .005), but
the first two are not. Thus, it appears that a shift from
disjunctive to conjunctive strategy is more difficult
than a shift from conjunctive to disjunctive strategy.
This is consistent with the notion that by the end of
Part I, disjunctive strategy was learned better. The
student-conjunctive condition of part II is a case in
point. In the first block of this condition, the average
RNLN was significantly negative, £(33) = 2.8, p < .01,
that is, subjects used a disjunctive strategy in a con-
junctive environment.

Finally, whereas in part I there was a strong inter-
action between environment and block, resulting from
fast initial learning of conjunctive environments and
gradual learning of disjunctive environments, in part
II this interaction was not significant. The reason for
this is that in part II initial learning of conjunctive
strategy is impeded by a strong negative transfer from
the previously learned disjunctive strategy (the strat-
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egy that subjects in the conjunctive conditions learned
in part I).

The Learning of the Configural Relationships:
Subjects’ Reports about Their Strategies

Subjects’ reports were coded by two judges into two
categories: Reports that indicated reliance on configu-
ral strategies (correct reports) and reports that did not
indicate reliance on these strategies (incorrect re-
ports).® The initial agreement between the judges was
85%. The conflicting cases were agreed upon discus-
sion.

This classification indicated that there were more
correct reports in the two groups in which the environ-
ment was disjunctive when the object was human and
conjunctive when it was non-human (that is, the
SDMC and MCSD groups) than in the other two
groups. The proportion of correct reports was 43 and
46% in the SDMC and MCSD groups, respectively and
21 and 24% in the SCMD and MDSC groups, respec-
tively. These findings are consistent with the hypoth-
esis that disjunctive strategy is learned better when
the object is human, whereas a conjunctive strategy is
learned better when the object is non-human.

In addition, the correct reports were examined to as-
certain how subjects described the configural strate-
gies they used. These reports were classified into three
categories. (a) reports that mentioned value dependent
weights (these reports correspond to Eqs. (1) and (2)),
(b) reports that mentioned utilization of the gap be-
tween the predictors (these reports correspond to Egs.
(3) and (4)), and (c) reports that mentioned the utiliza-
tion of rules based on the existence of sufficient and
necessary conditions as the basis for disjunctive and
conjunctive strategies, respectively. (These reports cor-
respond to the way conjunctive and disjunctive choice
strategies are usually depicted; see Footnote 1). Exam-
ples for subjects’ reports associated with each of the
three categories are presented in Table 3.

The classification was done by two judges. The initial
agreement between the judges was 79%. Conflicting
judgments were decided by discussion. The results in-
dicated that 41% of the reports were associated with
inter-cue gap explanations, 26% with value-dependent
weight explanations, and 33% with explanations based
on sufficient/necessary conditions.

In summary, these results suggest that: (1) subjects
are able not only to use appropriate configural rules,
but also to identify these rules (see, for example, Reber,
1989; Reber et al., 1980 for a discussion of the relation-
ship between explicit and implicit rule learning); (2)
this ability is stronger when configurality in the envi-

8 Answers that indicated reliance on the appropriate configural
strategy in only one of the two parts were classified as correct.
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TABLE 3
Examples of Subjects’ Reports about Their Strategy

1. Value-dependent weight’s explanation
—Only the length of the longer predictor was important [disjunctive environment].
—Take the longer predictor and increase it [disjunctive environment].
—The longer predictor had more influence [disjunctive environment]. The shorter predictor had more influence [conjunctive

environment].

2. Inter-cue gap explanations
-—If mental concentration is similar to abstraction ability then there is high chances for success [disjunctive environment].
—Both the length of the lines and the gap between them was important.
—In the first part there should be a gap of 1/3 between the two predictors to achieve a higher criterion [disjunctive environment]. In
the second part, there should be a high correlation between the predictors [conjunctive environment].
—In the first part, the bigger the gap, the higher the prediction. In the second part, the bigger the gap the lower the prediction.
—The best results were obtained when the two predictors had about the same length [conjunctive environment].
—The more the two components are bigger together, the score is higher [conjunctive environment].

3. Explanations based on sufficient/necessary conditions
—The second experiment is based on facts. Either if the predictor is low or if the predictor is low the factory would fail [conjunctive].
—Only one attribute was important, the limiting condition to the machine [conjunctive environment}.
—Each one of the two parameters was necessary, and parameters do not complete each other [conjunctive environment].
—There is a possibility for high success even if one of the two components is low [disjunctive environment]. There is a lot of importance
to each of the components to get a high score [conjunctive environment].
—The two conditions are necessary for a high prediction [conjunctive enviroment]. Sometimes one was enough [disjunctive

environment).

—1It is enough that one of the conditions will be good for the student to succeed [disjunctive environment].

ronment matches people intuition about configurality;
and (3) there are various mental representations of
these rules.

Discussion

The hypothesis that learning conjunctive relation-
ships about non-human objects will be easier than
learning conjunctive relationships about human ob-
jects, and that learning disjunctive relationships about
human objects will be easier than learning disjunctive
relationships about non-human objects is unequivo-
cally supported by the results. The effect appears to be
stronger in part I than in part I. One reason for this is
that the learning of configurality is harder in part II,
since a negative transfer from part I makes facilitating
factors (e.g. the match between environment and intu-
ition about configural relationships) more important
for learning.

The part I data-on the question concerning which
strategy is easier to learn are rather complex. Initially,
conjunctive strategy is learned better than disjunctive
strategy. However, later on it appears that disjunctive
strategy is learned better than conjunctive strategy
(this is particularly evident in that there is a negative
transfer from a previously learned disjunctive environ-
ment, but not from a previously learned conjunctive
environment). The initial learning is consistent with
the notion that conjunctive environment is learned bet-
ter because its compatibility with people’s intuition
about negativity bias. The latter learning is consistent

with the notion that when the experiment progresses,
the dominant factor in the learning process is the ten-
dency to learn more about positive than about negative
aspects of the information, and/or the tendency to learn
more easily about positive than about negative rela-
tionships between criterion and inter-cue gap.

The above explanation suggests that two processes
operate in our experiment: one that favors negative
information, and one that favors positive information.
In the literature, there are ample examples of the op-
eration of these two processes in isolation. Examples of
the operation of the former processes can be found in
Kaplan (1976) and Matlin and Stang (1978). Examples
of the operation of the later processes can be found in
Kanouse and Hanson (1971), and Fiske (1980). How-
ever, to the best of our knowledge, only Meyer (1987)
and Schul and Ganzach (1995) observed the operation
of the two processes in the same experiment. For ex-
ample, Meyer noticed that although positive informa-
tion was learned faster than negative information, neg-
ative information had a higher impact on judgment.
[Meyer refers to this phenomenon as a “paradox.” “. .
it also presents something of a paradox: subjects fol-
lowed a judgment rule that effectively placed greater
weight on the attribute levels they know the least
about” (p. 170)].

EXPERIMENT 2

In Experiment 1, subjects learned the relationships
between cues and outcome in a meaningful context, a
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context in which variable labels do suggest functional
relationships between cues and criterion. In this exper-
iment, we study how subjects learn relationships be-
tween cues and outcome in an abstract context, a con-
text in which variable labels do not suggest such func-
tional relationships.

Previous research has shown that the learning of
linear relationships is easier in a meaningful context
than in an abstract context. This is particularly true
when the context is congruent with the actual relation-
ships in the stimuli (Adelman, 1981; Muchinsky &
Dudycha, 1974), because such a context increases the
tendency to test the correct hypotheses (Sniezek,
1986).

One implication of this hypothesis testing explana-
tion for the effect of context on learning is that the
faster learning of conjunctive strategy, observed in the
early stages of part I of Experiment 1, may not exist in
an abstract context, because negativity bias is a social-
cognitive bias, which exist with regard to outcomes as-
sociated with meaningful objects, but not with regard
to abstract outcomes (see for example Markus & Za-
jonc, 1985, and Skowronski & Carlston, 1989, for a
discussion of the social-cognitive antecedents of nega-
tivity bias). Thus, one hypothesis examined in this ex-
periment is that in the early phase of learning of ab-
stract configural environments, conjunctive strategy
will not be easier to learn than disjunctive strategy.
Moreover, we expect that, as result of a higher ten-
dency to learn about positive relationships and about
positive cues, disjunctive environment will be learned
better in all phases of the experiment. In other words,
we expect a main effect for environment (rather than
the interaction between environment and block that
was observed in Experiment 1).

Another issue examined in Experiment 2 is the in-
fluence of numerical versus graphical representation of
cue values on the learning of configural environments.
In the first experiment, cue values were represented by
bar graphs. Such a representation had been shown to
facilitate the learning of linear relationships (Ganzach,
1993a).® Thus, the question of interest in regard to the
representation manipulation is whether the enhanced
learning of the linear relationship would facilitate the
learning of the configural relationships.

® The effect of representation on the learning of linear relation-
ships is due to more reliance on the representativeness heuristic
when the predictors are represented graphically than when they are
represented numerically. For a linear relationship between predictor
and outcome, the representativeness heuristic reduces both acquisi-
tion and application difficulties (See Hammond and Summers, 1972,
for a discussion of these concepts in CPL task), because it implies a
linear relationship between predictor and prediction, and thus facil-
itate the learning of linear relationships (Ganzach, 1993a).
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Method

Subjects

One hundred thirty first-year Business Administra-
tion students participated in the experiment to fulfill a
class requirement. Subjects were assigned randomly to
one of four groups. (See the first row of Tables 4, 5, and
6 for the number of subjects in each group). The exper-
iment was conducted in small groups of about 4 sub-
jects per group.

Design

Representation was a between subject manipulation.
Half of the subjects made predictions based on cues
which were represented numerically and the other half
made predictions based on cues which were repre-
sented graphically. Environment was a within subject
manipulation. In each of the two parts of the experi-
ment the environment was either conjunctive or dis-
junctive. For example, if subjects in a given group
made predictions from numerical cues in a disjunctive
environment in part I, they made predictions from nu-
merical cues in a conjunctive environment in part II.
As a result, in addition to this group (the numerical
disjunctive-conjunctive, or NDC group), there were
three other groups: the numerical conjunctive-dis-
junctive (NCD) group, the graphical disjunctive-
conjunctive (GDC) group, and the graphical conjunc-
tive-disjunctive (GCD) group.

Procedure

The procedure was basically similar to that of Ex-
periment 1, except that the task was presented as a
standard cue probability learning task in which a con-
tent-free criterion has to be predicted from two con-
tent-free cues. That is, the cues were labeled “predictor
1” and “predictor 2” and the criterion was labeled “true
outcome.” The cues in the graphical conditions were
presented in the same way as in Experiment 1 (i.e., as
bar graphs) and the cues in the numerical conditions
were presented as numbers. In both conditions the re-
sponse was typed into the computer numerically. The
shift was accompanied by a message stating that the
second task was starting, and that in this task, the rule
relating cues to outcome would be different from the
rule in the first task.

Stimuli

The stimuli in the graphical conditions were gener-
ated in the same way as in Experiment 1. The stimuli
in the numerical conditions were generated by present-
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ing the numerical values of the cues rather than their
bar-graph representations.

Results

The results were analyzed for each of the two parts
separately. Each part can be viewed, as a 2 (represen-
tation: graphical vs numerical) x 2 (environment: con-
junctive vs disjunctive) between subjects design. The
analyses was similar to the analyses in Experiment 1.
We analyzed both RLIN and RNLN in a 2 (represen-
tation: graphical vs numerical) x 2 (environment: con-
junctive vs disjunctive) x 3 (block: first second and
third) mixed ANOVA, with repeated measures on the
third factor.

Preliminary Analysis: The Learning of the
Linear Relationships

Unlike the first experiment, in this experiment the
manipulations did affect the learning of the linear re-
lationships.

Part I. The average RLINs and their standard de-
viations by block and condition are presented in Table
4. The analysis revealed three significant effects. First,
it revealed a strong representation effect, F(1,126) =
23.6, p < .0001, resulting from higher RLIN in the
graphical representation conditions than in the numer-
ical representation conditions. These findings replicate
those obtained by Ganzach (1993a). Second, the anal-
ysis revealed a strong block effect, F(2,252) = 15.4, p <
.0001, resulting from increase in RLIN throughout the
experiment. This effect—and the lack of block effect for
RLIN in both parts of Experiment 1-—is consistent with
earlier findings about the learning of linear relation-
ships in an abstract context (Adelman, 1981; Muchin-
sky and Dudycha, 1974; Sniezek, 1986). Third, the
analysis revealed an interaction between block and en-
vironment, F(2,252) = 4.1, p < .02, resulting from larger
increase in RLIN in the disjunctive conditions than in
the conjunctive conditions. While in the first block

TABLE 4
Mean RLIN in Part I of Experiment 2
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there is no difference between the disjunctive and the
conjunctive environment (p > .9), in the third block
RLIN is higher in the disjunctive environment (p <
.05),

Part 1II. The results of this part are similar to the
results of part I in that both the representation effect
and the block effect were significant, F(1,126) = 25.6, p
< .0001, and F(2,252), p < .02, respectively. However,
the interaction between block and environment was
not significant. The average RLINs in the graphical
representation conditions (collapsing over the two en-
vironments) were .94, .1.02, and 1.05 in the first, sec-
ond, and third blocks, respectively (standard devia-
tions: .40, .43, and .43, respectively). The average
RLINs in the numerical conditions were .54, .59, and
.61, respectively (standard deviations: .59, .60, and .62,
respectively).

The Learning of the Configural Relationships: Part [

The mean RNLN by block and condition is given in
Table 5. As can be seen from the Table, in each of the
conditions and each of the blocks, RNLN was higher
when the environment was disjunctive than when it
was conjunctive. The ANOVA revealed a highly signif-
icant main effect for environment, F(1,126) = 19.5, p <
.0001. In particular, in sharp contrast to Experiment 1,
disjunctive strategy was learned better than conjunc-
tive strategy from the very first block (the main effect
for environment in the first block was significant,
F(1,126)=6.2, p < .01).

The ANOVA also revealed a highly significant main
effect for block, F(2,252) = 14.6, p < .0001, indicating
that subjects gradually learned the configural aspects
of the task during the course of the experiment. In
addition, the interaction between block and environ-
ment was significant, F(2,252) = 3.4, p < .05. Inspection
of the data in Table 5 reveals that this effect was due
primarily to a lack of learning in the graphical-
conjunctive condition.

TABLE 5
Mean RNLN in Part I of Experiment 2

Conjunctive Disjunctive Conjunctive Disjunctive
environment environment environment environment
Graphical Numerical Graphical Numerical Graphical Numerical Graphical Numerical
Block rep. rep. rep. rep. Block rep. rep. rep. rep.
n 33 32 32 33 n 33 32 32 33
1 .94 (.49) .59 (.44) .94 (.49) .59 (.51) 1 .02 (.24) .00 (.29) 17(.27) .09 (.29}
2 1.01 (.53) .58 (.44) 1.12 (.45) .79 (.56) 2 .02 (.28) .10 (.45) .38 (.40) .31 (.39
3 1.03 (.43) 11(.57) 1.27 (.45) .82 (.50) 3 .03 (.30) .22 (.38) .37 (.40) .36 (.46)
Mean .99 (.42) .62 (.43) 1.11(.41) .73 (.48) Mean .03 (.20) .11 (.30) .31 (.28) .25(.32)

Note. Numbers in parentheses are standard deviations.

Note. Numbers in parentheses are standard deviations.
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The Learning of the Configural Relationships: Part 11

The mean RNLN by condition and block is given in
Table 6. Note that negative values indicate that sub-
jects used the wrong strategy, that is, they used a dis-
junctive strategy in an conjunctive environment.

The main findings of part I are replicated in the sec-
ond part. First, in all three blocks, there was more
reliance on the (appropriate) configural strategy in the
disjunctive conditions than in the conjunctive condi-
tions. The main effect for environment was highly sig-
nificant, F(1,126) = 22.0, p < .0001. Second, the main
effect for block, which is associated with the learning of
the appropriate configural strategies, was highly sig-
nificant, F(2,252) = 15.6, p < .0001. In addition, the
interaction between block and environment was also
significant, F(2,252) = 3.4, p < .05.

In part II of this experiment, as in part II of exper-
iment 1, previous experience in a disjunctive environ-
ment had a negative effect on the learning of conjunc-
tive environment. In this part of the current experi-
ment, RNLN in the first block of the conjunctive
conditions is negative; that is, there was a tendency to
use a disjunctive strategy in a conjunctive environ-
ment. On the other hand, previous experience in a con-
junctive environment does not result in a negative
transfer. RNLN in the first block of the disjunctive con-
ditions of part II is positive, and even more positive
than RNLN in the first block of the corresponding dis-
junctive conditions in part I.

The Learning of the Configural Aspects of the
Environment: Subjects’ Reports about
Their Strategies

Subjects’ reports were coded in the same way as in
Experiment 1. The results indicated that the propor-
tion of subjects reporting reliance on configural strat-
egies was about the same in the GCD, GDC, and NDC
groups (36, 41, and 36%, respectively), but lower in the
NCD group (16%).

The analyses of subjects’ perception of the strategy

TABLE 6
Mean RNLN in Part II of Experiment 2

Conjunctive Disjunctive
environment environment
Graphical Numerical Graphical Numerical
Block rep. rep. rep. rep.
n 32 33 33 32
1 -.11(39) -.06 (.18) 21 (34) 15 (37
2 —-.01(37) -.06 (.31) .34 (44) .30 (.54)
3 .16 (.45) .14 (.42) .48 (.44) .17 (.38)
Mean .01(.37) .00 (.22) .34 (.33) .21(.36)
Note. Numbers in parentheses are standard deviations.
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they used showed that 55% of the correct reports were
associated with value-dependent weight explanations
and 43% with inter-cue gap explanations. In sharp con-
trast to Experiment 1, only one subject mentioned an
explanation based on sufficient/necessary conditions.
This finding suggests that the perception of configural
strategies as strategies associated with necessary and
sufficient conditions requires a concrete context (in-
deed, the examples for this type of explanation in Ex-
periment 1 tended to include the name of the object; see
Table 3).

Discussion

The main hypothesis of the experiment, that in an
abstract context it will be easier to learn disjunctive
strategy than conjunctive strategy in all phases of the
experiment, is supported by the results. The mean
RNLN was higher in the disjunctive than in the con-
junctive conditions in each of the blocks, both in part I
and in part II. Thus it appears that when the effect of
negativity bias, which is associated with a meaningful
context, is removed, disjunctive strategy is learned bet-
ter than conjunctive strategy even from the early
phases of exposure to configural environment.

The second hypothesis, that the learning of the lin-
ear relationships would facilitate the learning of the
configural relationships, is not supported by the re-
sults. While the linear relationships were clearly
learned better when the predictors were represented
graphically, the configural relationships did not appear
to be learned better under graphical representation. If
anything, the data support the notion that learning of
configural relationships facilitate the learning of linear
relationships, since in the disjunctive conditions of part
I, in which there was clearly more learning of the con-
figural relationships, there was also a better learning
of the linear relationships.

GENERAL DISCUSSION

The concept of natural strategies appear (explicitly
or implicitly) in two traditions in judgment and deci-
sion-making research: in the heuristic and biases tra-
dition and in the cue probability learning tradition. In
the former, the concept refers to the dominant strate-
gies people use when making judgments or decisions.
In the latter it refers to a prior hierarchy of hypotheses
associated with the first hypotheses to be tested in a
cue probability learning experiment.

One problem associated with the concept of natural
strategies within both traditions is to find an a priori
way to identify such strategies. For example, in cue
probability learning, the definition of natural strategy
should not be based on the learning process, since this
may lead to circularity between the definition and the
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dependent variable, which is some measure of learning
(see for example Sniezek and Naylor, 1978, for a learn-
ing-free identification of natural strategies).

In the current paper, this problem is dealt with by
identifying natural strategies as the strategies people
use in judgment, and using these a priori definitions to
examine their learning in a cue probability learning
paradigm. The results of the experiments indicate that
factors that make the strategy natural also facilitate
its learning. One example is the way negativity bias—a
ubiquitous judgment bias—{facilitates the rapid initial
learning of conjunctive strategy. Another example is
the object-dependent difference in the learning of dis-
junctive and conjunctive strategies, which is associated
with people’s beliefs about the relationships between
predictors and criteria in the prediction of performance
of human versus non-human objects.

There are, however, other factors that facilitate the
learning of prediction strategies. One such factor is the
difference in processing of negative and positive infor-
mation. OQur experiments contain two examples of such
differential processing. First, disjunctive strategy is
learned better than conjunctive strategy in an abstract
context; and second, after prolonged outcome feedback,
disjunctive strategy is also learned better in a mean-
ingful context. The latter example is especially inter-
esting, since it suggests that the natural strategy need
not be the strategy that is learned better in the long
run. In this example, conjunctive strategy is more nat-
ural than disjunctive strategy (i.e. this is the strategy
subjects “bring” to the experiment) and therefore, ini-
tially, it is learned more easily. The better asymptotic
learning of disjunctive strategy is due to other factors,
and in particular, to valence-dependent processing.

One interesting question which emerge from the cur-
rent research concerns the connection between the
learning of the linear relationships and the learning of
the configural relationships. On the one hand, there
are ample evidence in judgment research that config-
ural strategies are the most natural strategies. This
would suggest that people would also use these strat-
egies spontaneously in prediction tasks, such as mul-
tiple cue probability learning (MCPL). On the other
hand, almost all the research in MCPL found that lin-
ear—and not configural—combination rules are the
most natural combination rules (but see Brehmer,
1972). It is of course possible that researchers in MCPL
found only what they looked for. However, it is also
possible that the difference between the findings of
Jjudgment research and the findings of MCPL research
stem from a fundamental dissimilarity between the
processes underlying judgment, a task that does not
involve feedback (or at least immediate feedback), and
the processes underlying prediction, a task which in-
volve immediate feedback. In a MCPL task—a predic-

Y=o+ (B, - B X, + By + By X,
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tion task—subjects are likely to rely heavily on the
representativeness heuristic (Kahneman and Tversky,
1973), the most important prediction heuristic. In us-
ing this heuristic, people chose an output value (pre-
diction) whose extremity on the outcome distribution
matches the average extremity of the predictors (see
Lichtenstein, Earle and Slovic, 1975; and Ganzach,
1993a, for a discussion of the role of representativeness
in MCPL task). Such a strategy leads to a linear com-
bination of cues. On the other hand, in judgment there
is less reliance on representativeness, since it is not
possible to assess the extremity of potential output val-
ues against an outcome distribution. In our view, this
differences between prediction and judgment is an in-
teresting issue for future research.

APPENDIX

To see that Eq. (1) is identical to Eq. (3), note that
Eq. (1) can be expressed as
(1a)

Y=a+(ﬁ1+B3)X1+32X2 fOI‘X1>X2,

Y=o+, X, + By + B X, forX,>X,, (Ib)

Similarly, Eq. (3) can be expressed as

Y=a' + B, + By X, + (B, — Bp) X, forX,>X, (3a)

for X, >X; (3b)

Equation (1a) is identical to Eq. (3a) and Eq. (1b) is
identical to Eq. (3b) if

B =81~ B3
Bz =PB2— B3 (4)
Bs =2 B;

In the same way it can be shown that Eq. (2) is iden-
tical to Eq. (4).
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