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1 Heterogeneous consumers

In this appendix, we extend our model to show:

i) how to extend the concept of focal platform to the case of heterogenous con-

sumers.

ii) that a Markov equilibrium may exist where a low-quality platform A stays or

becomes focal in all states while platform B also obtains positive profits. Hence,

platform B has an incentive to remain active in the market even though it does

not win the focal position.

1.1 Static analysis

Let us assume that the market stays covered but the perception of the quality dif-

ferential between the two platforms varies across consumers. More precisely, consider

our base model and suppose that the quality differential q = qB − qA is heteroge-

nous, distributed in the population (of size 1) according to a distribution F on a

support
(
q, q̄
)

which may be infinite. Then if all consumers with quality differen-

tial below q̂ join platform A, the relative gain in value of joining platform B is

q + β (1− F (q̂)) − βF (q̂) . Thus, at any period, possible allocations of consumers
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are the solutions to DA = F (q̂) , where DA is the demand for platform A and1

q̂ + β (1− 2F (q̂)) = pB − pA,

or q̂ = q̄ ≤ pB − pA + β,

or q̂ = q ≥ pB − pA − β.

With a general distribution F , for some range of prices, there may be multiple

allocations of consumers that constitute consumers’ best responses to the prices and

strategies of other consumers (henceforth “outcomes”). The concept of focality then

implies that consumers coordinate on the outcome that yields the largest demand for

the focal platform.

We may then extend our analysis by assuming that in any period t the platform

that sells the most in the current period becomes focal in the next period.

To illustrate how focality shapes demand, suppose that the distribution of q has

density f (q) where f is continuous unimodal with a peak at µ > 0. The slope of

q + β (1− 2F (q)) is 1 − 2βf (q). Assume network effects are strong enough that

2f (µ) β > 1. Then the function q + β (1− 2F (q)) is not monotonic. More precisely,

defining q1 and q2 as the smallest and the largest roots of

1 = 2βf (qi) ,

the function q + β (1− 2F (q)) is

increasing on q < q1,

decreasing on q1 < q < q2,

increasing on q > q2.

We conclude that if ∆2 = q2 +β (1− 2F (q2)) < pB − pA < ∆1 = q1 +β (1− 2F (q1)),

there are three possible outcomes for the allocation of consumers. This is illustrated in

Figure 1 which shows the function for a normal distribution and µ = 1. On the range

(∆2,∆1), the intermediate outcome is unstable. Then focality selects the allocation

with q̂ > q2 if platform A is focal, and the allocation with q̂ < q1 if platform B is focal.

The figure shows the respective marginal consumers.

Notice that when platform A is focal (thick red curve), there is a discontinuous

1Akerlof, Holden and Rayo (2018) analyze a similar demand system.
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Figure 1: the function q + β (1− 2F (q))

jump in its demand at pB − pA = ∆2. Moreover, provided that β is large or µ is small,

the value of ∆2 is negative so that despite lower quality on average, a focal platform

A may sell more that its competitor at higher prices, a feature that was key in our

analysis.

1.2 Illustration

We now use an example to illustrate how the static and the dynamic analyses extend

to heterogeneous consumers.

Consider a distribution F on (µ − 1, µ + 1) that consists of a constant density

f < 1/2 and a mass point 1− 2f at µ, where we assume that 2βf < 1.

This is a limit case of a unimodal distribution when the peak goes to infinity. Then

q + β (1− 2F (q)) is increasing linearly except for a downward discontinuity at µ :

q + β (1− 2F (q)) = q + β (1− 2f) + 2βf (µ− q) if µ− 1 ≤ q < µ,

q + β (1− 2F (q)) = q − β (1− 2f) + 2βf (µ− q) if µ < q ≤ µ+ 1.

Let us first consider a one-period game where platform A is focal. Firms set prices
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pA and pB, and consumers with q < qA join the focal platform, where:

pB − pA =qA + β (1− 2f) + 2βf
(
µ− qA

)
if µ− 1 + β < pB − pA < µ− β (1− 2f)),

qA =µ− 1 if pB − pA < min (µ− 1 + β, µ− β (1− 2f))

pB − pA =qA − β (1− 2f) + 2βf
(
µ− qA

)
if µ− β (1− 2f) < pB − pA < µ+ 1− β

qA =µ+ 1 if pB − pA > max (µ+ 1− β, µ+ β(1− 2f)) .

Let us consider a candidate outcome with DA = F
(
q̂A
)
, µ < q̂A < µ+ 1 and p̂AB−

p̂AA = q̂A−β (1− 2f)+2βf
(
µ− q̂A

)
. Consider the choice of price by platform A. Hold-

ing the price pB constant, choosing pA in the range
(
p̂AB − µ− 1 + β, p̂AB − µ+ β (1− 2f)

)
amounts to choosing q̂ in the range (µ, µ+ 1) with the profit

ΠA =
(
p̂AB − q̂ + β (1− 2f)− 2βf (µ− q̂)

)
(1− f + f (q̂ − µ)) ,

which is concave. The first order condition for the price of A is then

− (1− β2f)
(
1− f + f

(
q̂A − µ

))
+ p̂AAf = 0.

Similarly, given p̂AA, choosing a price pB in the range
(
p̂AA + µ− β (1− 2f) , p̂AA + µ+ 1− β

)
yields concave profit

ΠB =
(
p̂AA + q̂ − β (1− 2f) + 2βf (µ− q̂)

)
f (1 + µ− q̂)

leading to the first-order condition

(1− β2f) f
(
1 + µ− q̂A

)
− p̂ABf = 0.

Adding the two first-order conditions together yields

− (1− β2f)
(
1− f + f

(
q̂A − µ

))
+ (1− β2f) f

(
1 + µ− q̂A

)
+
(
p̂AA − p̂AB

)
f = 0.

Using p̂AB − p̂AA = q̂A − β (1− 2f) + 2βf
(
µ− q̂A

)
, we obtain

q̂A = µ+
(1− 2βf) (2f − 1) + β (1− 2f) f − fµ

3 (1− 2βf) f
, (1)
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which lies between µ and µ+ 1 if

−f − 1 + 3βf

f
< µ <

(1− 2f) (3fβ − 1)

f
.

This holds for a small µ if
f + 1

3
> βf >

1

3
. (2)

Prices are then

p̂AA = (1− 2βf)
F
(
q̂A
)

f
=

2− f (1 + 3β + µ)

3f
> 0, (3)

p̂AB = (1− β2f)
1− F

(
q̂A
)

f
=

1 + f (1− 3β + µ)

3f
> 0, (4)

where the inequalities follow because whenever µ < q̂A < µ+ 1, then 1 > F
(
q̂A
)
> 0.

Given these prices, platform A cannot profit from reducing the price below p̂AB−µ−1+β

as this would not raise demand above 1. Platform A cannot profit from increasing the

price above p̂AB − µ + β(1 − 2f), because doing so would result in a discontinuous

decrease in platform A’s demand.2

Consider now platform B. It has no profitable deviation for prices above p̂A + µ−
β (1− 2f), because profit is concave on the relevant range. Setting pB < p̂A + µ −
β (1− 2f) is not profitable if p̂A + µ− β (1− 2f) < 0, which holds for µ small if

2− f
6 (1− f)

< βf . (5)

As 2−f
6(1−f) >

1
3
, we conclude that this an equilibrium for µ small if

f + 1

3
> βf >

2− f
6 (1− f)

. (6)

Since f < 1
2
, (6) holds only when β > 1, which we assume in what follows.

To conclude, we find that when the conditions (6), f < 1
2
, β > 1 and 1 > 2βf

hold, there is a static equilibrium in which platform A is focal. Prices are given by

(3) and (4), and both platforms gain a positive market share. Notice that the range

of parameters satisfying these conditions is nonempty.

2The optimal deviation on this range can be shown to be at p̂AB − µ+ β(1− 2f) which can not be
optimal as pA slightly below this level induces an upward jump in demand.
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1.3 Dynamic analysis

Still assuming a uniform distribution with a mass-point, we can now extend our analy-

sis to a dynamic case. In particular the next result shows that with an infinite horizon

and patient firms, there exists a Markov equilibrium where platform A stays focal in

any state. In this equilibrium, when platform A is focal in a certain period, both

platforms set the static Nash prices defined in the previous section:

pAA = p̂AA, pAB = p̂AB, and qA = q̂A.

And both platforms gain positive market share (i.e., µ − 1 < q̂A < µ + 1). When

platform B is focal in a certain period, then in equilibrium

pBA = −µ− β (1− 2f) , pBB = 0, and q̂B = µ+ 1.

That is, the nonfocal platform A sets a negative price (recall that f < 1
2
), dominates

the entire market, and becomes focal in the next period.

Notice that this equilibrium is qualitatively similar to the equilibrium in our base

model. In both cases, platforms set the static prices when A is focal, and platform A

sets a negative price when it is nonfocal. The main difference is that here, the losing

platform B has an incentive to remain active. When it is nonfocal, platform B gains

positive market share. When it is focal, platform B earns zero profits in the current

period — followed by positive profits in all future periods — making it worthwhile for

platform B to remain active.

The Markov equilibrium is characterized by pji , D
j
i , q

j and V j
i , where i is the

platform and j the focal platform. The equilibrium profit is

V j
i = pjiD

j
i + δV A

i ,

where Dj
A = 1 −Dj

B = F (qj). The equilibrium values are V j
A = pjAF (qj) + δV A

A and

V j
B = pjB (1− F (qj)) + δV A

B .

To solve for this equilibrium, suppose first that platform A is focal. Platform B

plays its short-term best-response because it expects that even if it gains the focal

position, in the next period it will earn zero profits. Platform A plays its short-term

best response as well, because doing so is enough to maintain its focal position. We

therefore conclude that when platform A is focal, the equilibrium prices are the same
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as in the static case. The value functions are

V A
A =

p̂AAF
(
q̂A
)

1− δ
> 0 and V A

B =
p̂AB
(
1− F

(
q̂A
))

1− δ
> 0 .

Notice that static Nash equilibrium conditions ensure that firm i would not deviate

from such an equilibrium when A is focal if V A
i ≥ V B

i , because the deviation profit

gain would be smaller than in a static game. We will see below that this is the case

for both platforms.

Suppose now that platform B is focal. By our assumptions that 2fβ < 1 and

β > 1, we have µ + β(1 − 2f) > µ + 1 − β and µ − 1 + β > µ − β(1 − 2f). This

implies that at the equilibrium prices pBA = −µ − β (1− 2f) and pBB = 0, pB − pA >
max (µ+ 1− β, µ+ β(1− 2f)), and therefore q̂A = 1 + µ and platform A dominates

the market. Platform B would not deviate because winning the market in the current

period would require a negative price and would delay by one period the time where

it can sell at positive prices. Platform B cannot profitably deviate to a higher price,

because it will not gain positive market share. Firm A could deviate by setting non-

negative price and lose focality, but the profit would be δV B
A which is less than V B

A

and thus not profitable if V B
A > 0. Thus this is an equilibrium if

µ+ β (1− 2f) < δ
p̂AAF

(
q̂A
)

1− δ
⇐⇒ µ+ β (1− 2f)

µ+ β (1− 2f) + p̂AAF (q̂A)
< δ < 1,

which holds for large δ.

This shows that excess inertia equilibria — where despite lower quality one platform

would price aggressively and win back its focal position had it lost it — are robust to

demand heterogeneity. It also shows that in this situation the nonfocal platform can

survive with a positive market share.

We conclude this Appendix by pointing out that a similar reasoning would show

that by contrast, for high discount factors, a Markov equilibrium where in any state the

focal platform stays focal does not exist with demand heterogeneity. This confirms that

this type of equilibrium should be expected only if firms are not too forward-looking.
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2 Network Effects and Switching Costs

This extension shows that when platforms can price-discriminate between existing and

switching consumers, the results of Section 4 (existence of Markov perfect equilibria

under infinite time horizon where the same platform always wins, even if it is of lower

quality) also hold in a setting with both network effects and switching costs. Moreover,

this section highlights how network effects and switching costs differently affect the

results.

Consider our base model and suppose that consumers experience both network

effects, β, and switching costs, s. We maintain our assumptions that qA > s ≥ 0

and β ≥ qB − qA ≥ 0. We allow platforms to price discriminate between existing

and new consumers. And we explore the existence of Markov equilibria where on the

equilibrium path all consumers buy from the same firm (which becomes focal). For

consistency with our base model, we distinguish between the equilibrium and out-of-

equilibrium prices. Consider the out-of-equilibrium scenario in which all consumers

are on a focal platform i, and there is one consumer on platform j. Define pii as the

price of the focal platform i to consumers on platform i, and p̃ii as the price of the

focal platform i to the consumer on platform j, if such a consumer exists. Likewise,

define pij as the price of the nonfocal platform j to consumers on the focal platform i,

and p̃ij as the price of the nonfocal platform j to the consumer on platform j, if such

a consumer exists. Notice that pij has the same interpretation as in our base model,

while p̃ij is the out-of-equilibrium price in the case where only one consumer switched.3

In what follows, we say that a Markov equilibrium is consistent with focality if at

any date (a) the platform that wins the market becomes focal next period, and (b)

the nonfocal platform cannot win the market if holding constant the Markov strate-

gies of the platforms, there exists another outcome of the (dynamic) subgame where

consumers (strictly) prefer to buy from the focal platform. Rephrasing, it means that

consumers may buy from the nonfocal platform in equilibrium only if there is no

other outcome where consumers prefer to buy from the focal platform. And thus, a

nonfocal platform, in order to be active in the market needs to price in such a way

that it eliminates all alternative outcomes in which consumers prefer to buy from the

focal platform. This is a relatively strong notion of focality which aims at showing

that even with patient firms, inefficiencies may prevail in the long-run due to network

3As one consumer is of mass 0, we assume that other consumers are not affected when a single
consumer deviates from equilibrium path, but for consistency of prices we assume that each platform
optimizes the prices set for this deviating consumer (as it would be the case with a finite but large
set of consumers).
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externalities and incumbency advantage.

We are interested in establishing the existence of an equilibrium where platform i

wins the market in all periods irrespective of whether it is focal or not, and would

find it optimal to win back a consumer in the event the consumer had switched to the

competing platform.

Consider an equilibrium in which platform A wins when it is focal and when it

is not. In this equilibrium, platform B charges pBB = pAB = 0 because as in our base

model, platform B cannot hold on to consumers at time t+ 1 even if it were to attract

them at time t. As for platform A, it needs to set prices that satisfy

qA − pAA + β + δUA ≥ qB − pAB − s+ δ(qA − p̃AA − s+ β + δUA), (7)

where

U i =
qi − pii + β

1− δ
.

The left-hand side is the consumer’s utility from staying in platform A, given that

all other consumers stay with A. If a consumer switches to B, the consumer expects to

be alone in the current period. Then, in the next period, the focal platform A charges

this consumer p̃AA which convinces this consumer to switch back to A. Then, once back

on A, the consumer stays with A in all future periods.

To ensure that these expectations are rational, a focal platform A should be able

to attract the deviating consumer back from the nonfocal platform B. That is:

qA − p̃AA + β − s+ δUA ≥ qB − p̃AB + δ(qA − p̃AA − s+ β + δUA), (8)

and p̃AB = 0. That is, if a consumer switched in period t−1 from a focal platform A to

B, while A remains focal at the beginning of period t, platform B cannot hold on to this

consumer; even at p̃AB = 0, the consumer prefers to switch back to the focal platform A,

over waiting another period and only then switch. Notice that platform A’s profit from

attracting back this marginal consumer is negligible, because of our assumption of price

discrimination between existing and switching consumers and because consumers have

continuum mass. Yet, to ensure that beliefs are consistent, the equilibrium requires

that this marginal change in platform A’s profit should be positive.

Suppose now that platform A is nonfocal. A consumer joins the nonfocal plat-

form A if it is worthwhile to do so given the beliefs that all other consumers stay with

platform B in the current period, and that this consumer will switch back in the next
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period to the focal platform B:

qA − pBA − s+ δ(qB − p̃BB + β − s+ δUB) ≥ qB − pBB + β + δUB. (9)

Notice that such a one-period deviation is the least beneficial deviation. Whatever

benefit the consumer gets from being on A is short-lived and she quickly needs to incur

another switching cost. Note that if it is beneficial for a customer to deviate for one

period, it will be even more beneficial to deviate and stay with A for longer. That

is, we demand from the nonfocal platform to be so attractive that users still want to

incur switching costs even if they can benefit only for one period. We impose such a

strong condition in the spirit of part (b) of the focality definition as stated above. If

condition (9) holds there does not exist any equilibrium in which consumers want to

stay with B this period, even if they expect other consumers to stay with B.

Finally, consider the out-of-equilibrium outcome in which platform B is focal at

period t, and a consumer switched to A at period t− 1 and is alone in A. Notice that

when conditions (1) to (3) hold, the deviating consumer knows that all customers of

platform B are switching to platform A and will stay there forever. Hence despite B

being focal, this consumer stays with A if it is worthwhile to do so given the beliefs that

everybody else joins platform A (this is in the spirit of divide and conquer strategies).

We therefore need that

qA − p̃BA + β + δUA ≥ qB − p̃BB − s+ δ(qA − p̃AA + β − s+ δUA), (10)

and p̃BB = 0.

Binding conditions (7) - (10) along with the 4 conditions pBB = pAB = p̃BB = p̃AB = 0

define the 8 equilibrium prices. Solving, we have

pAA = β − (qB − qA) + s(1− δ), p̃AA = β − (qB − qA)− s(1 + δ), (11)

pBA = −β − (qB − qA)− s(1 + δ), p̃BA = β − (qB − qA) + s(1− δ).

This equilibrium exists when the following conditions hold. First, a focal plat-

form A earns positive value from wining the market; that is, A profitably wins the

competition described by equation (7), i.e.,

V A
A (s) ≡ pAA

1− δ
=
β − (qB − qA)

1− δ
+ s ≥ 0. (12)
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Second, a focal platform A earns positive profit from attracting a consumer that

moved to a nonfocal B in the previous period, and then keeps this consumer in all

future periods; that is, A profitably wins the competition described by equation (8):

p̃AA +
δ

1− δ
pAA =

β − (qB − qA)

1− δ
− s ≥ 0. (13)

Third, a nonfocal platform A earns positive profit from winning the market at

period t, and then becoming focal in period t + 1 onward; that is, A profitably wins

the competition described by equation (9):

V B
A (s) ≡ pBA + δV A

A =
β(2δ − 1)− (qB − qA)

1− δ
− s ≥ 0. (14)

Fourth, a nonfocal A earns positive profit from keeping a consumer that switched

from B to A in the previous period, given that A becomes focal in the next period

onwards; that is, A profitably wins the competition described by equation (10):

p̃BA +
δ

1− δ
pAA =

β − (qB − qA)

1− δ
+ s ≥ 0. (15)

Notice that as s → 0, then V A
A (s) and V B

A (s) converge to V A
A and V B

A in our base

model without switching costs. Also, as in our base model, the binding condition from

among (12), (13), (14) and (15) is V B
A (s) ≥ 0. Hence, such an equilibrium holds iff

V B
A (s) ≥ 0 ⇐⇒ qB − qA < β(2δ − 1)− s(1− δ). (16)

Recall that in our base model with only network effects, when qB > qA, this

inefficient equilibrium exists iff δ > 1
2

and qB − qA < β(2δ − 1) (cf. Section 4 in our

model). Yet, this equilibrium vanishes in a model with only switching costs (Section

5 in our model). Condition (16), which takes into account both network effects and

switching costs, is a combination of these two polar cases. As s → 0, condition (16)

converges to qB − qA < β(2δ − 1). Moreover, as s increases, this condition becomes

tighter, implying that the region in which platform A wins whether it’s focal or not

shrinks. This result is consistent with the findings of our paper — that the inefficient

equilibrium emerges at high values of δ because of network effects and not switching

costs. In a model with both β > 0 and s > 0, β has a positive effect on condition (16)

while s has a negative effect.

Consider now an equilibrium in which platform B wins whether it’s focal or not.

The analysis is symmetric to the analysis above, and we find that such an equilibrium
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exists iff

V A
B (s) ≥ 0 ⇐⇒ qB − qA > β(1− 2δ) + s(1− δ). (17)

Recall that in our base model with only network effects (Section 4), this equilibrium

holds when qB − qA > β(1 − 2δ). When the model only has switching costs (Section

5), this equilibrium holds when qB − qA > s(1 − δ). Condition (17) is a combination

of these two conditions. Intuitively, switching costs make it more difficult for a high-

quality but a nonfocal platform to win the market. This result is again consistent with

the findings of our base model.

3 Stochastic Qualities with a Uniform Distribu-

tion: Welfare and Consumer Surplus

This appendix extends Section 6. We study how δ affects welfare and consumers’ sur-

plus. The following corollary shows that when the stochastic qualities are distributed

according to a uniform distribution, average per-period social welfare is lower when

δ = 1 than when δ = 0. In contrast, consumer surplus is increasing with δ at least

when µ is sufficiently close to 0.

Let S̄i (i = A,B) denote the expected consumer surplus when platform i is focal

in period t, and let Si = (1 − δ)S̄i denote the average per-period expected consumer

surplus. Recalling the definitions of WA and WB in the paper, we obtain the following

result:

Corollary 1 (Welfare and consumer surplus under uniform distribution) Let

Q be uniformly distributed along the interval [µ − σ, µ + σ], and suppose that σ > 2β

and 0 ≥ µ < σ + 2β
2

σ
− 3β. Then WA > WB for all 0 < δ < 1 and SA > SB for all

0 ≤ δ < 1. Moreover, WA|δ=0 = WB|δ=0 > WA|δ=1 = WB|δ=1. Yet, SA and SB are

increasing with δ when µ→ 0.

Proof:

Substituting F (Q) = Q−µ+σ
2σ

into equation (11) from the proof to Proposition 3

yields:

Q̄A = β − 2δµβ

σ − 2δβ
and Q̄B = −β − 2δµβ

σ − 2δβ
.

To ensure that Q̄B > µ − σ, we need σ to be large enough that σ > 2β and 0 ≥ µ <
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σ + 2β
2

σ
− 3β. The recursive expected social welfare functions are then

W̄A =

∫ β− 2δµβ
σ−2δβ

µ−σ
(β + δW̄A)

1

2σ
dq +

∫ µ+σ

β− 2δµβ
σ−2δβ

(β + q + δW̄B)
1

2σ
dq,

W̄B =

∫ µ+σ

−β− 2δµβ
σ−2δβ

(β + q + δW̄B)
1

2σ
dq +

∫ −β− 2δµβ
σ−2δβ

µ−σ
(β + δW̄A)

1

2σ
dq.

Therefore,

WA = (1− δ)W̄A

=
1

4

(
4β − β2

σ
+ σ +

µ(4δ2β2(2β − 3σ)− σ2(µ+ 2σ) + δβσ(5µ− 4β + 10σ)))

(δβ − σ)(σ − 2δβ)2

)
,

WB = (1− δ)W̄B

=
1

4

(
4β − β2

σ
+ σ + 2µ+

(µ(8(−1 + δ)δ2β3 + δβ(5µ− 4(−1 + δ)β)σ − µσ2))

(δβ − σ)(σ − 2δβ)2

)
.

The gap WA −WB can now be written as

WA −WB =
2(1− δ)δµβ2

(σ − δβ)(σ − 2δβ)
.

As σ > 2β (by assumption), WA −WB > 0 for all 0 < δ < 1, and WA −WB = 0

for δ = 0 and δ = 1. Moreover,

WA|δ=0 −WA|δ=1 =
µ2β2(2σ − β)

σ(σ − β)(σ − 2β)2
> 0

where the inequality follows because, by assumption, σ > 2β and µ > 0.

Turning to consumer surplus, we have

S̄A =

∫ β− 2δµβ
σ−2δβ

−∞
(β − pAA + δS̄A)

1

2σ
dq +

∫ ∞
β− 2δµβ

σ−2δβ

(β + q − pAB + δS̄B)
1

2σ
dq,

S̄B =

∫ ∞
−β− 2δµβ

σ−2δβ

(β + q − pBB + δS̄B)
1

2σ
dq +

∫ −β− 2δµβ
σ−2δβ

−∞
(β − pBA + δS̄A)

1

2σ
dq.
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Substituting the prices from Section 6,

SA = (1− δ)S̄A

=
1

4

(
2µ+ 4β(1 + δ)− 4µ(µ+ β(1− δ))

σ − δβ
− 3β2

σ
− σ − 10δµ2β

(σ − 2δβ)2
+
µ(3µ+ 8(1− δ)β)

σ − 2δβ

)
,

SB = (1− δ)S̄B

=
1

4

(
2µ+ 4β(1 + δ)− 4µ(µ− β(1− δ))

σ − δβ
− 3β2

σ
− σ − 10δµ2β

(σ − 2δβ)2
+
µ(3µ− 8(1− δ)β)

σ − 2δβ

)
.

We have

SA − SB =
2(1− δ)µβσ

(σ − δβ)(σ − 2δβ)
.

Hence, SA > SB for all δ < 1. Moreover,

∂SA

∂δ

∣∣∣∣
µ=0

=
∂SB

∂δ

∣∣∣∣
µ=0

= β > 0.

Notice that SA and SB are continuous in µ. Hence, they are increasing with δ as

long as µ is not too high.

This completes the proof of Corollary 1.
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