FINANCIAL RISK AND UNEMPLOYMENT WORK IN PROGRESS

Zvi Eckstein, Ofer Setty, David Weiss

Tel Aviv and IDC, Tel Aviv, Tel Aviv

June 2014

INTRODUCTION

- ▶ Volatility in unemployment u, vacancies v, tightness $\frac{v}{u}$
- ► Firms experience a large volatility in financial risk:
 - ▶ Interest rate fluctuations (BAA)
 - ▶ Spread $(\Rightarrow$ default) fluctuations (BAA-Treasury)
- ightharpoonup Relationship? \rightarrow

Unemployment, Interest rate and Spread

FIGURE: US time-series data 1980-2012

Unemployment, Interest rate and Spread

FIGURE: US time-series data 1980-2012

Unemployment, Interest rate and Spread

FIGURE: US time-series data 1980-2012

Spread & interest rate Granger cause u with lag 2.

RESEARCH QUESTION & METHODOLOGY

How does financial risk (interest rate and credit spread) affect unemployment, vacancies, and market tightness?

- ▶ What are the mechanisms?
- ▶ What is the quantitative power?

RESEARCH QUESTION & METHODOLOGY

How does financial risk (interest rate and credit spread) affect unemployment, vacancies, and market tightness?

- ▶ What are the mechanisms?
- ▶ What is the quantitative power?

Methodology:

- ▶ Use a search-and-matching (DMP) model with capital
- ▶ Use exogenous interest rate and spread shocks
- ▶ Outline mechanisms for interest rate and spread
- ► Calibrate model to US economy (w/o targeting volatility)

LITERATURE

- ▶ Productivity shocks: $p \downarrow \rightarrow profits \downarrow \rightarrow v \downarrow \rightarrow u \uparrow \Rightarrow \theta \downarrow$
 - ▶ Puzzle: Shimer (2005)
 - ▶ Wage stickiness: Hall (2005)
 - ► Calibration: Hagedorn and Manovskii (2008)
 - ► Amplification: Petrosky-Nadau (2014)...
 - ► Fundamental surplus: Ljungqvist and Sargent (2014)

LITERATURE

- ▶ Productivity shocks: $p \downarrow \rightarrow profits \downarrow \rightarrow v \downarrow \rightarrow u \uparrow \Rightarrow \theta \downarrow$
 - ▶ Puzzle: Shimer (2005)
 - ▶ Wage stickiness: Hall (2005)
 - ► Calibration: Hagedorn and Manovskii (2008)
 - ► Amplification: Petrosky-Nadau (2014)...
 - ► Fundamental surplus: Ljungqvist and Sargent (2014)
- ► Alternative shocks:
 - ► Credit: Monacelli, Quadrini and Trigari (2012)
 - ▶ Discount rate: Hall (2014)

MECHANISMS

Interest rate rises:

- ▶ higher capital costs lead to a lower profits (*Profits*)
- ▶ more expensive vacancies (Vacancy cost)

MECHANISMS

Interest rate rises:

- ▶ higher capital costs lead to a lower profits (*Profits*)
- ▶ more expensive vacancies (Vacancy cost)

Spread (default) rises:

- ▶ increase in chances of losing claim to profits (Ownership)
- ▶ some defaults end in separation with worker (Closure)

▶ Back to Breakdown

Model

KEY FEATURES

- ▶ Risk-neutral workers, $\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t i_t$
 - ▶ Employed: $i_t = w_t$
 - ▶ Unemployed: $i_t = b$
- ► Firms:
 - ▶ Matched: produce, pay labor & capital costs: w_s & $r_s k + \delta k$
 - Unmatched: post vacancies v at a cost $c_s(r_s)$
- ▶ Workers and firms match in a *frictional* labor market
- Wages Nash Bargaining
- ► State-dependent default and separations

MATCHING

- ightharpoonup A C.R.S. matching function M(v,u): new matches
- ▶ Define market tightness as: $\theta = \frac{v}{u}$
 - ▶ Job finding rate for worker: $\frac{M(u,v)}{u} = \lambda^w(\theta)$
 - ▶ Job filling rate for firm: $\frac{M(u,v)}{v} = \lambda^f(\theta)$
- Use: $M(u, v) = \frac{uv}{(u^l + v^l)^{\frac{1}{l}}}$

FIRMS AND PRODUCTION

 \triangleright Firms produce output p using capital K and labor L:

$$Q(L, K) = min\left(pL, \frac{K}{\phi}\right)$$

- ► Allows constant productivity
- ► Treat the data accordingly

- ▶ Risk neutral competitive financial intermediaries borrow at rate r_f and lend to *risky* firms at rate r_e
 - Risk: default at rate ψ_n with recovery rate Ω

- ▶ Risk neutral competitive financial intermediaries borrow at rate r_f and lend to risky firms at rate r_e
 - Risk: default at rate ψ_n with recovery rate Ω
- ► Zero profits imply:

$$1 + r_f = (1 - \psi_n)(1 + r_e) + \psi_n \Omega(1 + r_e)$$

- ▶ Risk neutral competitive financial intermediaries borrow at rate r_f and lend to risky firms at rate r_e
 - Risk: default at rate ψ_n with recovery rate Ω
- ▶ Zero profits imply:

$$1 + r_f = (1 - \psi_n)(1 + r_e) + \psi_n \Omega(1 + r_e)$$

$$\Rightarrow \psi_n = \frac{r_e - r_f}{1 + r_e} \frac{1}{1 - \Omega}$$

- ▶ Risk neutral competitive financial intermediaries borrow at rate r_f and lend to risky firms at rate r_e
 - Risk: default at rate ψ_n with recovery rate Ω
- ► Zero profits imply:

$$1 + r_f = (1 - \psi_n)(1 + r_e) + \psi_n \Omega(1 + r_e)$$

$$\Rightarrow \psi_n = \frac{r_e - r_f}{1 + r_e} \frac{1}{1 - \Omega}$$

▶ But, only a fraction η_1 of spread is due to default:

$$\Rightarrow \psi_d = \frac{\eta_1 * (r_e - r_f)}{1 + r_e} \frac{1}{1 - \Omega}$$

SEPARATIONS

- Firms: default at rate ψ_d
- Workers: only a fraction η_2 of defaults end in separation
- ▶ In addition firms and workers face state-independent $\bar{\sigma}$

SEPARATIONS

- Firms: default at rate ψ_d
- Workers: only a fraction η_2 of defaults end in separation
- ▶ In addition firms and workers face state-independent $\bar{\sigma}$
- Separation rate for firms: $\sigma_s^f = \bar{\sigma} + (1 \bar{\sigma})\psi_d$

SEPARATIONS

- Firms: default at rate ψ_d
- Workers: only a fraction η_2 of defaults end in separation
- ▶ In addition firms and workers face state-independent $\bar{\sigma}$
- Separation rate for firms: $\sigma_s^f = \bar{\sigma} + (1 \bar{\sigma})\psi_d$
- ► Separation rate for workers: $\sigma_s^w = \bar{\sigma} + (1 \bar{\sigma})\psi_d\eta_2$

Value Functions - Workers

Employed worker:

$$W_s = w_s + \beta ((1 - \sigma_s^{\mathbf{w}}) E_s W_{s'} + \sigma_s^{\mathbf{w}} E_s U_{s'})$$

Unemployed worker:

$$U_s = b + \beta(\lambda^w(\theta)E_sW_{s'} + (1 - \lambda^w(\theta))E_sU_{s'})$$

Value Functions - Firms

The value of a matched firm is:

$$J_{s} = \underbrace{p - w_{s} - r_{s}k - \delta k}_{\text{Flow profit}} + \beta \left(\left(1 - \sigma_{s}^{f} \right) E_{s}J_{s'} + \sigma_{s}^{f}E_{s}V_{s'} \right)$$

Vacancy posting firm:

$$V_s = -c_s(r_s) + \beta \left(\lambda^f(\theta) E_s J_{s'} + \left(1 - \lambda^f(\theta)\right) E_s V_{s'}\right),\,$$

with vacancy cost: $c_s(r_s) = c_r r_s + c_\delta + c_l$

Wages - Nash Bargaining

- Wages solve: $\max_{w_s} (W_s U_s)^{\gamma} (J_s V_s)^{1-\gamma}$
 - where γ is the worker's bargaining weight
- ▶ The solution is: $W_s U_s = \gamma S_s$; $J_s = (1 \gamma)S_s$
 - where $S_s = (W_s U_s) + (J_s V_s)$

EQUILIBRIUM

Solve for S_s , θ_s using:

• Free entry condition (V = 0):

$$\frac{c_s}{\lambda^f(\theta)} = \beta(1-\gamma)E_sS_{s'}(=\beta E_sJ_{s'})$$

EQUILIBRIUM

Solve for S_s , θ_s using:

▶ Free entry condition (V = 0):

$$\frac{c_s}{\lambda^f(\theta)} = \beta(1 - \gamma)E_sS_{s'}(=\beta E_sJ_{s'})$$

▶ Evolution of surplus:

$$S_{s} = p - b - (r_{s} + \delta)k + \beta \left\{ \left(1 - \sigma_{s}^{f} \right) E_{s} S_{s'} - \frac{\left(\theta q(\theta) - \sigma_{s}^{f} + \sigma_{s}^{w} \right) \gamma}{\left(1 - \gamma \right) q(\theta)} \frac{c_{s}}{\beta} \right\}$$

Calibration Strategy

- ▶ Normalize labor productivity to 1
- ▶ Use a priori calibration as Hagedorn and Manovskii (2008)
 - ▶ including their matching function & parameter
- ► Target job finding rate and market tightness
- ightharpoonup VAR(1) data estimation for $\{r, spread\}$
 - ▶ simplifying (conservative) assumption: uncorrelated

LABOR PRODUCTIVITY NORMALIZATION

▶ Flow surplus is: $p - b - r_s k - \delta k$

LABOR PRODUCTIVITY NORMALIZATION

- Flow surplus is: $p b r_s k \delta k$
- ▶ Define $r_s = \bar{r} + \Delta r$ and rearrange:

$$p - (\bar{r} + \delta)k - \Delta rk - b$$

LABOR PRODUCTIVITY NORMALIZATION

- ▶ Flow surplus is: $p b r_s k \delta k$
- ▶ Define $r_s = \bar{r} + \Delta r$ and rearrange:

$$p - (\bar{r} + \delta)k - \Delta rk - b$$

▶ Define labor productivity = $p - (\bar{r} + \delta)k$ and normalize to 1

Labor Productivity Normalization

- ▶ Flow surplus is: $p b r_s k \delta k$
- ▶ Define $r_s = \bar{r} + \Delta r$ and rearrange:

$$p - (\bar{r} + \delta)k - \Delta rk - b$$

- ▶ Define labor productivity = $p (\bar{r} + \delta)k$ and normalize to 1
- ▶ Flow surplus is now: $1 \Delta rk b$

LABOR PRODUCTIVITY NORMALIZATION

- ▶ Flow surplus is: $p b r_s k \delta k$
- ▶ Define $r_s = \bar{r} + \Delta r$ and rearrange:

$$p - (\bar{r} + \delta)k - \Delta rk - b$$

- ▶ Define labor productivity = $p (\bar{r} + \delta)k$ and normalize to 1
- ▶ Flow surplus is now: $1 \Delta rk b$
- ▶ Flow surplus in the model without capital is: p b

Calibration - A Priori

${\rm Time\ period}=1\ {\rm week}$

Parameter	Meaning	Value	Identification
β	Discount rate	$0.99^{1/12}$	Literature
δ	Depreciation rate	0.0016	Literature (8%)
$\bar{\sigma}$	Job separation	0.0081	Shimer/ HM
c	Mean vacancy cost	0.584	HM Show
l	Matching parameter	0.407	HM
ρ_r	Persistence r	0.971	Authors
σ_r	St. dev. r	0.084	calculation
ρ_{sp}	Persistence spread	0.991	Authors
σ_{sp}	St. dev. spread	0.051	calculation
Ω	Recovery Rate	0.51	Acharya et al ('07)
η_1	Spread due default	1	Aggressive
η_2	Defaults that separate	1	Aggressive

Calibration -Matching Moments

Parameter values and identification:

Parameter	Meaning	Value	Jointly Identified
b	Flow utility when u	0.60	Job finding rate
γ	Bargaining weight	0.48	Market Tightness

Model fit:

Moment	Data	Model
Job Finding Rate	0.139	0.137
Market Tightness	0.634	0.642

Results - Data

		u	v	θ	r	Spread
St Dev	Data	0.11	0.12	0.22		
Pers	Data	0.94	0.91	0.93		
Corr U	Data	1	-0.89	-0.97		
Corr V	Data	-	1	0.98		
Corr θ	Data	-	_	1		

Table: Quarterly moments: data: 1980- 2012

Results - Data

		u	v	θ	r	Spread
St Dev	Data	0.11	0.12	0.22	0.26	0.29
Pers	Data	0.94	0.91	0.93	0.71	0.91
Corr U	Data	1	-0.89	-0.97	0.10	0.45
Corr V	Data	-	1	0.98	-0.20	-0.55
Corr θ	Data	-	_	1	-0.15	-0.51

Table: Quarterly moments: data: 1980- 2012

Results - Data versus Model

		u	v	θ	r	Spread
St Dev	Data	0.11	0.12	0.22	0.26	0.29
	Model	0.11	0.14	0.23		
Pers	Data	0.94	0.91	0.93	0.71	0.91
	Model	0.77	0.47	0.66		
$\operatorname{Corr} U$	Data	1	-0.89	-0.97	0.10	0.45
	Model	1	-0.65	-0.89	0.86	0.11
Corr V	Data	-	1	0.98	-0.20	-0.54
	Model	-	1	0.93	-0.90	0.05
$\operatorname{Corr} \theta$	Data	-	-	1	-0.15	-0.51
	Model	-	-	1	-0.96	-0.02

Understanding the results

- ▶ What is the role of each shock? each mechanism?
 - ▶ breakdown by mechanism + intuition
- ▶ What is the importance of the calibration?
 - ▶ Alternative calibration following Shimer
- ▶ What makes the model successful?
 - Analyze the elasticity of θ w.r.t. r
- ▶ Why financial risk shocks?
 - ▶ Comparison between financial risk and productivity shocks

Break Down of Mechanisms

Mechanisms	u	v	θ
Data	0.11	0.12	0.22
All mechanisms	0.11	0.14	0.23
Profit	0.06	0.08	0.13
Vacancy cost	0.05	0.06	0.10
Ownership	0.00	0.00	0.00
Spread (ownership & closure)	0.02	0.02	0.00

Table: Breakdown- Just Standard Deviation

Break Down of Mechanisms Intuition

- ▶ Profit and vacancy cost channels:
 - ightharpoonup Large effect of deviation in r on cost
- ▶ How come default matters so little?
 - ▶ Relative to state invariant separations $(\bar{\sigma})$, default is small
- ▶ Does it mean that firms don't care about default?
 - ▶ Direct effect is not very big, BUT....
 - ▶ Indirect effect thru interest rate is VERY important

Robustness - Shimer (2005) Calibration

- ▶ Follow Shimer (2005)
- Main differences
 - ▶ **b=0.4**, $\gamma = 0.72$
 - ▶ Lower vacancy cost
 - ▶ Different matching function
 - ▶ No capital (add as above)
- ▶ Produces very weak volatility with *productivity* shocks
- ▶ What about financial shocks?

SHIMER-BASED CALIBRATION

		u	v	θ	r	Spread
St Dev	Data	0.11	0.12	0.22	0.26	0.29
	Model	0.08	0.10	0.17		
Pers	Data	0.94	0.91	0.93	0.71	0.91
	Model	0.75	0.54	0.68		
$\operatorname{Corr} U$	Data	1	-0.89	-0.97	0.10	0.45
	Model	1	-0.71	-0.90	0.86	0.16
Corr V	Data	-	1	0.98	-0.20	-0.54
	Model	-	1	0.94	-0.92	0.09
$\operatorname{Corr} \theta$	Data	-	-	1	-0.15	-0.51
	Model	-	-	1	-0.97	-0.02

ELASTICITY OF TIGHTNESS W.R.T. THE SHOCK EXAMPLE: PROFITS CHANNEL

Example: Profits Channel

$$\frac{\partial log\theta}{\partial \log p} = \underbrace{\frac{p}{p-z}}_{\text{fundamental surplus=0.6}} *\Upsilon(\gamma \lambda^w)$$

Example: Profits Channel

$$\frac{\partial log\theta}{\partial \log p} = \underbrace{\frac{p}{p-z}}_{\text{fundamental surplus}=0.6} *\Upsilon(\gamma \lambda^w)$$

$$\frac{\partial log\theta}{\partial \log rk} = \underbrace{\frac{-\bar{r}k}{p-\bar{r}k-\delta k-z}}_{\text{fundamental surplus}=0.6} *\Upsilon(\gamma \lambda^w)$$
 \in Show \gamma

Example: Profits Channel

▶ Ljungqvist and Sargent (2014): all reconfigured models are based on a small fundamental surplus in the steady state:

$$\frac{\partial log \theta}{\partial \log p} = \underbrace{\frac{p}{p-z}}_{\text{fundamental surplus}=0.6} *\Upsilon(\gamma \lambda^w)$$

$$\frac{\partial log \theta}{\partial \log rk} = \underbrace{\frac{-\bar{r}k}{p-\bar{r}k-\delta k-z}}_{\text{fundamental surplus}=0.6} *\Upsilon(\gamma \lambda^w)$$
 \rightarrow Show \gamma

▶ In Shimer-based calibration: $\frac{p}{p-z} = 1.67$, $\frac{r_s k}{p-r_s k - \delta k - z} = 0.28 \Rightarrow$ the elasticity in our model is 6 times **smaller**

Example: Profits Channel

$$\frac{\partial log \theta}{\partial \log p} = \underbrace{\frac{p}{p-z}}_{\text{fundamental surplus}=0.6} *\Upsilon(\gamma \lambda^w)$$

$$\frac{\partial log \theta}{\partial \log rk} = \underbrace{\frac{-\bar{r}k}{p-\bar{r}k-\delta k-z}}_{\text{fundamental surplus}=0.6} *\Upsilon(\gamma \lambda^w) \longrightarrow \text{Show } \Upsilon$$

- ▶ In Shimer-based calibration: $\frac{p}{p-z} = 1.67$, $\frac{r_s k}{p-r_s k-\delta k-z} = 0.28 \Rightarrow$ the elasticity in our model is 6 times **smaller**
- ▶ But! r is ~ 26 times **more** volatile than labor productivity

INTEREST RATE VS. PRODUCTIVITY SHOCKS

Comparison by looking at (only) data (lagged correlations):

	u	v	θ	r	spread	p
St Dev	0.11	0.12	0.22	0.26	0.29	0.01
Pers	0.94	0.91	0.93	0.71	0.91	0.77
$\operatorname{Corr} U$	1	-0.89	-0.97	0.42	0.63	-0.32
Corr V	-	1	0.98	-0.47	-0.61	0.48
Corr θ	-	-	1	-0.46	-0.64	0.41

Table: Data

Note: exact value for σ_P is 0.0095. Go to comparison without lag

Importance of spread

- ▶ Allow the default parameters (η_1, η_2, Ω) to change over time
- ▶ New mechanisms for default
- ► The role of liquidity

Importance of spread

- ▶ Allow the default parameters (η_1, η_2, Ω) to change over time
- ▶ New mechanisms for default
- ► The role of liquidity

Robustness

Use capital costs instead of interest rates

Importance of spread

- ▶ Allow the default parameters (η_1, η_2, Ω) to change over time
- ▶ New mechanisms for default
- ► The role of liquidity

Robustness

Use capital costs instead of interest rates

Heterogeneous firms (SMEs)

Importance of spread

- ▶ Allow the default parameters (η_1, η_2, Ω) to change over time
- ▶ New mechanisms for default
- ► The role of liquidity

Robustness

▶ Use capital costs instead of interest rates

Heterogeneous firms (SMEs)

Endogenous prices (r): Yes, but:

- ► Insist on importance of large fluctuations
- ▶ Try keeping the simple framework and clear comparison

CONCLUSION

We studied:

- ▶ Mechanisms for *financial risk* affecting unemployment
- ► The quantitative effect of those shocks using DMP literature

CONCLUSION

We studied:

- ▶ Mechanisms for *financial risk* affecting unemployment
- ► The quantitative effect of those shocks using DMP literature

We found:

- ▶ Financial conditions matter a lot
- ▶ The main driving force is the interest rate
- ► Spread (default and liquidity) should be further explored

Unemployment, Vacancies and Tightness

FIGURE: US time-series data 1980-2012

→ Back to Motivation

Break Down of Mechanisms - a la Shimer

Mechanisms	u	v	θ
Data	0.11	0.12	0.22
All mechanisms	0.08	0.10	0.17
Profit	0.03	0.05	0.08
Vacancy cost	0.04	0.05	0.09
Ownership	0.00	0.00	0.00
Spread	0.02	0.02	0.00

TABLE: Breakdown- Just Standard Deviation

INTEREST RATE VS. PRODUCTIVITY SHOCKS

Comparison by looking at (only) data (without lags):

	u	v	θ	r	spread	p
St Dev	0.11	0.12	0.22	0.26	0.29	0.01
Pers	0.94	0.91	0.93	0.71	0.91	0.77
$\operatorname{Corr} U$	1	-0.89	-0.97	0.10	0.45	0.05
Corr V	-	1	0.98	-0.20	-0.54	0.17
Corr θ	-	1	1	-0.15	-0.51	0.06

Table: Data

Note: exact value for σ_P is 0.0095. Back to comparison with lag

Calibration of vacancy cost

- Vacancy cost is $c_s(r_s) = c_r r_s + c_\delta + c_l$
- Capital component: $c_r r_s + c_{\delta}$
 - ▶ Assume capital required one period in advance
 - ▶ Capital share $=\frac{1}{3}$
 - ▶ Labor productivity is $1 \to \text{capital cost} \sim 0.5$
 - Correct for capital in vacancies: $c_r r_s + c_\delta = 0.464$
- ▶ Labor component: c_l
 - ▶ 11% of average labor productivity based on micro evidence
- ► Total vacancy cost = 0.474 + 0.11 = 0.574

RESULTS - DATA -LAG

		u	v	θ	r	Spread
St Dev	Data	0.11	0.12	0.22	0.26	0.29
Pers	Data	0.94	0.91	0.93	0.71	0.91
Corr U	Data	1	-0.89	-0.97	0.42	0.63
Corr V	Data	-	1	0.98	-0.47	-0.61
Corr θ	Data	-	_	1	-0.46	-0.64

Table: Quarterly moments: data: 1980- 2012

Results - Data vs Model -lag

		u	v	θ	r	Spread
St Dev	Data	0.11	0.12	0.22	0.26	0.29
	Model	0.11	0.14	0.23		
Pers	Data	0.94	0.91	0.93	0.71	0.91
	Model	0.77	0.47	0.66		
$\operatorname{Corr} U$	Data	1	-0.89	-0.97	0.42	0.63
	Model	1	-0.65	-0.89	0.55	0.12
Corr V	Data	-	1	0.98	-0.47	-0.61
	Model	-	1	0.93	-0.12	0.05
Corr θ	Data	-	-	1	-0.46	-0.64
	Model	-	_	1	-0.46	-0.03

SHIMER-BASED CALIBRATION -LAG

		u	v	θ	r	Spread
St Dev	Data	0.11	0.12	0.22	0.26	0.29
	Model	0.08	0.10	0.17		
Pers	Data	0.94	0.91	0.93	0.71	0.91
	Model	0.75	0.54	0.68		
Corr U	Data	1	-0.89	-0.97	0.42	0.63
	Model	1	-0.71	-0.90	0.55	0.12
Corr V	Data	-	1	0.98	-0.47	-0.61
	Model	-	1	0.94	-0.12	0.05
$\operatorname{Corr} \theta$	Data	-	-	1	-0.46	-0.64
	Model	-	-	1	-0.46	-0.03

RESULTS - ONLY SPREAD

		u	v	θ	r	Spread
St Dev	Data	0.11	0.12	0.22	0.26	0.29
	Model	0.02	0.02	0.00		
Pers	Data	0.94	0.91	0.93	0.71	0.91
	Model	0.76	0.76	0.75		
$\operatorname{Corr} U$	Data	1	-0.89	-0.97	0.10	0.45
	Model	1	1.00	-0.93	-0.01	0.46
Corr V	Data	-	1	0.98	-0.20	-0.54
	Model	-	1	-0.92	-0.01	0.47
$\operatorname{Corr} \theta$	Data	-	-	1	-0.15	-0.51
	Model	-	-	1	0.00	-0.36

EXAMPLE: PROFITS CHANNEL

$$\frac{\partial log\theta}{\partial \log p} = \underbrace{\frac{p}{p-z}}_{\text{fundamental surplus}} *\Upsilon(\gamma \lambda^w)$$

$$\frac{\partial log\theta}{\partial \log rk} = \underbrace{\frac{-\bar{r}k}{p-\bar{r}k-\delta k-z}}_{\text{fundamental surplus}} *\Upsilon(\gamma \lambda^w)$$

$$\Upsilon = \frac{r_s + \bar{\sigma} + \gamma \lambda^w}{(1-\eta)(r_s + \bar{\sigma}) + \gamma \lambda^w}$$

- ▶ In Shimer-based calibration: $\frac{p}{p-z} = 1.67$, $\frac{r_s k}{p-r_s k-\delta k-z} = 0.28$
- ► Conclusion: the elasticity is 6 times **smaller** in our model, But:
- ightharpoonup (r,spread) are ~ 26 times **more** volatile than labor productivity

FINANCIAL RISK

- State: $s = \{r, spread\}$
- \triangleright Shock follows VAR(1):

$$\begin{array}{rcl} s_t &=& \mu + \eta_t \\ \eta_t &=& \rho \eta_{t-1} + \epsilon_t \\ \epsilon_t &\sim& N \left(0, \left[\begin{array}{cc} \sigma_r^2 & \rho_{r,sp} \\ \rho_{r,sp} & \sigma_{sp}^2 \end{array} \right] \right) \end{array}$$

 \overline{F} IGURE: Quarterly US time-series data 1982-2012, HP filtered with a coefficient of 1600. Unemployment is 2 quarters lagged.

 \overline{F} IGURE: Quarterly US time-series data 1982-2012, HP filtered with a coefficient of 1600. Unemployment is 2 quarters lagged.

Phelps & Zoega on interest rate shocks

Phelps and Zoega (JET, 1998):

A firm has to invest in customers or in employee training or in labour-intensive capital goods when it hires new workers. So if it is to hire it must expect to cover the interest and depreciation. A rise of real interest rates raises this hurdle.